
SERVICE MANUAL EL SERIES 6 DATSUN' ·张澄也。

DATSUN

SERVICE MANUAL

MODEL 610 SERIES

NISSAN

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

QUICK REFERENCE INDEX

GENERAL INFORMATION	GI
ENGINE TUNE-UP	ET
ENGINE MECHANICAL	EM
ENGINE LUBRICATION SYSTEM	EL
COOLING SYSTEM	CO
ENGINE FUEL	EF
EMISSION CONTROL SYSTEM	EC
ENGINE ELECTRICAL SYSTEM	EE
ENGINE REMOVAL & INSTALLATION	ER
CLUTCH	CL
TRANSMISSION	TM
AUTOMATIC TRANSMISSION	AT
PROPELLER SHAFT & DIFFERENTIAL CARRIER	PD
FRONT AXLE & FRONT SUSPENSION	FA
REAR AXLE & REAR SUSPENSION	RA
BRAKE SYSTEM	BR
WHEEL AND TIRE	WT
STEERING SYSTEM	ST
ENGINE CONTROL, FUEL & EXHAUST SYSTEMS	FE
BODY	- BF
BODY ELECTRICAL SYSTEM	BE

FOREWORD

This service manual has been prepared for the purpose of assisting service personnel of authorized NISSAN/DATSUN dealers in providing effective service and maintenance of the Datsun 180B

Since proper maintenance and service are absolutely essential in satisfying the Datsun owners, this manual should be kept in a handy place for ready reference and should be carefully studied

This manual includes procedures for maintenance adjustments, minor service operations, removal and installation, and for disassembly and assembly of components

Some of these service operations require the use of Special Tools especially designed for effective performance of service operations

As you read through the maintenance procedures in this service manual, you will occasionally come across paragraphs headed NOTE or CAUTION A NOTE is supplemental information that is important to a particular procedure. CAUTION warns of steps that must be followed to prevent personal injury and/or damage to some part of your DATSUN.

The Quick Reference Index on the first page enables the user to quickly locate the desired section. At the beginning of each individual section is a table of contents, which gives the page number on which each major subject begins. An index is placed at the beginning of each major subject within the section

All information, illustrations and specifications contained in this manual are based on the latest product information available at the time of publication approval. If your DATSUN model differs from the specifications contained in this manual, consult your NISSAN/DATSUN dealer for information

Rights for alteration at any time of specifications and methods are reserved.

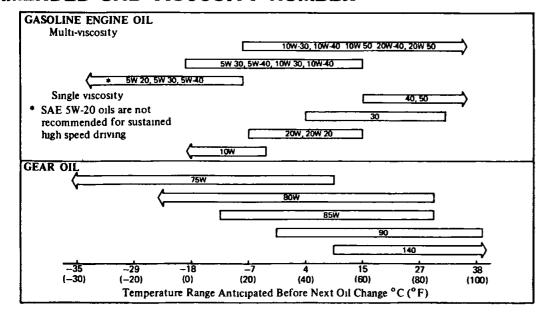
Liability for any personal injury or property damage occasioned by the use of this service manual in effecting maintenance or repair of your Datsun is in no way assumed by Nissan Motor Co, Ltd

Accordingly, anyone using a service procedure or tool which is not specifically recommended by Nissan must first completely satisfy himself that neither his safety nor the car's safety will be jeopardized by the service method selected.

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

APPROXIMATE REFILL CAPACITY

	Liter	US measure	Imp measure
Fuel tank			
Sedan and Hardtop	55	14 ⅓ gal	12 ⅓ gal
Station Wagon	52	13 ¾ gal	11 ⅓ gal
Engine cooling system *1	6.5	6 1/8 qt	5 ¾ qt
Engine crank case *2	4 3	4 ⅓ qt	3 ¾ qt
Manual transmission 4-speed	20	. 4 ½ pt	3 ⅓ pt
5-speed	17	3 % pt	2 1/2 pt
Automatic transmission case *3	5 5	5 1/4 qt	4 % qt
Final drive case housing			
Sedan and Hardtop	0 8-	1 ¾ pt	1 ⅓ pt '
Station Wagon	13	2 ¾ pt	2 ¼ pt
Steering gear box	0 28	⅓ pt	⅓ pt


- *1 Includes 0 5 liter (½ US qt, ½ Imp qt) for heater
- *2 Includes 0 5 liter (½ US qt, ½ Imp qt) for oil filter
- *3 Includes 4 0 liters (41/4 US qt, 31/2 Imp qt) for torque converter

RECOMMENDED FUEL

Use a proper grade gasoline of above 88 octane rating

RECOMMENDED LUBRICANTS

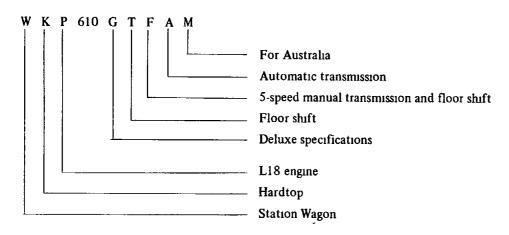
RECOMMENDED SAE VISCOSITY NUMBER

DATSUN MODEL 610 SERIES SECTION GI

GI

GENERAL INFORMATION

MODEL VARIATION	GI- 2
DENTIFICATION NUMBERS	GI- 3
APPROXIMATE REFILL Capacity	G1- 4
ECOMMENDED FUEL	GI- 4
ECOMMENDED LUBRICANTS	GI- 4
IFTING POINTS AND TOWING	GI- 6



NISSAN MOTOR CO., LTD.

MODEL VARIATION

	Model	Engine model	Transmission model
Hardtop	KP610GFM	L18	FS5W63A (5-speed)
Haldtop	KP610GATM	L18	3N71B (3-speed)
Sedan	P610TM	L18	F4W63L (4-speed)
	P610ATM	L18	3N71B (3-speed)
	WP610TM	L18	F4W63L (4-speed)
Station Wagon	WP610ATM	L18	3N71B (3-speed)

The meaning of prefix and suffix

IDENTIFICATION NUMBERS

The unit and car numbers are stamped and registered at the factory

The engine and car identification numbers are used on legal documents. These numbers are used for factory communication such as Technical Report, Warranty Claim, Service Journal and other information.

CAR IDENTIFICATION PLATE

The car identification plate is located at the center of the cowl top. The plate contains the car type, engine capacity, maximum horse-power, wheelbase and engine serial and chassis numbers

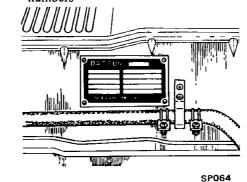


Fig GI-1 Identification plate location

CHASSIS NUMBER

The chassis number is stamped on the left side of the cowl top and is broken down as shown in the following chart according to the type of the

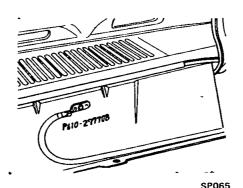


Fig GI-2 Chassis number location

Car	Engine model	Chassis number
Sedan Hardtop Station Wagon	L18	P610 - xxxxxx

ENGINE SERIAL NUMBER

The engine serial number is stamped on the right-hand side of the cylinder block. The number is broken down as shown in the following chart according to the type of the engine

Engine model	Engine number
L18	L18 - xxxxxx

Fig GI-3 Engine serial number location

COLOR CODE NUMBER

The color code number label is stuck on the right hand side of the radiator core support as shown in the following figure

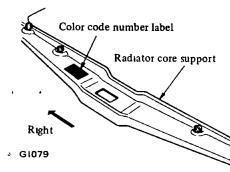
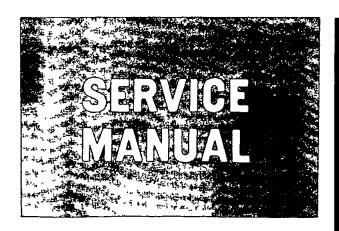



Fig Gl-4 Color code number label location

DATSUN MODEL 610 SERIES SECTION GI

GI

GENERAL INFORMATION

MODEL VARIATION	GI- 2
IDENTIFICATION NUMBERS	GI- 3
APPROXIMATE REFILL CAPACITY	GI- 4
RECOMMENDED FUEL	GI- 4
RECOMMENDED LUBRICANTS	GI- 4
LIFTING POINTS AND TOWING	GI - 6



NISSAN MOTOR CO., LTD. TOKYO, JAPAN

MODEL VARIATION

	Model	Engine model	Transmission model
Hardtop	KP610GFM	L18	FS5W63A (5-speed)
- Lairetop	KP610GATM	L18	3N71B (3-speed)
C 1	P610TM	L18	F4W63L (4-speed)
Sedan P610ATM		L18	3N71B (3-speed)
	WP610TM	L18	F4W63L (4-speed)
Station Wagon	WP610ATM	L18	3N71B (3-speed)

The meaning of prefix and suffix

IDENTIFICATION NUMBERS

The unit and car numbers are stamped and registered at the factory

The engine and car identification numbers are used on legal documents These numbers are used for factory communication such as Technical Report, Warranty Claim, Service Journal and other information

CAR IDENTIFICATION PLATE

The car identification plate is located at the center of the cowl top. The plate contains the car type, engine capacity, maximum horse-power, wheelbase and engine serial and chassis numbers.

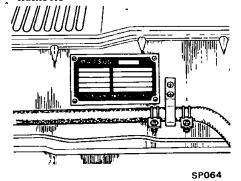


Fig GI-1 Identification plate location

CHASSIS NUMBER

The chassis number is stamped on the left side of the cowl top and is broken down as shown in the following chart according to the type of the car

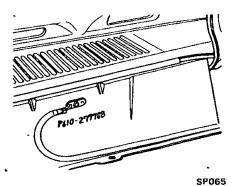


Fig GI-2 Chassis number location

Car	Engine model	Chassis number
Sedan Hardtop Station Wagon	L18	P610 - xxxxxx

ENGINE SERIAL NUMBER

The engine serial number is stamped on the right-hand side of the cylinder block. The number is broken down as shown in the following chart according to the type of the engine.

Engine model	Engine number
L18 -	L18 - xxxxxx

COLOR CODE NUMBER

The color code number label is stuck on the right hand side of the radiator core support as shown in the following figure

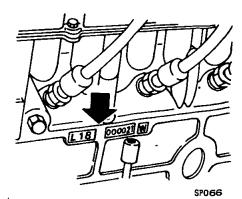


Fig GI-3 Engine serial number location

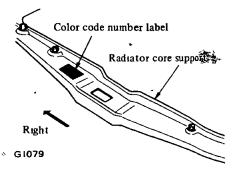
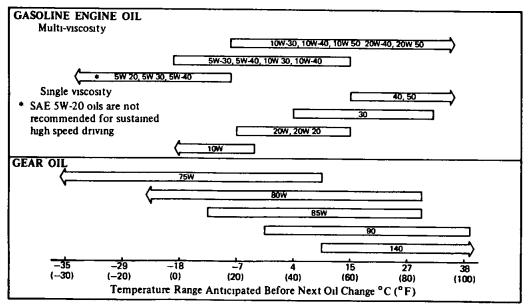


Fig GI-4 Color code number label location

APPROXIMATE REFILL CAPACITY

	Liter	US measure	Imp measure
Fuel tank			
Sedan and Hardtop	55	14 ½ gal	 12 ⅓ gal
Station Wagon	52	13 ¾ gal	11 ½ gal
Engine cooling system *1	6.5	6 1/8 qt	5 ¾ qt
Engine crank case *2	4 3	4 ⅓ qt	3 1/4 qt
Manual transmission 4-speed	20	4 1/4 pt	3 ⅓ pt
5-speed	17	3 % pt	2 1/2 pt
Automatic transmission case *3	5 5	5 1/6 qt	4 1/2 qt
Final drive case housing			-
Sedan and Hardtop	0.8	1 ¾ pt	1 % pt
Station Wagon	13	2 ¾ pt	2 ¼ pt
Steering gear box	0 28	⅓ pt	⅓ pt


- *1 Includes 0 5 liter (½ US qt, ½ Imp qt) for heater
- *2 Includes 0 5 liter (½ US qt, ½ Imp qt) for oil filter
- *3 Includes 4 0 liters (4½ US qt, 3½ Imp qt) for torque converter

RECOMMENDED FUEL

Use a proper grade gasoline of above 88 octane rating

RECOMMENDED LUBRICANTS

RECOMMENDED SAE VISCOSITY NUMBER

RECOMMENDED LUBRICANTS

	Item	Specifications	Remarks	
Engine oil	Gasoline	SAE Classification SD or SE (MIL-L-2104B)	Refer to Recommended SAE Viscosity Chart	
Gear oil	Transmission and Steering	API GL-4 (MIL-L-2105)		
Cea	Differential	API GL-5 (MIL-L-2105B)		
Aut	omatic T/M	Type DEXRON		
Mul	tı-purpose grease	NLGI 2	Lithium soap base	
- ,Brake and Clutch fluid		Brake and Clutch fluid DOT 3 (F M V S S No 116)		
Ant	ıfreeze		Permanent antifreeze (Etylene glycol base)	

LIFTING POINTS AND TOWING

PANTOGRAPH JACK

Place the pantograph jack furnished with the car under the position indicated below in a safe manner

Notes

- a Never get under the car while it is supported only by the jack Always use safety stands to support frame when you have to get under the car
- b Block the wheels diagonally by wheel chocks

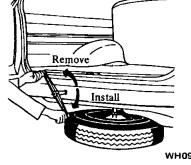


Fig GI-11 Lowering spare tire (Station Wagon)

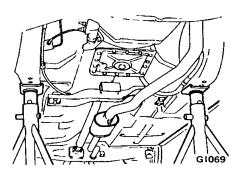


Fig GI-13 Front supportable points

car, place the chocks at the front side of the front wheels to hold them

differential carrier (all models), the

suspension arm (A) (Sedan) or suspen-

under the rear suspension member or

body (Sedan), or under the rear axle

Release the jack slowly

Place the stands at the positions

sion member (B) (Sedan)

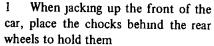
case (Station Wagon)

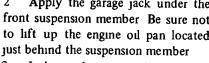
indicated below

When jacking up the rear of the

Apply the garage jack under the

Jack up the car gently just high enough to place the safety stands


REAR SIDE


WH130 Fig GI-8 Jack-up points

GARAGE JACK

FRONT SIDE

- Apply the garage jack under the front suspension member Be sure not to lift up the engine oil pan located just behind the suspension member
- Jack up the car gently just high enough to place the safety stands under both the side members Place the stands at the position indicated in Figure GI-12
- Release the jack slowly

Note When carrying out operations with the garage jack, be sure to support the car with safety stands

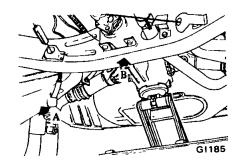


Fig GI-14 Rear jack-up points (Sedan and Hardtop)

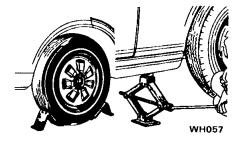


Fig GI-9 Wheel chocks and jack (Sedan and Hardtop)

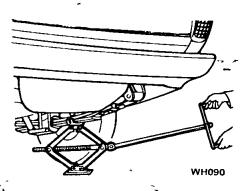


Fig GI-10 Jack (Station Wagon)

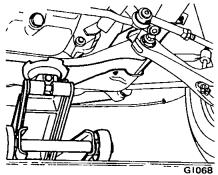


Fig GI-12 Front jack-up point



Fig GI-15 Rear supportable points (Sedan and Hardtop)

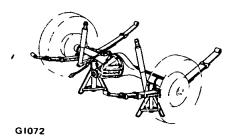


Fig GI-16 Rear supportable points (Station Wagon)

TOWING

MODEL

and GI-20

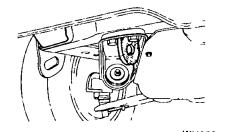
described above

damage

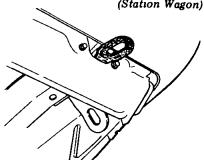
MANUAL TRANSMISSION

shown in Figures GI-17 and GI-18

When the car is towed forward, connect the rope securely to the hook


To tow another car, connect a rope to the hook shown in Figures GI-19

A towing rope should not be con-


nected to any positions than those

Note Do not attempt to apply load

to a rope suddenly to prevent

WH169
Fig GI-18 Front towing hook
(Station Wagon)

WH193 Fig GI-19 Rear towing hook (Sedan and Hardtop)

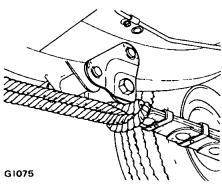
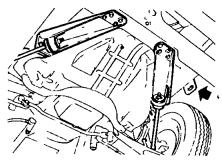


Fig GI-20 Rear towing hook (Station Wagon)

TIE-DOWN

straight ahead position

properly


The front tie-down hook is located as shown in Figure GI-21

Car must be towed for a long

Transmission is not operating

It car is towed on its front wheels on the ground, the steering wheel should be secured to maintain a

distance [over 10 km (6 miles)]

G1269

Fig GI-21 Front tie-down hook

There are two rear tie-down hooks on Sedan and Hardtop Each hook is located as shown in Figure GI-22

Note Do not use the rear hooks as a towing hook.

AUTOMATIC TRANSMISSION MODEL

The car may be towed safely on its rear wheels on the ground with the select lever in "N" (Neutral) position of at speeds of less than 30 km/h (19 MPH) However, the propeller shaft must be disconnected or the car must be towed on its front wheels on the ground under the following conditions

1 Tow speed of more than 30 km/h (19 MPH)

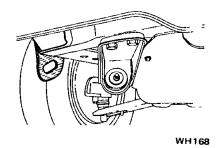


Fig GI-17 Front towing hook (Sedan and Hardtop)

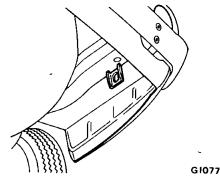


Fig GI-22 Rear tie-down hook (Sedan and Hardtop)

SERVICE MANUAL

DATSUN
MODEL 610 SERIES

NISSAN MOTOR CO., LTD.

SECTION ET

ET

ENGINE TUNE-UP

ENGINE TUNE-UP	ET- 2
SERVICE DATA AND SPECIFICATIONS	ET-11
TROUBLE DIAGNOSES AND CORRECTIONS	ET-12
EMISSION TROUBLE-SHOOTING	FT-19

ENGINE TUNE-UP

CONTENTS

DESCRIPTION	ET- 2	CHECKING FUEL LINES	
EMISSION CONTROL SYSTEM		(Hoses, piping, connections, etc.)	ET- 6
COMPONENTS	ET- 2	ADJUSTING CHOKE MECHANISM	
BASIC MECHANICAL SYSTEM	ET- 4	(Choke plate and linkage)	ET- 6
RETIGHTENING CYLINDER HEAD		ADJUSTING CARBURETOR IDLE RPM	
BOLTS, MANIFOLD NUTS AND		AND MIXTURE RATIO	ET- 6
CARBURETOR SECURING NUTS	ET- 4	LUBRICANT AND COOLING SYSTEMS	ET- 7
ADJUSTING INTAKE AND EXHAUST		REPLACING OIL FILTER	ET- 7
VALVE CLEARANCES	ET- 4	CHANGING ENGINE OIL	ET- 7
CHECKING AND ADJUSTING		CHANGING ENGINE COOLANT	
DRIVE BELT	ET- 4	(Permanent anti-freeze coolant)	ET- 7
IGNITION AND FUEL SYSTEM	ET- 4	CHECKING FOR COOLANT, OIL AND	
CHECKING AND REPLACING		FUEL LEAKS	ET- 8
SPARK PLUGS	ET- 4	EMISSION CONTROL SYSTEM	ET- 8
CHECKING IGNITION WIRING	ET- 4	CHECKING AND REPLACING PCV	
REPLACING DISTRIBUTOR BREAKER		VALVE	ET- 8
POINTS	ET- 5	CHECKING VENTILATION HOSES	ET- 8
CHECKING VACUUM FITTINGS,		CHECKING ELECTRIC ADVANCE	
HOSES AND CONNECTIONS	ET - 5	CONTROL SYSTEM	ET- 8
CHECKING DISTRIBUTOR CAP, ROTOR		INSPECTING BOOST CONTROLLED	
AND CONDENSER	ET- 5	DECELERATION DEVICE (BCDD)	ET- 9
CHECKING AND ADJUSTING		CHECKING VAPOR LINES	
IGNITION TIMING	ET- 5	(Hoses, connections, etc.) AND FUEL	
REPLACING AIR CLEANER		VAPOR CONTROL VALVE	ET- 9
FILTER (Viscous type)	ET- 6	CHECKING FUEL TANK VACUUM	
REPLACING FUEL FILTER	ET- 6	RELIEF VALVE	ET-10

DESCRIPTION

To keep the engine in top running condition at all times, proper maintenance (tune-up) is necessary Moreover, it is important that the engine be tuned-up in accordance with the maintenance schedule. The results of proper engine maintenance are, among others, minimum exhaust emissions

This section describes proper maintenance procedures

EMISSION CONTROL SYSTEM COMPONENTS

The emission control system con-

sists of a spark advance control system, a BCDD (Boost Controlled Deceleration Device), an Evaporative Emission Control system and a PCV (Positive Crankcase Ventilation)

These devices reduce HC, CO and NOx emissions sufficiently to meet Australia exhaust emission regulations

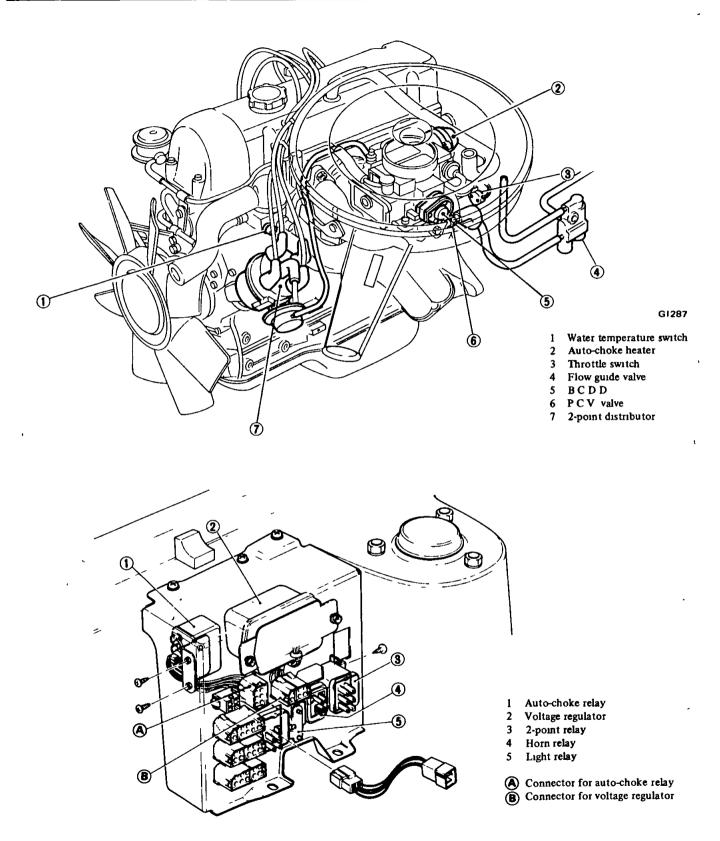


Fig ET-1 Location of emission control components

BASIC MECHANICAL SYSTEM

RETIGHTENING CYLINDER HEAD BOLTS, MANIFOLD NUTS AND CARBURETOR SECURING NUTS

Refer to the following tightening torque specifications

Tightening torque

Cylinder head bolts
7 0 to 8 5 kg-m
Manifold nuts
1 2 to 1 6 kg-m
Carburetor nuts
0 5 to 1 0 kg-m

Notes

ľ

- a When engine is cold, bolts should be tightened in two or three steps, in the sequence shown in Figure ET-2, starting from center and working out toward ends
- b. Retighten cylinder head bolts after engine has warmed up

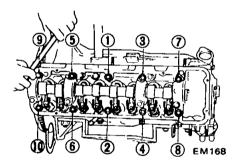


Fig ET-2 Retightening cylinder head holt

ADJUSTING INTAKE AND EXHAUST VALVE CLEARANCES

Valve clearance adjustment cannot be made while engine is in operation To adjust, proceed as follows

- 1 Start engine and run it until it reaches operating temperature, or engine oil temperature is more than 80°C, then stop engine
- 2 Rotate crankshaft to bring No 1 cylinder to top dead center of its compression stroke

3 Remove valve rocker cover

Loosen pivot locking nut and turn pivot screw until specified clearance is obtained while engine is cold

Using service tool, tighten pivot locking nut securely after adjustment, and recheck clearance

- (1) Exhaust valve of No 1 cylinder
- (2) Intake valve of No 1 cylinder
- (3) Intake valve of No 2 cylinder
- (5) Exhaust valve of No 3 cylinder
- 4 Again, rotate crankshaft one turn so that No 4 piston is at top dead center of its compression stroke Adjust the following valves
- (4) Exhaust valve of No 2 cylinder
- (6) Intake valve of No 3 cylinder
- (7) Intake valve of No 4 cylinder
- (8) Exhaust valve of No 4 cylinder

Adjustment should be made while engine is hot

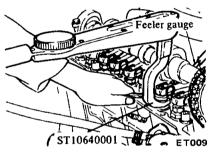


Fig ET-3 Adjusting valve clearance

Valve clearance

		Unit mm
Intake		0 20
Exhaust	0 25	
Warm	Intake	0 25
wann	Exhaust	0 30

CHECKING AND ADJUSTING DRIVE BELT

- 1 Check for cracks or damage Replace if necessary
- 2 Adjust drive belt tension It is correct if deflection is as indicated in chart when thumb pressure of 10 kg is applied midway between fan pulley and alternator pulley

Slackness

8 to 12 mm

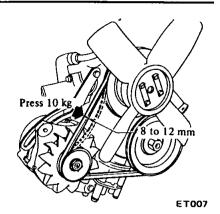


Fig ET-4 Drive belt tension

IGNITION AND FUEL SYSTEM

CHECKING AND REPLACING SPARK PLUGS

Remove and clean plugs in a sandblast cleaner Inspect each spark plug Make sure that they are of the specified heat range Inspect insulator for cracks or chips Check both center and ground electrodes If they are excessively worn, replace with new spark plugs File center electrode flat

Tightening torque Spark plug 2 0 to 3 0 kg-m

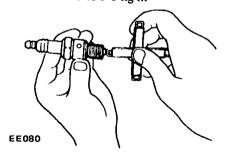


Fig ET-5 Checking spark plug point gap

Spark plug specifications
Heat range BP6ES (L45PW)
Plug gap 0 8 to 0 9 mm

CHECKING IGNITION WIRING

Distributor breaker points

Make sure they are properly aligned and that point dwell and gap are correct

ignition wiring

Use an ohmmeter to check resistance of secondary cables Disconnect cables from spark plugs

Remove distributor cap and secondary cables as an assembly Do not remove cables from cap

Check resistance of one cable at a time Connect ohmmeter between spark plug side and corresponding electrode inside cap If resistance is more than 30,000 ohms, remove cable from cap and check cable resistance only If resistance is still more than 30,000 ohms, replace cable assembly

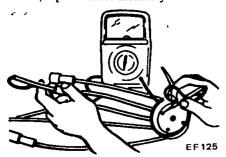


Fig ET-6 Spark plug wire

REPLACING DISTRIBUTOR BREAKER POINTS

Check distributor breaker points for abnormal pitting and wear Replace points periodically After replacing points, make sure they are in correct alignment for full contact and that point dwell and gap are correct Clean and apply distributor grease to cam lobes

Note Do not apply excess amount of grease

The distributor has two contact points Each point can be replaced independently Both points, however, are usually replaced at the same time

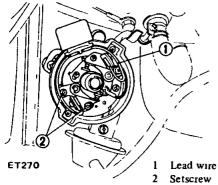


Fig ET-7 Breaker point

- 1 Loosen lead wire setting screws and remove lead wire from contact point set
- 2 Remove two setscrews on each point set Point assembly can then be taken out
- 3 Install new contact point in the reverse sequence of removal

Notes

- a. Coat cam heel with a light coating of grease
- b Adjust contact point gap properly by measuring point gap with a feeler gauge before setscrews are tightened securely

Distributor point gap 0 45 to 0 55 mm Distributor dwell angle 49 to 55 degrees

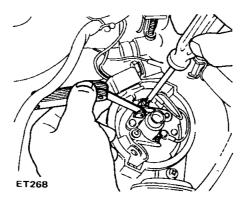


Fig ET-8 Adjusting point gap

CHECKING VACUUM FITTINGS, HOSES AND CONNECTIONS

Check fittings and hoses for loose connections Retighten as necessary, replace any faulty parts

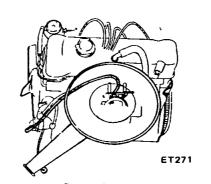


Fig ET-9 Connecting vacuum passage lines

CHECKING DISTRIBUTOR CAP, ROTOR AND CONDENSER

Note This operation should be performed while checking distributor points Inspect distributor cap for cracks and flashover

External surfaces of all parts of secondary system must be cleaned to reduce possibility of voltage loss. All wires should be removed from distributor cap and coil so that terminals can be inspected and cleaned. Burned, or corroded terminals indicate that wires are not fully seated, which causes arcing between end of wire and terminal. When replacing wires in terminal, make sure that they are fully seated before pushing rubber nipple down over tower. Check distributor rotor for damage, and distributor cap for cracks.

Condenser

- 1 Clean outlet of condenser lead wire, and check for loose setscrew Retighten if necessary
- 2 Check condenser with a condenser tester Refer to Distributor in service manual for engine

CHECKING AND ADJUSTING IGNITION TIMING

- 1 Check spark plugs and distributor breaker points for condition
- 2 Thoroughly remove dirt and dust from timing mark on crank pulley and timing indicator on front cover
- 3 Warm up engine sufficiently
- 4 Install a timing light on No 1 cylinder spark plug wire, and install a tachometer
- 5 Set idling speed to the following specifications
- 6 With a timing light, check that ignition timing is at the specified value

Note There are two ignition timings "Retard" and "Advance" The ignition timing adjustment should be carried out on the "Retard" side.

Fig ET-10 Checking ignition timing

Ignition timing

	M/T	A/T
Timing BTDC/rpm	6°/700	6°/800 (N posi- tion)

Ignition timing is on "Retard" side

If necessary, adjust it as follows

- (1) Loosen setscrew until distributor can be moved by hand See Figure ET-11
- (2) Adjust ignition timing to the following specifications
- (3) Lock distributor setscrew, and make sure that timing is correct

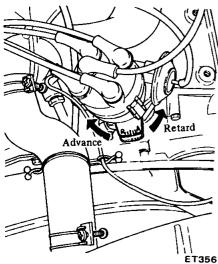


Fig ET-11 Adjusting ignition timing

REPLACING AIR CLEANER FILTER (Viscous type)

Air cleaner employs a wet paper type cleaner element (viscous type) As this element has been specially treated at factory, it need not be cleaned before ultimate replacement Even if cleaner element should look dirty, do not attempt to clean it Cleaning performance is constantly maintained even though it looks contaminated Care must be taken not to damage cleaner element

Replace element at recommended intervals, or more often under dusty driving conditions

REPLACING FUEL FILTER

Check for a contaminated element and water deposit

All engines use a cartridge type fuel filter replaceable as an assembly

The fuel filter is located in the engine compartment

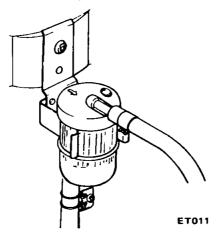


Fig ET-12 Fuel filter

CHECKING FUEL LINES (Hoses, piping, connections, etc.)

Inspect fuel lines for loose connections, cracks and deterioration Retighten loose connections and replace any damaged or deformed parts

ADJUSTING CHOKE MECHANISM (Choke plate and linkage)

Check choke valve and mechanism for free operation, and clean or replace if necessary Binding can result from petroleum gum formation on choke shaft or from damage

1 Check bi-metal cover setting Index mark on bi-metal cover is usually set at center of scale

Note When somewhat over-choked, turn bi-metal cover clockwise slightly. 2 Before starting engine, depress the accelerator pedal to see if choke valve closes automatically

If it fails to close, probable cause is that link movement is unsmooth, or that bi-metal is out of order Refer to Automatic choke in Section EF

ADJUSTING CARBURETOR IDLE RPM AND MIXTURE RATIO

Idle adjustment is made by throttle adjusting screw and idle adjusting screw after engine is warmed up See Figure ET-13

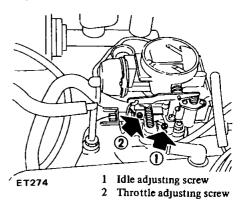


Fig ET-13 Throttle and idle adjusting screws

With CO meter

CO meter is very useful tool for idle mixture adjustment. When preparing to adjust idle mixture, it is essential that meter be thoroughly warmed and calibrated.

- 1 Warm up engine sufficiently and apply wheel chocks
- 2 Continue engine operation for one minute at idling speed
- 3 Adjust throttle adjusting screw so that engine speed is at the specified value listed below

Transmission model	Adjusting value (rpm)
M/T	700
A/T	800 (In "N" position)

4 Check ignition and if necessary adjust it to specifications

5 Adjust idle adjusting screw so that "CO" percentage is at the specified value, check with CO meter

Note On automatic transmission equipped models, make sure that adjustment is made with selector lever in "N" position

CO%

 $20\% \pm 05$

6 Repeat procedures described in items 3 and 5 above until "CO" percentage and engine speed are both at the specified value

Note Do not attempt to screw down idle adjusting screw completely. This may cause damage to tip, which in turn will tend to cause malfunctions.

Without CO meter

1 Warm up engine completely

Check to be sure that float level and ignition timing are correct while engine is at idle speed

2 Turn out throttle adjusting screw gently until specified engine speed is approximately obtained

TABLE I SPECIFIED ENGINE IDLING SPEED

M/T	750
A/T	850 (In "N" position)

- 3 Turn idle adjusting screw in or out until engine runs smoothly at the highest speed
- 4 Turn out throttle adjusting screw until specified engine speed (table I) is obtained
- 5 Readjust idle adjusting screw until engine runs smoothly at the highest speed (with the highest vacuum reading)
- 6 Repeat steps 4 and 5 until engine speed does not rise in spite of adjusting idle adjusting screw
- 7 Finally, turn idle adjusting screw in until the final specified engine speed (table II) is attained

Notes

a Do not attempt to screw idle ad-

- justing screw down completely Doing so could cause damage to tip, which in turn will tend to cause malfunctions
- b On automatic transmission models, adjustment should be made in "N" position

TABLE II FINAL ENGINE IDLING SPEED

	M/T	A/T
Idle speed rpm	700	800 (In "N" position)

LUBRICANT AND COOLING SYSTEMS

REPLACING OIL FILTER

The oil filter is a cartridge type and can be removed with Oil Filter Wrench ST19320000

- 1 Check for oil leaks past gasket flange If leakage is found, retighten just enough to stop leakage If retightening is no longer effective, replace filter as an assembly
- When installing oil filter, tighten by hand

Notes

- a Do not overtighten oil filter, or oil leak may occur
- b. When assembling, lightly apply oil to seal ring

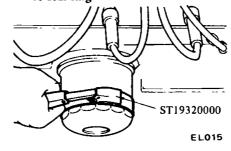


Fig ET-14 Removing oil filter

CHANGING ENGINE OIL

1 Check if oil is diluted with water or gasoline Drain and refill oil if necessary

Notes

a. Milky oil indicates presence of cooling water Isolate cause and take corrective measure

- b Oil with extremely low viscosity indicates dilution with gasoline
- c Make sure that car is on a level surface while engine is being drained, filled and checked
- 2 Check oil level If below specified level, raise it up to H level

Engine oil capacity
(Including oil filter) 4 9 liters

CHANGING ENGINE COOLANT

(Permanent anti-freeze coolant)

Permanent anti-freeze coolant is an ethylene glycol base product containing chemical inhibitors to protect the cooling system from rusting and corrosion. The anti-freeze does not contain any glycerine, ethyl or methyl alcohol. It will not evaporate or boil away and can be used with either high or low temperature thermostat. It flows freely, transfers heat efficiently, and will not clog the passages in the cooling system. The anti-freeze must not be mixed with other products. This coolant can be used throughout the seasons of the year.

Whenever coolant is changed, the cooling system should be flushed and refilled with a new coolant Check the level See the instructions attached to the anti-freeze as to the ratio of an anti-freeze and water

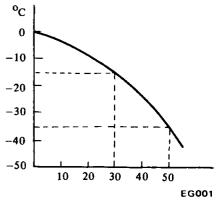


Fig ET-15 Protection concentration

Water refill capacity
(With heater)

68 liters

	Boiling point			
Percent concentration	Sea level	0 9 kg/cm ² cooling system pressure	Freeze protection	
30%	106°C	124°C	–15°C	
50%	109°C	127°C	−35°C	

CHECKING FOR COOLANT, OIL AND FUEL LEAKS

Check coolant hoses and fittings for loose connection or deterioration

Retighten or replace if necessary

Check cylinder head, front chain over, oil pan, rocker cover, oil filter gasket, etc for signs of leaks past their gasketed surfaces If necessary, replace gaskets or faulty parts After maintenance has been done, check replaced parts to see if any leaks occur

Check carburetor, fuel pump, fuel filter, and fuel lines for leaks, loose connections, cracks or deterioration Retighten loose connections and replace any damaged or deformed parts

EMISSION CONTROL SYSTEM

CHECKING AND REPLACING P.C.V. VALVE

Check PC V valve as follows

With engine running at idle, remove ventilator hose from PCV valve If valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet

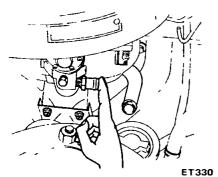


Fig ET-16 Checking PC V valve

CHECKING VENTILATION HOSES

- 1 Check hoses and hose connections for leaks
- 2 Disconnect all hoses and clean with compressed air

If any hose cannot be freed of obstructions, replace

Be sure that flame arrester is properly inserted in hose between air cleaner and rocker cover

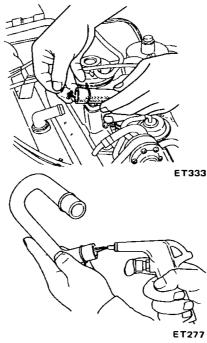


Fig ET-17 Cleaning ventilation hose

CHECKING ELECTRIC ADVANCE CONTROL SYSTEM

- 1 Start engine and check ignition timing change with a timing scope before engine warms up
- 2 Disconnect lead wire of water temperature switch at connector

It is correct if ignition timing advances about 6 degrees. Then reconnect lead wire to its original position

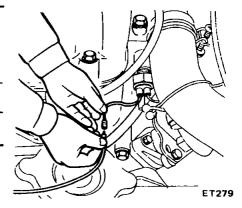


Fig ET-18 Disconnecting water temperature lead wire

3 After engine warms up, disconnect a pair of throttle switch lead wires located beside carburetor Check ignition timing change when harness side terminals for throttle switch are connected to each other

It is correct if ignition timing advances about 6 degrees

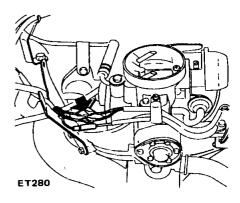


Fig ET-19 Throttle switch lead wire

- 4 If any malfunction is found by the check mentioned above, any of the following may be the cause
- (1) Loose connection or broken harness
- (2) Malfunctioning throttle switch
- (3) Malfunctioning water temperature switch
- (4) Malfunctioning water temperature relay
- (5) Malfunctioning 2-point type distributor

Refer to Emission Control Section

INSPECTING BOOST CONTROLLED DECELERATION DEVICE (B.C.D.D.)

Check BCDD operating pressure If not correct, adjust it

To properly set the BCDD operating pressure, proceed as follows

1 Connect vacuum gauge to intake manifold A service plug is installed on intake manifold, so remove plug and install adapter for vacuum gauge

Note A quick-response boost gauge such as Bourdon's tube is recommended Do not use manometer

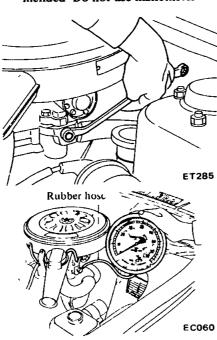


Fig ET-20 Connecting vacuum gauge

- 2 Start engine and continue warming-up until engine reaches its normal operating temperature
- 3 Check ignition timing and idling speed

Engine idline	M/T	A/T
Engine idling rpm/timing B T D C	700/6°	800 ("N" position)/6°

- 4 Place gearshift lever in "Neutral" for manual transmission, and in "N" or "P" position for automatic transmission
- 5 Run engine under no load Increase engine rpm to 3,000 to 3,500 rpm, then quickly close throttle valve

At this time, manifold vacuum pressure will increase abruptly to -600 mmHg (aprox) or above and then gradually decrease to level set at idling In decreasing, the manifold vacuum will maintain a constant pressure for a while That is the operating pressure 6 Check that the BCDD operating pressure is the specified value

B C D D set pressure -560 mmHg ±10 mmHg

Characteristic curve is same as that for throttle opener

7 If it is higher than the set level, turn adjusting screw clockwise until correct adjustment is made

If it is lower than the set level, turn adjusting screw counterclockwise

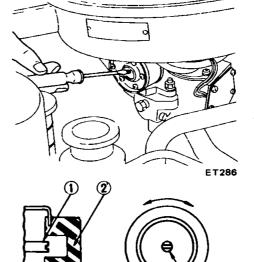
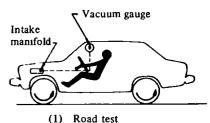


Fig ET-21 Adjusting set pressure

ET037


8 Race engine and check that adjustment is correct

Adjusting screw "S"

2 Cover "C"

Note When the operating pressure can not be observed clearly, it is necessary to reduce the negative idling pressure of the manifold to lower than the set pressure of the BCDD (The engine speed will not drop to idling speed when the negative idling pressure is higher than the set pressure of the BCDD.)

In this case, the engine must be labored by (1) road test or (2) chassis dynamometer, accelerating the car to 60 to 80 km/h in top gear (manual transmission) or in "D" position (automatic transmission), and then releasing the accelerator pedal and letting the car decelerate. After doing this, check whether the BCDD operating pressure is at the predetermined value or not.

(1) Road test

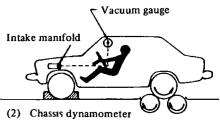


Fig ET-22 Road test

CHECKING VAPOR LINES (Hoses, Connections, etc.) AND FUEL VAPOR CONTROL VALVE

Checking fuel tank, fuel liquid separator and vapor vent line

- 1 Check all hoses and fuel tank filler cap
- 2 Disconnect the vapor vent line connecting flow guide valve to fuel liquid separator
- 3 Connect a 3-way connector, a manometer and a cock (or an equivalent 3-way change cock) to the end of the vent line
- 4 Supply fresh air into the vapor vent line through the cock little by little until the pressure becomes 400 mmAq
- 5 Shut the cock completely and leave it that way
- 6 After 25 minutes, measure the height of the liquid in the manometer

- 7 Variation in height should remain within 25 mmAq
- 8 When the filler cap does not close completely the height should drop to zero in a short time
- 9 If the height does not drop to zero in a short time when the filler cap is removed, it is the cause of the stuffy

hose

Note In case the vent line is stuffy, the breathing in fuel tank is not thoroughly made, thus causing insufficient delivery of fuel to engine or vapor lock It must, therefore, be repaired or replaced

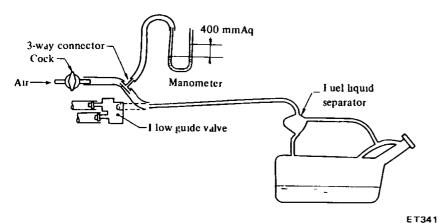


Fig ET-23 Checking evaporative emission control system

Checking flow guide valve

- 1 Disconnect all hoses connected to the flow guide valve
- While lower pressure air is pressed into the flow guide valve from the ends of vent line of fuel tank side, the air should go through the valve and flow to crankcase side If the air does not flow, the valve should be replaced But when the air is blown from crank-

case side, it should never flow to the other two vent lines

- 3 While the air is pressed into the flow guide valve from the carburetor air cleaner side, it flows to the fuel tank side and/or crankcase side
- 4 This valve opens when the inner pressure is 10 mmHg In case of improper operations or breakage, replace it

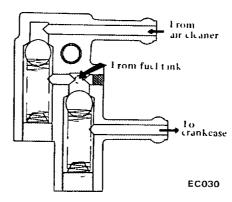


Fig ET-24 Flow guide valve

CHECKING FUEL TANK VACUUM RELIEF VALVE

Remove fuel filler cap and see it functions properly as follows

- 1 Wipe clean valve housing and have it in your mouth
- 2 Inhale air A slight resistance accompanied by valve indicates that valve is in good mechanical condition. Note also that, by further inhaling air the resistance should be disappeared with valve clicks.
- 3 If valve seems to be clogged, or if no resistance is felt, replace cap as an assembled unit

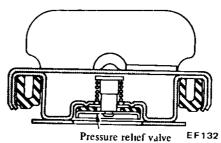


Fig ET-25 Fuel filler cap

SERVICE DATA AND SPECIFICATIONS

Basic mechanical system

Valve clearance			
Cold	Intake	mm	0 20
	Exhaust	mm	0 25
Hot	Intake	mm	0 25
	Exhaust	mm	0 30
Drive belt tension		mm	8 to 12
Tightening torque			
Cylinder hea	d bolts	kg-m	7 0 to 8 5
Manıfold nu	ts	kg-m	. 1 2 to 1 6
Carburetor i	nuts	kg-m	0 5 to 1 0
Spark plugs		kg-m	20 to 30
Engine oil capacity	y	•	
Maxımum (I	H)	liters	4 4
Minimum (I	.)	liters	3 4
Cooling system ca	pacity with heater	liters	6 8
Engine compression	on pressure at rpm		
Standard		kg/cm ² /rpm	12 0/350
Mınımum		kg/cm ² /rpm	9 0/350

Ignition and fuel system

degree/rpm	
	- 6° B T D.C /700 (Retard side)
	6° B T D C /800 (Retard side) (Retard side, "N" position)
mm	0 45 to 0 55
degree	49 to 55
μ F	0 05 (Retard side)
	0 22 (Advance side)
МΩ	5
mm	0 8 to 0 9
%/rpm	
	2 <u>+</u> 0 5/700
	2 ± 0 5/800 (in "N" position)
mmHg	−550 to −570
	mm degree μF MΩ mm %/rpm

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
CANNOT CRANK	Improper grade oil	Replace with proper grade oil
ENGINE OR SLOW	Discharged battery	Charge
CRANKING	Faulty battery	Replace
	Malfunction in charge system	Inspect
	Wiring connection loose in starting circuit	Correct
	Faulty ignition switch	Repair or replace
	Faulty starter motor	Repair or replace
Switch on	hooting procedure on starting circuit) starting motor with lights "ON" ights go off or dim considerably,	•
	a Check battery b Check connection and c c Check starter motor	cable
When I	ghts stay bright	
	a Check wiring connecti motor	on between battery and starter
	b Check ignition switch	
	c Check starter motor	

ENGINE WILL CRANK NORMALLY BUT WILL NOT START

In this case, the following may be the source of the problem. In most cases the trouble lies in ignition system or fuel system.

Trouble in ignition system

Trouble in fuel system

Valve mechanism does not work properly

Low compression

(Trouble-shooting procedure)

First check spark plug as follows

Disconnect high tension cable from one spark plug and hold it about 10 mm from engine metal part and crank engine

Good spark occurs

No spark occurs

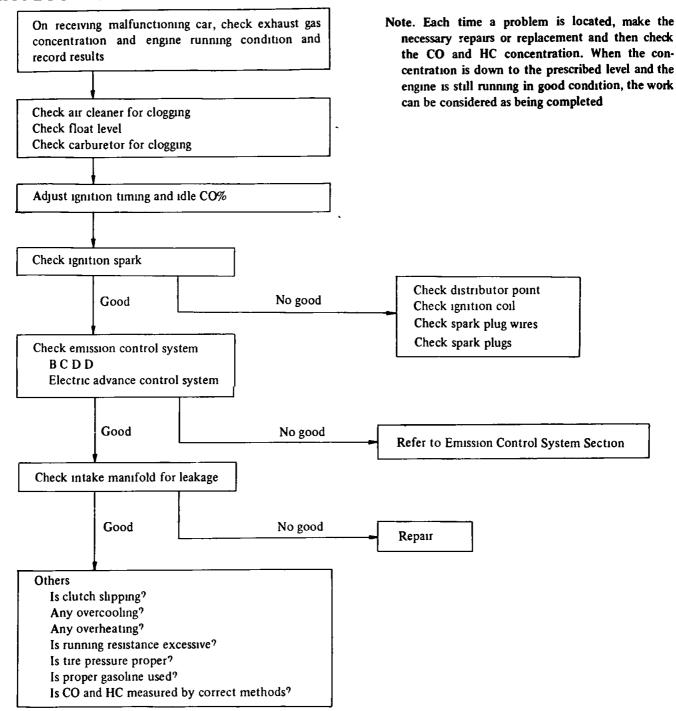
a Check spark plug	
b Check ignition tir	ning
c Check fuel system	1
d Check cylinder co	empression
•	Check current flow in primary circuit
Very high current	Inspect primary circuit for short
	Check breaker point operation

Condition	Probable cause	Corrective action
	Low or no current	Check for loose terminal or disconnection in primary circuit Check for burned points
Ignition system out of	Burned distributor point	Repair or replace
order	Improper point gap	Adjust
	Faulty condenser	Replace
	Leak at rotor cap and rotor	Clean or replace
	Faulty spark plug.	Clean, adjust plug gap or replace
	Improper ignition timing	Adjust
	Faulty ignition coil	Replace
	Disconnection of high tension cable	Replace
	Loose connection or disconnection in primary circuit	Repair or replace
Fuel system out of	Lack of fuel	Supply
order	Dirty fuel strainer	Replace
	Dirty or clogged fuel pipe	Clean
	Fuel pump will not work properly	Repair or replace
	Carburetor choke will not work properly	Check and adjust
	Improper adjustment of float level	Correct.
	Improper idling	Adjust
	Dirty or clogged carburetor	Disassemble and clean
•	Clogged fuel tank breather pipe	Repair and clean
٠ ١	Malfunctioning anti-dieseling solenoid valve	Check for loose terminal or wire harness
Low compression	Incorrect spark plug tightening or faulty gasket	Tighten to normal torque or replace gasket
	Improper grade or low viscosity engine oil	Replace with proper grade oil
	Incorrect valve clearance	Adjust
	Compression leak from valve seat	Remove cylinder head and lap valves
	Sticky valve stem	Correct or replace valve and valve guide
	Weak or damaged valve springs	Replace
	Compression leak at cylinder head gasket	Replace gasket
	Sticking or damaged piston ring	Replace
	Worn piston ring or cylinder	Overhaul engine
Pour engin compression		
_	ssion increases	Malfunctioning cylinder or piston ring
Сотрге	ssion does not change	Compression leaks from valve, cylinder head or head gasket

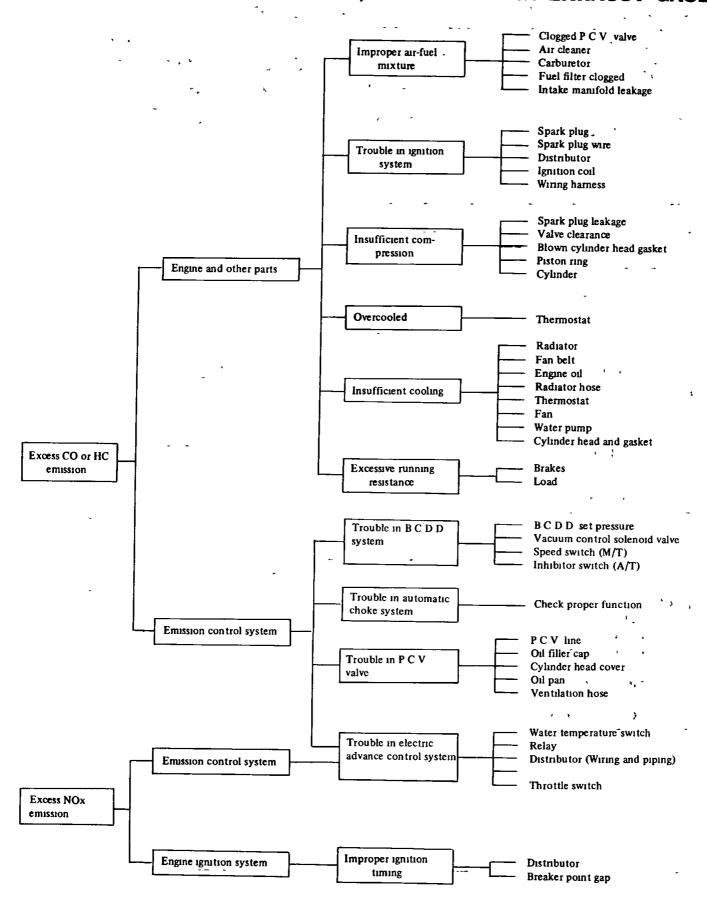
Engine Tune-up

Condition	Probable cause	Corrective action
IMPROPER ENGINE IDLING		
Fuel system out of	Clogged or damaged carburetor jets	Clean or replace
order	Incorrect idle adjustment	Adjust
	Clogged air cleaner filter	Replace element
	Damaged manifold gaskets or carburetor insulator	Replace gasket or insulator
	Improper float level adjustment	Adjust
	Loose air hoses or carburetor air-fuel mix- ture hoses	Check for loose connections
	Malfunctioning carburetor choke	Check and adjust
Low compression		Previously mentioned
Others	Incorrect valve clearance	Adjust
	Extremely low rpm	Adjust
	Malfunction in ignition system (spark plug, high tension cable, breaker point, ignition coil, etc.)	Replace
	Incorrect basic ignition timing	Adjust
	Malfunction in choke valve or linkage	Adjust
	Incorrect idle adjustment	Adjust idle speed
	Clogged air cleaner filter	Replace
	Loose manifold and cylinder head bolts	Retighten
High engine idle	Dragged accelerator linkage	Check and correct accelerator linkage
speed	Incorrect idle adjustment	Adjust idle speed
	Malfunction of BCDD system or throttle opener	Check for loose vacuum hose and harness connections Adjust or replace if necessary

Engine Tune-up


Condition	Probable cause	Corrective action
ENGINE POWER NOT UP TO NORMAL		
Low compression		Previously mentioned
Ignition system out of	Incorrect ignition timing	Adjust
order	Damaged spark plugs	Clean, adjust or replace plugs
	Worn distributor points	Dress, or replace points Also check con- denser
	Malfunction in electric advance control system	Check and correct
Fuel system out of	Malfunction in choke system	Adjust
order	Clogged fuel pipe or floating valve	Clean
	Dirty or clogged fuel strainer	Replace
	Fuel pump will not work properly	Repair or replace
,	Clogged carburetor jets	Disassemble and clean
Air intake system out	Clogged air cleaner	Replace element
of order	Air sucking around manifold gasket or car- buretor gasket	Replace gasket
Overheating	Insufficient coolant	Refill
ļ	Worn or oiled fan belt	Replace
	Inoperative thermostat	Replace
	Worn water pump	Replace
	Clogged or leaky radiator	Flush, repair or replace
	Worn radiator filler cap	Replace
	Air in cooling system	Retighten each part of cooling system
,	Incorrect ignition timing	Adjust
!	Clogged carburetor (lean mixture)	Overhaul carburetor
Overcooling	Inoperative thermostat	Replace
Others	Improper octane fuel	Replace with specified octane fuel
	Improper tire pressure	Inflate to specified pressure
	Dragging brake	Adjust
	Clutch slipping	Adjust

Condition	Probable cause	Corrective action
NOISY ENGINE		
Car knocking	Overloaded engine	Use proper gear in driving
	Carbon knocking	Disassemble cylinder head and remove carbon
	Timing knocking	Adjust ignition timing
•	Fuel knocking	Use specified octane fuel
	Preignition (misuse of spark plug)	Use specified spark plug
Mechanical knocking	Crankshaft bearing	
Crankshaft bearing knocking	This strong dull noise increases when engine is accelerated. To locate the place, cause a misfire on each cylinder. If noise stops as a result of the misfire, this cylinder generates the noise.	This is caused by worn or damaged bearings, or an unevenly worn crankshaft Replace bearings and adjust or change crankshaft Check lubrication system
Connecting rod bearing knocking	This is a little higher-pitched noise than the crankshaft knocking, and also increases when engine is accelerated. Cause a misfire on each cylinder and if the noise diminishes almost completely, this crankshaft bearing generates the noise.	Same as in the case of crankshaft bearings
Piston and cylinder noise	When you hear an overlapping metallic noise which increases in magnitude with engine rpm and which decreases as engine is warmed up, this noise is caused by piston and cylinder To locate the place, cause a misfire on each cylinder	This may cause abnormal wearing of cyl- inder and lower compression, which in turn will cause lower output power and excessive oil consumption Overhaul engine
Piston pin noise	This noise is heard at top and bottom dead ends of piston. To locate the place cause a misfire on each cylinder.	This may cause wear on piston pin, or piston pin hole Replace piston and piston pin assembly
Water pump noise	This noise may be caused by worn or damaged bearings, or by the uneven surface of sliding parts	Replace water pump
Others .	Improper adjustment of valve clearance	Adjust
	Noise from timing chain	Adjust tension of chain
	Excessive end play on crankshaft	Disassemble engine and replace main bearing
,	Note This noise will be heared when clutch is disengaged	
	Wear on clutch pilot bushing	Replace bushing and adjust drive shaft
	Note This noise will be heard when clutch is disengaged	


Condition	Probable cause .	Corrective action
ABNORMAL COMBUSTION (backfire, afterfire run-on, etc)	, e 1 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	
Improper ignition	Improper ignition timing	Adjust ignition timing
timing	Improper heat range of spark plugs	Use specified spark plugs
Fuel system out of order	Damaged carburetor or manifold gasket (Backfire, afterfire)	Replace them with new parts
	Clogged carburetor jet	Disassemble carburetor and check it
	Malfunctioning float	Adjust lever, and check needle valve
	Uneven idling (Run-on)	Adjust
	Malfunction of anti-dieseling solenoid valve	Check or replace
	Malfunction of automatic choke	Adjust .
Faulty cylinder head	Improperly adjusted valve clearance	Adjust
	Excess carbon in combustion chamber	Remove head and get rid of carbon
	Damaged valve spring (Backfire, afterfire)	Replace
EXCESSIVE OIL CONSUMPTION	,	-
Oıl leakage	Loose oil drain plug	Tighten it
	Loose or damaged oil pan gasket	Replace gasket or tighten it
	Loose or damaged chain cover gasket	Replace gasket or tighten it
4"m " 1; "	Worn oil seal in front and rear of crankshaft	Replace oil seal
į	Loose or damaged rocker cover gasket	Replace gasket or tighten it (but not to much)
1 4 · '	Improper tightening of oil filter	Replace gasket and tighten it to prop
	Loose or damaged oil pressure switch	Replace oil pressure switch or tighten it

Condition	Probable cause	Corrective action
Excessive oil	Cylinder and piston wear	Overhaul cylinder and replace piston
consumption	Improper location of piston ring gap or reversely assembled piston ring	Remount piston rings
	Damaged piston rings	Replace rings
		Repair or replace piston and cylinder
	Worn piston ring groove and ring	Replace piston and piston ring
	Fatigue of valve oil seal lip	Replace seal lip
	Worn valve stem	Replace valve or guide
Others	Inadequate engine oil quality	Use designated oil
	Engine overheats	Previously mentioned
POOR FUEL ECONOMY		
See explanation for power loss		
Others	Too high idling rpm	Adjust it to designated rpm
	Inoperative acceleration recovery	Adjust it
	Fuel leakage	Repair or tighten fuel pipe connections
PROBLEM IN OTHER AREAS		
Reduced oil pressure	Inadequate oil quality	Use designated oil
	Overheating	Previously mentioned
	Worn oil pump regulator valve	Disassemble oil pump and repair or replace it
	Functional deterioration of oil pump	Repair or replace
	Blocked oil filter	Replace it
	Increased clearance in various sliding parts	Disassemble and replace worn parts with new ones
	Blocked oil strainer	Clean 1t
	Inoperative oil gauge pressure switch	Replace
Excessive wear on	Oil pressure decreases	Previously mentioned
sliding parts	Improper quality or contamination of oil	Exchange oil for proper one and change element
•	Damaged air cleaner	Change element
	Overheating or overcooling	Previously mentioned
	Improper fuel mixture	Check fuel system
Scuffing of sliding	Reduced oil pressure	Previously mentioned
parts	Insufficient clearances	Readjust to designated clearances
	Overheating	Previously mentioned
	Improper fuel mixture	Check fuel system

EMISSION TROUBLE-SHOOTING EXCESS HC OR CO EMISSION IN EXHAUST GASES

MAIN CAUSES FOR EXCESS CO, HC AND NOX IN EXHAUST GASES

SERVICE MANUAL

DATSUN MODEL 610 SERIES

NISSAN, MOTOR CO., LTD.

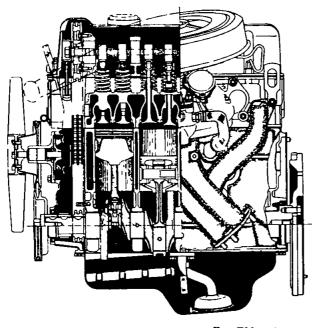
SECTION EM

ENGINE MECHANICAL **EM**

EM- 2
ENGINE DISASSEMBLY
EM- 4
INSPECTION AND REPAIR
EM- 7
ENGINE ASSEMBLY
EM-20
SERVICE DATA AND
SPECIFICATIONS
EM-26
TROUBLE DIAGNOSES AND
CORRECTIONS
EM-33

GENERAL DESCRIPTION

CONTENTS


MODEL L18 ENGINE	EM-2	CAMSHAFT	EM-3
CYLINDER BLOCK	EM-3	VALVE MECHANISM	EM-3
CRANKSHAFT	EM-3	CAMSHAFT DRIVE	EM-3
PISTON AND CONNECTING ROD	EM-3	MANIFOLDS	EM-3
CYLINDER HEAD	EM-3		

MODEL L18 ENGINE

The L18 engine features OHC valves, wedge-shaped combustion chamber, aluminum head and a fully

balanced 5-bearing crankshaft to turn out smooth, dependable power

The cylinder block is cast as a single unit, and features deep skirting. This engine is equipped with a single, 2-barrel downdraft carburetor.

EM595

Fig EM-1 Cross sectional view

CYLINDER BLOCK

The cylinder block, a monoblock special casting structure, employs a five-bearing-support system for quietness and higher durability

The cylinder bores are surrounded by cooling jackets and machined directly in the block. The oil ways in the block are arranged so that the full-flow oil filter is directly attached to the right hand side of the block.

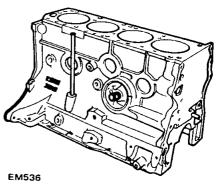


Fig EM-2 Cylinder block

Main specifications

		L18
Displacement cc	(cu in)	1,770 (108)
Bore x stroke mm (in)		85 × 78 (3 35 × 3 07)
Compression ratio		8 5
	M/T	6/700
Ignition timing Degree B T D C /rpm	A/T	. 6/800 in "N" position

M/T Manual Transmission A/T Automatic Transmission Ignition timing is on "Retard" side

CRANKSHAFT

The crankshaft is a special steel forging Fully balanced, it turns out smooth, dependable power at high speed

The L18 engine uses eight balance weights

Main bearings are lubricated by oil pumped through the main oil gallery and the oil holes which run in parallel with cylinder bores. There are oilways drilled in the crankshaft for the lubricating oil. The center main bearing is equipped with thrust washers to take up end thrust of the crankshaft.

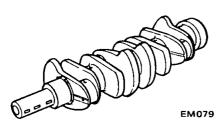


Fig EM-3 Crankshaft

PISTON AND CONNECTING ROD

The pistons are of a special aluminum casting and have struts to control thermal expansion, two compression rings and one combined oil ring The piston heads are slightly dished The piston pins are a special hollow steel shaft. They are full-floating fit to the piston and press fit to the connecting rods.

The connecting rods are of a special forged steel Oil is sprayed to the connecting rod small ends through drilled passages in the large ends of rod Oil holes in the connecting rods are located so as to insure optimum lubrication under heavy load

Fig EM-4 Piston and connecting rod

CYLINDER HEAD

The cylinder head is made of a light, strong aluminum alloy with good cooling efficiency, it contains wedge type combustion chambers

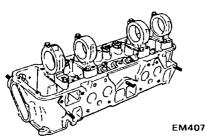


Fig EM-5 Cylinder head

CAMSHAFT

The camshaft is made of a special cast iron and is located inside the rocker cover Four aluminum alloy brackets support it Camshaft bearings are lubricated from oil holes which lead to the main oil gallery of the cylinder head

Concentric passages are drilled in the front and rear parts of the camshaft

Oil to each cam lobe is supplied through an oil hole drilled in the base circle of each lobe Lubricant is supplied to the front oil gallery from the 2nd camshaft bearing and to the rear oil gallery from the 3rd camshaft bearing These holes on the base circle of the lobe supply lubricant to the cam pad surface of the rocker arm and to the valve tip end The cams feature a long-overlap profile to reduce NOx emission

Fig EM-6 Camshaft

CAMSHAFT DRIVE

The camshaft is driven by a double row roller chain driven by the crankshaft. The tension of the chain is controlled by a chain tensioner which is operated by spring and oil pressure. The rubber shoe type tensioner damps vibration of the chain and controls its tension.



Fig EM-8 Chain driving system

EM537

VALVE MECHANISM

The valve system has the pivot type rocker arms that are activated directly by the cam mechanism, this has made its moving parts considerably lighter and provides ideal high speed performance

Dual type valve springs are installed

Exhaust Intake EM084
Fig EM-7 Valve mechanism

MANIFOLDS

The intake manifold is of an aluminum cast alloy

The exhaust manifold is of a dual design. The exhaust pipe is connected to the flanged surface of the exhaust manifold.

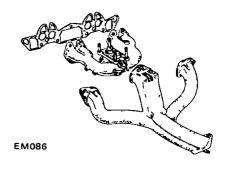


Fig EM-9 Intake and exhaust manifolds

ENGINE DISASSEMBLY

CONTENTS

PRELIMINARY CLEANING AND INSPECTION DISASSEMBLY

PISTONS A
EM-4 CYLINDER
EM-4

PISTONS AND CONNECTING RODS CYLINDER HEAD

EM-6 EM-6

PRELIMINARY CLEANING AND INSPECTION

Before disassembling engine, observe the following items

- I Fuel, oil or water may leak past cylinder head and block Prior to disassembling, check cylinder head, front chain cover, oil pan and oil filter gaskets and crankshaft and water pump seals for sign of leak past their gasketed surfaces
- 2 Check carburetor and fuel pump for condition, fuel hoses for deterioration, cracks or otherwise leakage of fuel past their jointed or connected surfaces
- 3 Remove air cleaner, alternator, distributor and starter, and plug up carburetor air-horn and distributor hole to prevent entry of foreign matter
- 4 Wipe dust and mud off engine
- 5 Inspect block, rocker cover front chain cover, oil pan and all other outer parts for visual defects and broken or missing parts such as bolts and nuts
- 6 Test all pipings and electrical circuits for discontinuity or broken or damaged insulation

DISASSEMBLY

To remove engine from vehicle, refer to relative topic under "Engine Removal and Installation" in Chassis and Body Service Manual, Section ER

- 1 Remove transmission from engine
- Thoroughly drain engine oil and coolant by removing drain plugs
 Place engine assembly on the
- (1) Remove fan and fan pulley

engine stand

(2) Remove engine mounting RH

- (3) Remove oil filter using special tool "Oil Filter Wrench ST19320000"
- (4) Remove oil pressure switch
- (5) Install engine attachment to cylinder block using bolt holes securing alternator bracket and water drain-plug
- (6) Set éngine on the stand
 - "Engine Attachment ST05260001"
 - "Engine Stand ST0501S000"

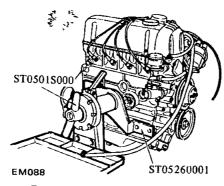


Fig EM-13 Engine on engine stand

- 4 Remove oil level gauge
- 5 Remove clutch assembly
- 6 Remove high tension cable
- 7 Remove spark plugs
- 8 Remove thermostat housing

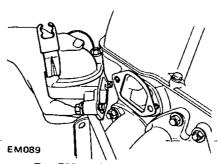


Fig EM-14 Removing thermostat housing

- 9 Remove rocker cover
- 10 Remove carburetor
- 11 Remove intake and exhaust manifolds

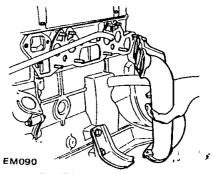
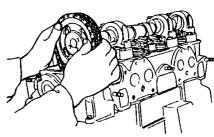



Fig EM-15 Removing manifolds

- 12 Remove engine mounting LH
- 13 Remove crank pulley
- 14 Remove water pump
- 15 Remove fuel pump
- 16 Remove fuel pump drive cam
- 17 Remove camshaft sprocket

EM091

Fig EM-16 Removing camshaft sprocket

18 Remove cylinder head assembly Use special tool "Cylinder Head Bolt Wrench ST10120000" to remove cylinder head bolts Loosen bolts from

1 to 1 as shown in Figure EM-18

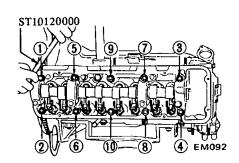


Fig EM-18 Cylinder head bolt loosening sequence

- Notes When removing cylinder head from engine installed on car, follow the instructions below
- a Turn crankshaft until No 1 piston is at TDC on its compression stroke
- b Remove rocker cover and fuel pump
- c To facilitate assembling operation, scribe a mark on timing chain and camshaft sprocket with paint before removal
- d Loosen camshaft bolt and remove fuel pump drive cam
- e Support timing chain by utilizing Chain Stopper ST17420001 between timing chains as shown in Figure EM-19

This operation eliminates the problem of realigning timing marks on crankshaft timing chain and sprocket

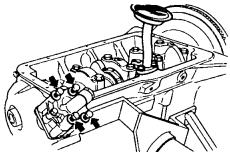


Fig EM-20 Removing oil strainer and oil pump

- 21 Remove oil pump and its drive spindle See Figure EM-20
- 22 Remove front cover
- Remove chain tensioner and chain slack side guide

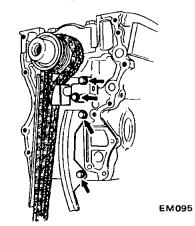
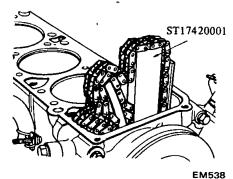
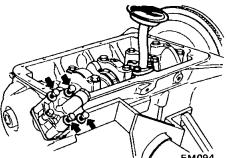


Fig EM-21 Removing chain tensioner and timing chain

- 24 Remove chain See timing Figure EM-21
- Remove oil thrower, crankshaft worm gear and chain drive sprocket




Fig EM-19 Supporting timing chain

- Remove camshaft sprocket
- Loosen cylinder head bolts and remove cylinder head

Invert engine

19

20

Remove oil pan and oil strainer

Remove piston and connecting

rod assembly Extract connecting rod

bearings, keeping them in order

26

Fig EM-23 Removing piston and connecting rod assembly

Remove flywheel and rear plate Be careful not to drop them

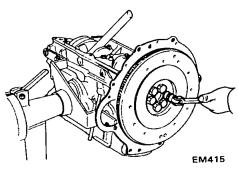


Fig EM-24 Removing flywheel

Remove main bearing caps

Use Crankshaft Main Bearing Cap Puller ST1651S000 to remove center and rear main bearing caps Keep them ın order

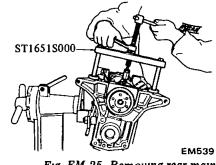


Fig EM-25 Removing rear main bearing cap

- 29 Remove two side seals from rear main bearing cap
- 30 Remove rear oil seal

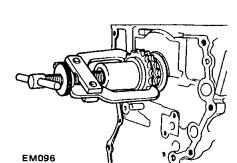


Fig EM-22 Removing chain drive sprocket

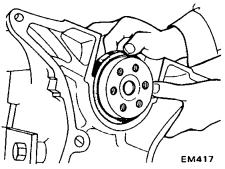


Fig EM-26 Removing rear oil seal

- 31 Remove crankshaft
- 32 Remove baffle plate and cylinder block net

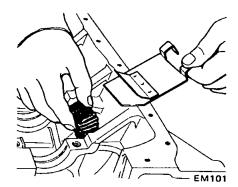


Fig EM-27 Removing baffle plate and net

PISTONS AND CONNECTING RODS

1 Remove piston rings with a ring remover

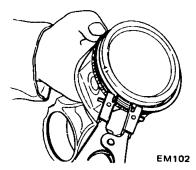


Fig EM-28 Removing piston rings

2 Press piston pin out with Piston Pin Press Stand ST13030001

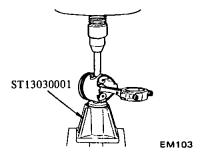


Fig EM-29 Removing piston pin

3 Keep disassembled parts in order

CYLINDER HEAD

1 Remove valve rocker springs Loosen valve rocker pivot lock nut and remove rocker arm by pressing valve spring down

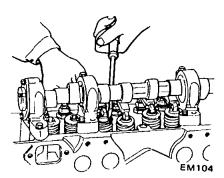


Fig EM-30 Removing rocker arms

2 Remove locate plate, and remove camshaft

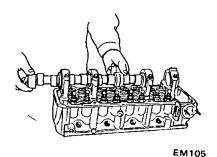


Fig EM-31 Removing camshaft

Note Be careful not to damage camshaft bearings and cam lobes

3 Remove valves using Valve Lifter ST12070000

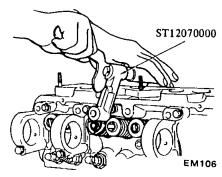
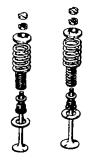



Fig EM-32 Removing values

Notes

- a Take care not to lose valve spring seat, oil seal, valve collet, and valve rocker guide
- b Be sure to keep camshaft bearings intact, or the bearing center is liable to come out of alignment

Exhaust Intake

EM107

Fig EM-33 Valve components

INSPECTION AND REPAIR

CONTENTS

PREPARATION FOR INSPECTION	EM- 7	PISTONS, PISTON PINS AND	
CYLINDER HEAD AND VALVE		•	ENA 1 4
	EM- 7	PISTON RINGS	EM-14
CHECKING CYLINDER HEAD MATING		CONNECTING ROD	EM-15
FACE	EM- 7	CRANKSHAFT	EM-15
VALVE ASSEMBLY	EM- 7	BUSHING AND BEARING	EM-16
VALVE SPRING	EM- 8	MEASUREMENT OF MAIN BEARING	
ROCKER ARM AND VALVE ROCKER		CLEARANCE	EM-16
PIVOT	EM- 9	MEASUREMENT OF CONNECTING ROD	
VALVE GUIDE	EM- 9	BEARING CLEARANCE	EM-17
VALVE SEAT INSERTS	EM-10	FITTING BEARINGS	EM-17
CAMSHAFT AND CAMSHAFT BEARING	EM-11	MISCELLANEOUS COMPONENTS	EM-18
CAMSHAFT BEARING CLEARANCE	EM-11	CRANKSHAFT AND CAMSHAFT	
VALVE TIMING	EM-11	SPROCKETS	EM-18
CAMSHAFT ALIGNMENT	EM-12	CHAIN TENSIONER AND CHAIN GUIDE	EM-19
CYLINDER BLOCK	EM-12	FLYWHEEL	EM-19
HOW TO MEASURE CYLINDER BORE	EM-12	FRONT COVER AND REAR OIL SEAL	EM-19
CYLINDER BORING	FM-13		

PREPARATION FOR INSPECTION

- 1 Before cleaning, check for signs of water and oil leaks in cylinder block and head
- 2 Clean oil, carbon deposits and sealant from all parts Remove gasket
- 3 Clean all oil holes with solvent and dry with compressed air Make sure that they are not restricted
- Note Never remove camshaft bearings unless you have a suitable machine for boring camshaft bearing in line. If you once remove camshaft bearings, bearing centers will come out of alignment, reconditioning is very difficult without center borings.
- 1 Make a visual check for cracks and flaws
- 2 Measure the surface of cylinder head (on cylinder block side) for warpage If it is found to be beyond the limit designated below, regrind the affected surface with a surface grinder

Head surface flatness

Standard	Maxımum
less than 0 05	0 1 mm
mm (0 0020 in)	(0 0039 in)

VALVE ASSEMBLY

- 1 Check each intake and exhaust valve for worn, damaged or deformed valve caps or stems Correct or replace any valve that is faulty
- 2 Valve face or valve stem end surface should be refaced with a valve grinder

CYLINDER HEAD AND VALVE

CHECKING CYLINDER HEAD MATING FACE

EIVI

Fig EM-34 Cylinder head

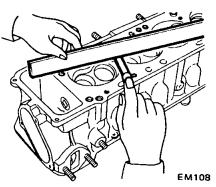


Fig EM-35 Checking cylinder head surface

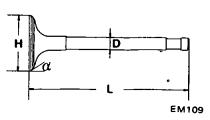


Fig EM-36 Intake and exhaust valve dimensions

H Valve head diameter mm (in)	ln،	42 0 to 42 2 (1 654 to 1 661)	
	mm (ın)	Ex	35 0 to 35 2 (1 378 to 1 386)
	Valve length	In	114 9 to 115 2 (4 524 to 4 535)
L mm (in)	Ex	115 7 to 116 0 (4 555 to 4 567)	
	Valve stem diameter	In	7 965 to 7 980 (0 3136 to 0 3142)
D mm (in)	Ex	7 945 to 7 960 (0 3128 to 0 3134)	
~	, Valve seat angle	In	45°30′
Intake and Exhaust	Ex	45°30′	

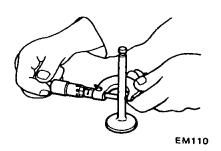


Fig EM-37 Checking value stem diameter

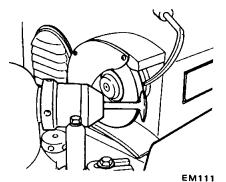


Fig EM-38 Regrinding valve face

Note When valve head has been worn down to 0.5 mm (0.0197 in) in thickness, replace the valve Grinding allowance for valve stem end surface is 0.5 mm (0.0197 in) or less

VALVE SPRING

- Check valve spring for squareness using a steel square and surface plate If spring is out of square "S" more than 1 6 mm (0 063 in), replace
- Measure the free length and tension of each spring If the measured value exceeds specified limit, replace spring

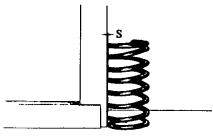


Fig EM-39 Measuring spring squareness

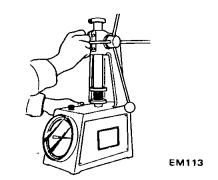


Fig EM-40 Measuring spring tension

49 98 (1 968)

44 85 (1 766)

Spring specifications

mm (in)

Intake and exhaust

Outer

Inner

Valve spring pressured length

(valve open)

mm/kg (in/lb).

Intake and exhaust

Outer Inner

Valve spring assembled height

(valve close)

mm/kg (in/lb)

Intake and exhaust

Outer

Inner

40 0/21 3 (1 575/47 0) 35 0/12 3 (1 378/27 1)

29 5/49 0 (1 161/108)

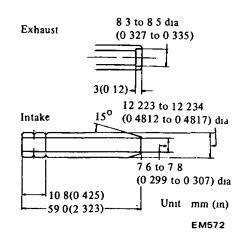
24 5/25 5 (0 965/56 2)

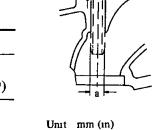
ROCKER ARM AND VALVE ROCKER PIVOT

Check pivot head and cam contact and pivot contact surfaces of rocker arm for damage or wear If damage is found, replace them A faulty pivot must be replaced together with its corresponding rocker arm

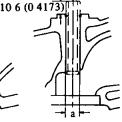
VALVE GUIDE

Measure · clearance between valve guide and valve stem If clearance exceeds designated limit, replace worn parts or both valve and valve guide In this case, it is essential to determine if such a clearance has been caused by a worn or bent valve stem or by a worn valve guide




Fig EM-41 Service valve guide

Replacement of valve guide


To remove old guides, use a drift and a press (under a 2-ton pressure) or a hammer

Drive them out from combustion chamber side toward rocker cover Heated cylinder head will facilitate the operation

Ream cylinder head side guide hole at room temperature

106

Exhaust

EM116

Fig EM-43 Valve guide hole

	Intake valve	Exhaust valve
Stem to guide clearance mm (in)	0 020 to 0 053	
Maximum limit of above clearance mm (in)	0 1 (0 0039)	

As an emergency expedient, a valve can be pushed into valve guide and moved to the right and left If its tip deflects about 0.2 mm (0.0079 in) or more, it indicates that the clearance between stem and guide exceeds the maximum limit of 0.1 mm (0.0039 ın)

Note Valve should be moved in parallel with rocker arm (Generally, a large amount of wear occurs in this direction

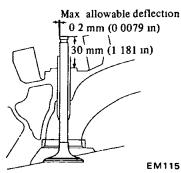


Fig EM-42 Measuring clearance between valve stem and valve guide

Guide hole inner	For factory standard valve guide	11 985 to 11 996 (0 4718 to 0 4723)
diameter "a" mm (in)	For service valve guide	12 185 to 12 196 (0 4797 to 0 4802)

Carefully press new valve guide into valve so that it will fit smoothly after heating cylinder head to 150 to 200°C (302 to 392°F)

Valve guide of 0.2 mm (0.0079 in) oversize diameter is available for service as indicated above

Interference fit of valve guide to guide hole 0027 to 0049 mm (0 0011 to 0 0019 in)

Ream bore with valve guide pressed in, using Valve Guide Reamer Set ST1103S000

Reaming bore 8 000 to 8 018 mm (0 3150 to 0 3157 in)

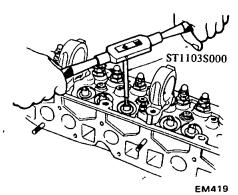


Fig EM-44 Reaming valve guide

5 Correct valve seat surface with new valve guide as the axis

VALVE SEAT INSERTS

Check valve seat inserts for any evidence of pitting at valve contact surface and reseat or replace if worn excessively

Valve seat insert of 0 5 mm (0 0197 in) oversize is available for service as shown below

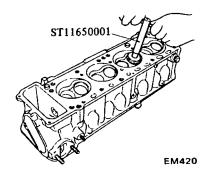


Fig EM-45 Correcting valve seat

Intake Unit mm (in)	37 9 to 38 1 0 9 (1 492 to 1 500) dia 0 0 0 45 597 to 45 613 (1 795 to 1 796) dia
Exhaust	37 580 to 37 596 (1 4795 to 1 4802) dia
Unit mm (in)	

Fig EM-46 Service valve seat dimensions

Cylinder head recess diameter

	U	nıt	mm ((ın)	١
--	---	-----	------	------	---

Tatalaa	For factory standard insert	45 000 to 45 016 (1 7717 to 1 7723)
Intake	For service insert	45 500 to 45 516 (1 7913 to 1 7920)
Exhaust	For factory standard insert	37 000 to 37 016 (1 4567 to 1 4573)
	For service insert	37 500 to 37 516 (1 4764 to 1 4770)

Interference	Intake	0 081 to 0 113 (0 0032 to 0 0044)
fit mm (ın)	Exhaust	0 064 to 0 096 (0 0025 to 0 0038)

Replacing valve seat insert

- 1 Old insert can be removed by boring it out until it collapses. The machine depth stop should be set so that boring cannot continue beyond the bottom face of the insert recess in cylinder head.
- 2 Select a suitable valve seat insert and check its outside diameter
- 3 Machine cylinder head recess to the concentric circles in valve guide center so that insert will have the correct fit
- 4 Heat cylinder head to a temperature of 150 to 200°C (302 to 392°F)
- 5 Fit insert ensuring that it beds on the bottom face of its recess, and caulk more than 4 points
- 6 Newly fitted valve seats should be cut or ground at the specified dimensions as shown in Figure EM-47
- 7 Apply small amount of fine grinding compound to valve contacting face and put valve into guide Lap valve against its seat until proper valve seating is obtained Remove valve and then clean valve and valve seat

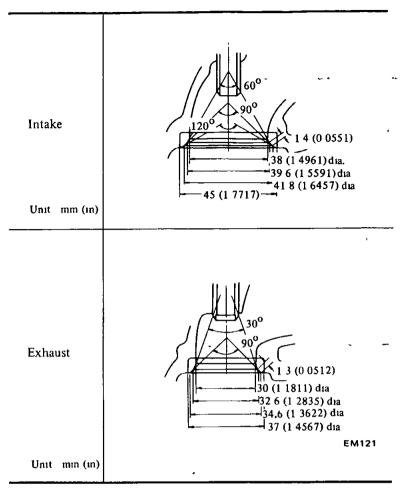
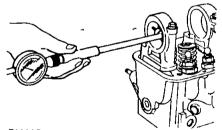



Fig EM-47 Standard value seat dimensions

CAMSHAFT AND CAMSHAFT BEARING

CAMSHAFT BEARING CLEARANCE

Measure inside diameter of camshaft bearing with an inside dial gauge and outside diameter of camshaft journal with a micrometer. If wear is found inside of bracket, replace cylinder head assembly

EM119

Fig EM-48 Checking camshaft bearing

Camshaft journal to bearing clearance

	Standard	Wear limit
Oil clearance min (in)	0 038 to 0 067 (0 0015 to 0 0026)	0 1 (0 0039)
Inner diameter of cam shaft bearing mm (in)	48 000 to 48 016 (1 8898 to 1 8904)	

VALVE TIMING

This diagram applies to all cylinders If any valveris found out of specifications, one possibility is that cam lobe is worn or damaged. This calls for replacement of camshaft

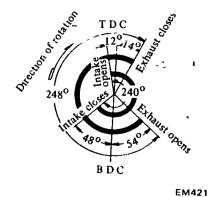


Fig EM-49 Valve timing diagram

	Standard	Bend limit
Camshaft bend mm (ın)	0 02 (0 0008)	0 05 (0 0020)

CAMSHAFT ALIGNMENT

- 1 Check camshaft, camshaft journal and cam surface for bend, wear or damage If damage is beyond limits, replace affected parts
- 2 A bend value is one-half of the reading obtained when camshaft is turned one full revolution with a dial gauge applied to 2nd and 3rd journals

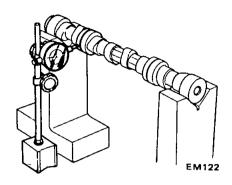


Fig EM-50 Checking camshaft bend

Standard height of cam mm (in)	Intake	40 30 to 40 35
	Exhaust	(1 5866 to 1 5886)
Wear limit of cam heigh	nt mm (m)	0 25 (0 0098)
Allowable difference in between max worn and worn parts of camshaft	d min mm (in)	0 05 (0 0020)
Maximum tolerance in diameter	ournal mm (in)	0 1 (0 0039)
Camshaft end play	mm (ın)	0 08 to 0 38 (0 0031 to 0 0150)

	Standard	Maximum tolerance
Surface flatness mm (in)	less than 0 05 (0 0020)	0 10 (0 0039)

CYLINDER BLOCK

- 1 Visually check cylinder block for cracks or flaws
- 2 Measure top of cylinder block (cylinder head mating face) for warpage If warpage exceeds limits, correct it

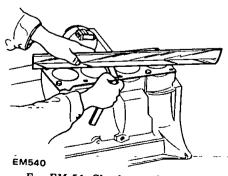


Fig EM-51 Checking cylinder block

3 Using a bore gauge, measure cylinder bore for out-of-round or taper If out-of-round or taper is excessive, rebore cylinder walls with a boring machine Measurement should be taken along bores for taper and around bores for out-of-round See Figure EM-52

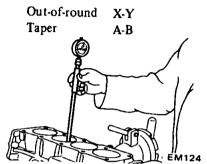


Fig EM-52 Measuring cylinder bore diameter

4 When wear, taper or out-of-round is minor and within limits, remove step at topmost portion of cylinder using a ridge reamer or other similar tool

HOW TO MEASURE CYLINDER BORE

A bore gauge is used Measure cylinder bore at top, middle and bottom positions toward A and B directions as shown in Figure EM-53 and record the measured values

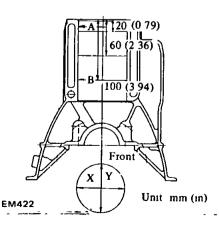


Fig EM-53 Cylinder bore measuring positions

		Standard	Wear limit
	Inner diameter	85 000 to 85 050 (3 3465 to 3 3484)	0 2 (0 0079)
Cylinder bore mm (in)	Out-of-round	0 015 (0 0006)	
	Taper	, 0 015 (0 0006)	
Difference in cy	vlinder bore n (in)	0 05 (0 0020)	0 2 (0 0079)

CYLINDER BORING

When any cylinder needs boring, all other cylinders must also be bored at the same time

Determine piston oversize according to amount of wear of cylinder

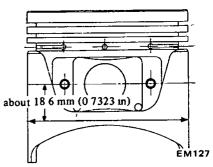


Fig EM-55 Measuring piston skirt diameter

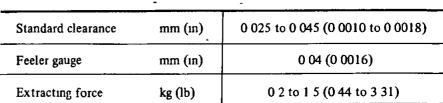
D = A + B - C = A + [0.005] to 0 025 mm (0 0002 to 0 0010 in)]

C Machining allowance (0 02 mm)

A Skirt diameter as measured B Piston-to-wall clearance

Rebored size calculation

D Honed diameter


(0 0008 in)

where.

Oversize pistons specifications

Piston diameter mm (in)	
Service standard	84 985 to 85 035 (3 3459 to 3 3478)
0 50 (0 0197)	85 465 to 85 515
Oversize	(3 3648 to 3 3667)
1 00 (0 0394)	85 965 to 86 015
over size	(3 3844 to 3.3864)

The size to which cylinders must be honed is determined by adding piston-to-cylinder clearance to the largest piston diameter (at piston skirt in thrust direction)

Notes

- a To prevent strain due to cutting heat, bore the cylinders in the order of 2-4-1-3
- b. Before boring any cylinder, install main bearing caps in place and tighten to the specification so that the crankshaft bearing bores will not become distorted from the boring operation.
- Do not cut too much out of cylinder bore at a time Cut only 0 05 mm (0 0020 in) or so in diameter at a tıme

- Measurement of a just machined
 - As a final step, cylinders should be honed to size

cylinder bore requires utmost care

since it is expanded by cutting heat

Measure the finished cylinder bore for out-of-round or tapered part 8 Measure piston-to-cylinder clearance

This clearance can be checked easily by using a feeler gauge and a spring balance hooked on feeler gauge, measuring the amount of force required to pull gauge out from between piston and cylinder

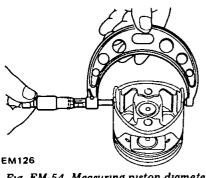


Fig EM-54 Measuring piston diameter

Notes

- a When measuring clearance, slowly pull feeler gauge straight upward
- b It is recommended that piston and cylinder be heated to 20°C (68°F)

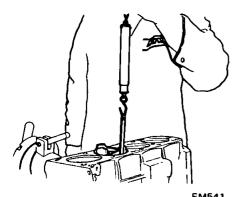


Fig EM-56 Measuring piston fit in cylinder

PISTONS, PISTON PINS AND PISTON RINGS

- 1 Remove carbon from piston and ring grooves with a carbon scraper and a curved steel wire Clean out oil slots in bottom land of oil ring groove
- 2 Check for damage, scratches and wear Replace if necessary
- 3 Measure side clearance of rings in ring grooves as each ring is installed Side clearance should be as follows

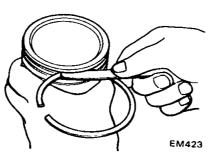


Fig EM-57 Measuring piston ring side clearance

Side clearance

Unit mm (in)

	Standard	Wear limit
Top ring	0 040 to 0 073 (0 0016 to 0 0029)	0.1 (0.0020)
Second ring	0 030 to 0 070 (0 0012 to 0 0028)	0 1 (0 0039)
Oil ring	_	-

4 Push ring into cylinder with piston so as to place it squarely in cylinder, measure ring gap with a

feeler gauge

Ring should be placed to diameter at upper or lower limit of ring travel

Ring gap Unit mm (in)

	Standard	Wear limit
Top ring	0 25 to 0 40 (0 0098 to 0 0157)	3
Second ring	0 30 to 0 50 (0 0118 to 0 0197)	1 0 (0 0394)
Oil ring	0 30 to 0 90 (0 01 18 to 0 0354)	

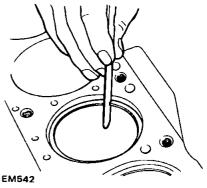


Fig EM-58 Measuring ring gap

Notes

- a When piston ring only is to be replaced, without cylinder bore being corrected, measure gap at bottom of cylinder where wear is minor
- b Oversize piston rings are available for service

Oversize

0 5 mm (0 0197 in) and 1 0 mm (0 0394 in)

- 5 Measure piston pin hole in relation to outer diameter of pin If wear exceeds limit, replace each piston pin together with the piston on which it is installed
- 6 Determine the fitting of piston pin into piston pin hole to such an extent that it can be finger pressed at room temperature This piston pin must be a tight press fit into connecting rod

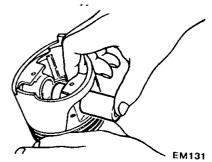


Fig EM-59 Piston pin fitting

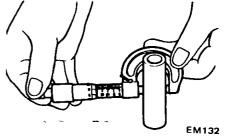
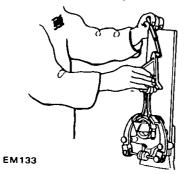
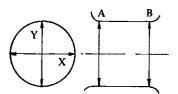



Fig EM-60 Measuring piston pin diameter

	Unit mm (in)
Piston pin outside diameter	20 993 to 20 998 (0 8265 to 0 8267)
Piston pin hole diameter	21 001 to 21 008 (0 8268 to 0 8271)
Piston pin to piston clearance	0 003 to 0 015 (0 0001 to 0 0006)
Interference fit of piston pin to connecting rod	0 015 to 0 035 (0 0006 to 0 0014)

CONNECTING ROD

1 If a connecting rod has any flaw on either, side of the thrust face or the large end, correct or replace it



2 Check connecting rod for bend or torsion using a connecting rod aligner If bend or torsion exceeds the limit, correct or replace

CRANKSHAFT

- 1 Whenever crankshaft is removed from engine, it should be cleaned thoroughly in a suitable solvent After cleaning, check crankshaft journal and crank pin for score, bias wear or cracks Repair or replace as required If damage is minor, dress with fine crocus cloth
- 2 Check journals and crank pins for taper and out-of-round with a micrometer Measurement should be taken along journals for taper and around journals for out-of-round See Figure EM-63 for detailed information

If journals or crank pins are tapered or out-of-round beyond limits, replace with a new shaft

Out-of-round	X-Y
Taper	A-B
All main journal 59 942 to 59 955 (2 3599 to 2 3604)	Unit mm (in) 27 32- 1) (1 063) (1 260) All crank pin 49 961 to 49 974 (1 9670 to 1 9675)

Fig EM-63 Crankshaft and journal dimensions

Fig EM-61 Checking rod alignment

	Standard	Maximum
Connecting rod bend or torsion (per 100 mm or 3 94 in length) mm (in)	0 03 (0 0012)	0 05 (0 0020)

- 3 When replacing connecting rod, select rod so that weight difference between new and old ones is within 7 gr (0 25 oz)
- 4 Install connecting rods with bearings on to corresponding crank pins and measure thrust clearance If measured value exceeds limit, replace

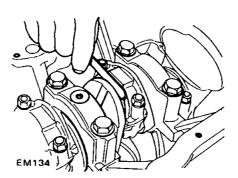


Fig EM-62 Checking big end play

	Standard	Maximum
Big end play mm (in)	0 2 to 0 3 (0 0079 to 0 0118)	0 6 (0 0236)

	Standard	Maximum
Taper and out-of-round of journal and crank pin mm (in)	less than 0 01 (0 0004)	0 025 (0 0010)

3 Crankshaft bend can be checked by placing it on V-blocks and using a dial gauge with its indicating finger resting on center journal

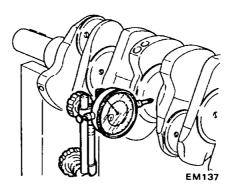


Fig EM-64 Checking crankshaft bend

	Standard	Maximum
Crankshaft bend mm (in)	less than 0 05 (0 0020)	0 10 (0 0039)

Note When measuring bend, use a dial gauge Bend value is half of the reading obtained when crankshaft is turned one full revolution with a dial gauge attached to its center journal

- 4 After regrinding crankshaft, finish it to the necessary size indicated on page EM-18 by using an adequate undersize bearing according to the extent of required repair
- 5 Install crankshaft in cylinder block and measure crankshaft free end play

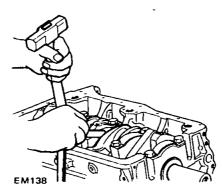


Fig EM-65 Checking crankshaft end play

	Standard	Wear limit
Crankshaft frée end play mm (in)	0 05 to 0 18 (0 0020 to 0 0071)	0 3 (0 0118)

- 6 At the rear end of crankshaft, check crankshaft pilot bushing for wear or damage Replace it if any fault is detected
- To replace crankshaft rear pilot bushing, proceed as follows
- (1) Pull out bushing using Pilot Bushing Puller ST16610001

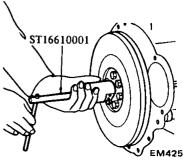


Fig EM-66 Pulling out pilot bushing

(2) Before installing a new bushing, thoroughly clean bushing hole Press fit bushing so that its height above flange end is 4 5 to 50 mm (0 177 to 0 197 in) Do not oil bushing

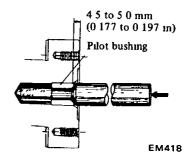


Fig EM-67 Press-fitting new pilot bushing

BUSHING AND BEARING

MEASUREMENT OF MAIN BEARING CLEARANCE

1 Thoroughly clean all bearings and check for scratches, melting score or wear

Replace bearings if any fault is detected

- 2 Crankshaft journals and bearings should be clean and free from dust and dirt before oil clearance is measured
- 3 'Set main bearing on cap block
- 4 Cut a plastigage to width of bearing and place it in parallel with crank pin, getting clear of the oil hole Install cap on the assembly and tighten them together to the specified torque

Tightening torque 4 5 to 5 5 kg-m (33 to 40 ft-lb)

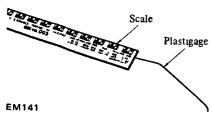


Fig EM-68 Plastigage

Bearing oil clearance

	Standard	Wear limit
Main bearing clearance mm (in)	0 020 to 0 062 (0 0008 to 0 0024)	0 12 (0 0047)
Connecting rod bearing clearance mm (in)	0 025 to 0 055 (0 0010 to 0 0022)	0 12 (0 0047)

Note Do not turn crankshaft while plastigage is being inserted

5 Remove cap, and compare width of the plastigage at its widest part with the scale printed in plastigage envelope

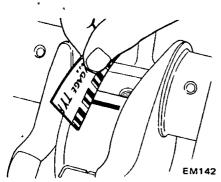


Fig EM-69 Measuring bearing clearance

2 If clearance exceeds specified value, replace bearing with an undersize bearing and grind crankshaft journal adequately

3 Then, measure bearing crush "H" with a feeler gauge See Figure EM-70 The standard bearing crush value is listed below

FITTING BEARINGS

Bearings are manufactured with crush to make bearing snug down into its bore To measure this, proceed as follows

- 1 Set main bearing in main bearing cap recess or cylinder block bearing recess correctly
- 2 Lock one side of bearing and press other side until bearing back surface touches the recess

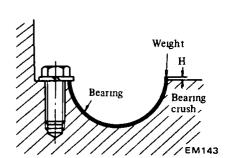


Fig EM-70 Checking bearing crush

Bearing crush

All main bearings	mm (ın)	0 to 0 03 (0 to 0 0012)
All connecting rod bearings	mm (ın)	0 015 to 0 045 (0 0006 to 0 0018)

4 Handle connecting rod bearing in

the same manner as above

MEASUREMENT OF CONNECTING ROD BEARING CLEARANCE

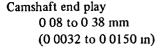
1 Measure connecting rod bearing clearance in the same manner as above

Tightening torque

4 5 to 5 5 kg-m (33 to 40 ft-lb)

Main bearing undersize

Unit mm (in)


	Bearing top thickness	Crank journal diameter	
STD	1 827 to 1 835 (0 0719 to 0 0722)	59 942 to 59 955 (2 3599 to 2 3604)	
0 25 (0 0098)	1 952 to 1 960	59 692 to 59 705	
Undersize	(0 0769 to 0 0772)	(2 3501 to 2 3506)	
0 50 (0 0197)	2 077 to 2 085	59 442 to 59 455	
Undersize	(0 0818 to 0 0821)	(2 3402 to 2 3407)	
0 75 (0 0295)	2 202 to 2 210	59 192 to 59 205	
Undersize	(0 0867 to 0 0870)	(2 3304 to 2 3309)	

connecting rod bearing u	Unit mm (in)	
	Bearing top thickness	Crank pin diameter
STD	1 493 to 1 506 (0 0588 to 0 0593)	49 961 to 49 974 (1 9670 to 1 9675)
0 25 (0 0098) Undersize	1 618 to 1 631 (0 0637 to 0 0642)	49 711 to 49 724 (1 9571 to 1 9576)
0 50 (0 0197) Undersize	1 743 to 1 756 (0 0686 to 0 0691)	49 461 to 49 474 (1 9473 to 1 9478)
0 75 (0 0295) Undersize	1 868 to 1 881 (0 0735 to 0 0741)	49 211 to 49 224 (1 9374 to 1 9379)

MISCELLANEOUS COMPONENTS

CRANKSHAFT AND CAMSHAFT SPROCKETS

- 1 Check tooth surface for flaws or wear Replace sprocket if fault is found
- 2 Install camshaft sprocket in position and check for rounout If it exceeds 0.1 mm (0.0039 in) total indicator reading, replace camshaft sprocket Also check for end play

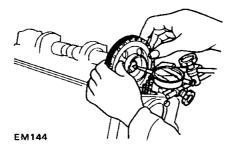


Fig EM-72 Checking camshaft end play

- 3 Check chain for damage, excessive wear or stretch at roller links Replace if faulty
- 4 To properly adjust chain tension (or valve timing), camshaft sprocket has a cam locating plate and three location holes (Nos 1, 2 and 3)

Camshaft sprocket is preset at No 1 hole at the factory If chain becomes loose, adjust it by setting camshaft sprocket at No 2 hole If chain is too loose, adjust it by setting camshaft sprocket at No 3 hole

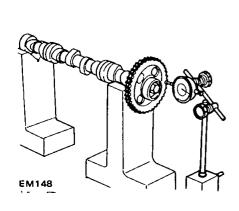
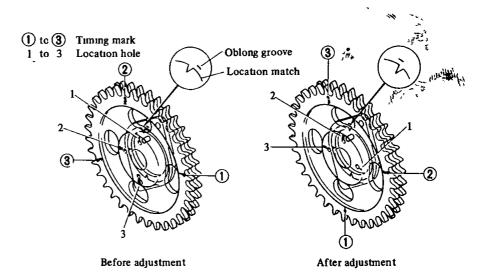



Fig EM-71 Checking camshaft sprocket runout

EM311
Fig EM-73 Adjusting camshaft sprocket location

(1) Turn engine until No 1 piston is at TDC on its compression stroke Determine whether camshaft sprocket location notch comes off the left end of the oblong groove on camshaft locating plate (If the location notch is off the left end of the oblong groove, chain stretch is beyond limits)

EM147

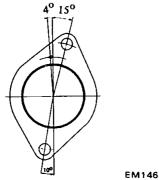


Fig EM-74 Camshaft locating plate

- Turn engine until No 1 piston is at TDC on its compression stroke, setting camshaft on No 2 location hole in camshaft sprocket This No 2 notch should then be on the right end of the oblong groove When No 2 hole is used, No 2 timing mark must also be used The amount of the modification is a 4° rotation of crankshaft
- (3) When modification becomes impossible even by transferring camshaft location hole, replace chain assembly

CHAIN TENSIONER AND CHAIN GUIDE

Check for wear and breakage Replace if necessary

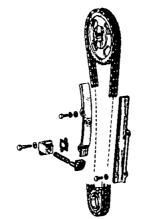


Fig EM-75 Camshaft drive mechanism

ËM426

Fig EM-76 Checking flywheel deviation

Check tooth surfaces of ring gear for flaws or wear Replace if necessary

FRONT COVER AND **REAR OIL SEAL**

First check front cover and rear oil seal for worn or folded over sealing lip or oil leakage If necessary, install a new seal When installing a new seal, pay attention to mounting direction

Note It is good practice to replace oil seal whenever engine is overhauled

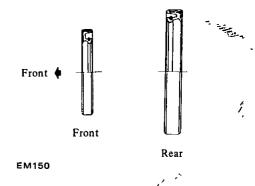


Fig EM-77 Oil seals of crankshaft

FLYWHEEL

- Check clutch disc contact surface with flywheel for damage or wear Repair or replace if necessary
- Measure runout of clutch disc contact surface with a dial gauge If it exceeds 0 15 mm (0 0059 in) total indicator reading, replace it

ENGINE ASSEMBLY

CONTENTS

PRECAUTIONS CYLINDER HEAD EM-20 PISTON AND CONNECTING ROD

ENGINE ASSEMBLY EM-20

EM-21

EM-21

ST12070000

PRECAUTIONS

- Use thoroughly cleaned parts Especially, make sure that oil holes are clear of foreign matter
- When installing sliding parts such as bearings, be sure to apply engine oil to them
- Use new packings and oil seals 3
- 4 Do not reuse lock washers
- Keep tools and work benches clean
- Keep necessary parts and tools near at hand
- Be sure to follow specified tightening torque and order
- Applying sealant *

Use sealant to eliminate water and oil leaks Parts requiring sealant are

Front cover and corners of cylinder block See Figure EM-78

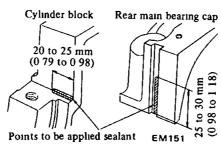


Fig EM-79 Applying sealant (Main bearing cap and cylinder block)

(3) Cylinder block Step portions at four mating surfaces (cylinder block to front chain cover and cylinder block to rear main bearing cap) See Figure EM-80

Note Do not apply too much sealant

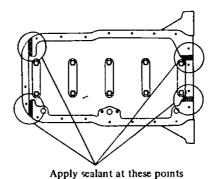
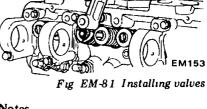



Fig EM-80 Applying sealant (Cylinder block)

EM152

Notes

- a Ensure that valve face is free from foreign matter
- b The L18 engine uses double type valve springs
- Valve rocker pivot assembly Screw valve rocker pivots joined with lock nuts into pivot bushing
- Camshaft assembly

Set locating plate and carefully install camshaft in cylinder head Do not damage the bearing inside Oblong groove of locating plate must be directed toward front side of engine

Camshaft bracket tightening torque

1 8 to 2 0 kg-m (13 to 15 ft-lb)

Install camshaft sprocket on camshaft and tighten it together with fuel pump drive cam to specified torque

Tightening torque

12 to 16 kg-m (87 to 116 ft-lb)

At this time, check camshaft end

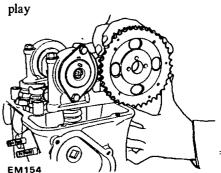


Fig EM-82 Installing camshaft sprocket

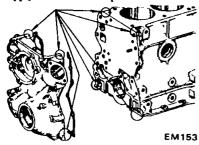
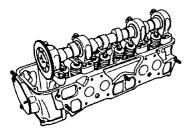


Fig EM-78 Applying sealant (Front cover and cylinder block)


CYLINDER HEAD

Valve assembly and valve spring Using Valve Lifter ST12070000, set valve spring seat in position, and fit valve guide with oil seal

Assemble valve in the order shown below valve, inner and outer valve springs, spring retainer, valve collet and valve rocker guide

(2) Main bearing cap and cylinder block Each side of rear main bearing cap and each corner of cylinder block See Figure EM-79

- 5 Install rocker arms by pressing valve springs down with a screwdriver
- 6 Install valve rocker springs
- 7 After assembling cylinder head, turn camshaft until No 1 piston is at T D C on its compression stroke

EM155

Fig EM-83 Assembling cylinder head

PISTON AND CONNECTING ROD

1 Assemble pistons, piston pins and connecting rods on the designated cylinder

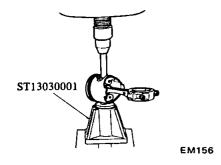
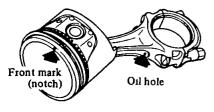



Fig EM-84 Installing piston pin

EM157

Fig EM-85 Assembling piston and connecting rod

Notes

a Piston is pressed into connecting rod, with fitting force of 0 5 to 1 5 tons, aid of Piston Pin Press Stand ST13030001 is necessary When pressing piston pin into connecting rod, apply engine oil to pin and small end of connecting rod

- b Arrange so that oil jet of connecting rod big end is directed toward right side of cylinder block
- c Be sure to install piston in cylinders with notch mark of piston head toward front of engine
- 2 Install piston rings
 Install top and second rings in right
 position, with marked side up

Notes

- a Top ring is chromium-plated on liner contacting face
- b Second ring has larger taper surface than top ring
- c In the combined oil ring, upper rail is the same as lower one

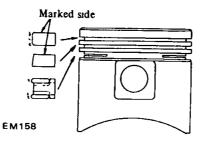


Fig EM-86 Installing piston rings

3 Fix bearings on connecting rod and connecting rod cap

Note Clean back side of bearing carefully

ENGINE ASSEMBLY

- 1 The first step in engine assembly is to bolt Engine Attachment ST05260001 to right hand side of cylinder block Next, install block on another Engine Stand ST0501S000 with engine bottom up
- 2 Set main bearings at the proper portion of cylinder block

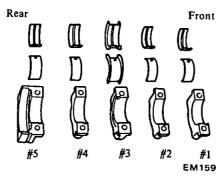


Fig EM-87 Main bearings

3 Install baffle plate including cylinder block net

Notes

- a Only center bearing (No 3) is a flanged type
- b All inter-bearings (No 2 and No 4) are the same type
- c Front bearing (No 1) is also the same type as rear bearing (No 5)

 The difference is that an oil hole is provided in the front bearing.
- d All upper and lower bearings are interchangeable
- 4 Apply engine oil to main bearing surfaces on both sides of cylinder block and cap and then install crankshaft
- 5 Install main bearing cap and tighten bolts to specified torque

Tightening torque

4 5 to 5 5 kg-m (33 to 40 ft-lb)

Notes

- a Apply sealant to each side of rear main bearing cap and each corner of cylinder block as shown in Figure EM-79
- b Arrange parts so arrow mark on bearing cap faces toward front of engine
- c Prior to tightening bearing cap bolts, place bearing cap in proper position by shifting crankshaft in the axial direction
- d Tighten bearing cap bolts gradually, in two to three stages outwardly from center bearing in the sequence as shown in Figure EM-88

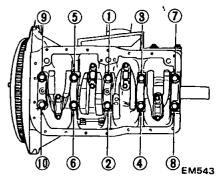


Fig EM-88 Torque sequence of cap bolts

6 Make sure that crankshaft has proper end play

Crankshaft end play
0 05 to 0 18 mm
(0 0020 to 0 0071 in)

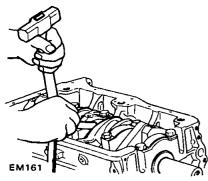
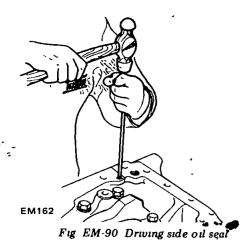



Fig EM-89 Checking crankshaft end play

7 Install side oil seals into rear main bearing cap Prior to installing, apply sealant to seals

8 Install rear oil seal using Crankshaft Rear Oil Seal Drift ST15310000

Fig EM-91 Installing rear oil seal

Note When installing oil seal, give coating of engine oil to mating shaft to prevent scratches and folded lip Also give coating of oil to periphery of oil seal

9 Install rear end plate
10 Install flywheel securely, and
tighten bolts to specified torque

Tightening torque
14 to 16 kg-m
(101 to 116 ft-lb)

11 Insert pistons in corresponding cylinder using Piston Ring Compressor EM03470000

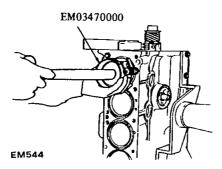


Fig EM-92 Installing piston-rod assembly

Notes

- a Apply engine oil to sliding parts
- b Arrange so that notch mark on piston head faces to front of engine
- c Install piston rings at 180° to each other, avoiding their fit in the thrust and piston pin directions

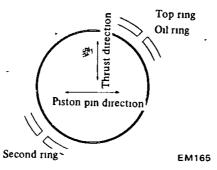


Fig EM-93 Piston ring direction

12 - Install connecting rod caps
Tightening torque
4 5 to 5 5 kg-m (33 to 40 ft-lb

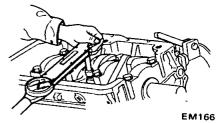


Fig EM-94 Installing connecting rod

Note Install connecting rods and connecting rod caps so that their assigned numbers are positioned on the same side and in the same direction with respect to cylinders

13 Make sure that connecting rod big end has proper end play

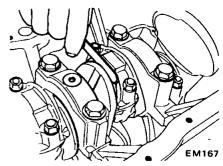


Fig EM-95 Checking big end play

Big end play 0 2 to 0 3 mm (0 008 to 0 012 in)

14 Install cylinder head assembly

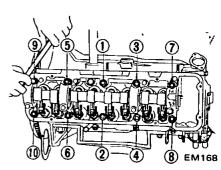


Fig EM-96 Tightening sequence of cylinder head bolts

(1) Thoroughly clean cylinder block and head surface

Do not apply sealant to any other part of cylinder block and head surface

- (2) Turn crankshaft until No 1 piston is at TDC on its compression stroke
- (3) Make sure that camshaft sprocket location notch and plate oblong groove are aligned at their correct positions
- (4) When installing cylinder head, make sure that all valves are apart from heads of pistons
- (5) Do not rotate crankshaft and camshaft separately, or valves will hit heads of pistons
- (6) Temporarily tighten two bolts
- (1), (2) shown in Figure EM-96

Tightening torque

2 kg-m (14 ft-lb)

Install crankshaft sprocket and oil pump drive gear, and fit oil thrower

Note Make sure that mating marks of crankshaft sprocket face to front

Install timing chain 16

Notes

a Make sure that crankshaft and camshaft keys point upwards

- 1 Fuel pump drive cam
- Chain guide
- Chain tensioner
- Crank sprocket
- 5 Cam sprocket
- Chain guide

Fig EM-97 Installing timing chain

- b Set timing chain by aligning its mating marks with those of crankshaft sprocket and camshaft sprocket at the right hand side There are forty-four chain links between two mating marks of timing chain
- c No 2 hole is factory adjusted When chain stretches excessively, adjust camshaft sprocket at No 3
- d Use a set of timing marks and location hole numbers

ستطيخة تتورد

- Install chain slack side guide to cylinder block
- Install chain tensioner

Note Adjust protrusion of chain tensioner spindle to 0 mm (0 in)

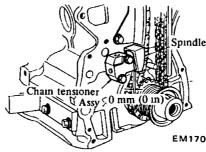


Fig EM-98 Installing chain tensioner

- 19 Press new oil seal in front cover
- Notes
- a Front cover oil seal should be replaced when front cover is disassembled
- b Before pressing oil seal into front cover, give coating of engine oil to periphery of oil seal
- c This oil seal is a threaded seal type which has improved sealing characteristics Do not apply grease to sealing lip
- 20 Install front cover with gasket in place

- b Install front cover with head gasket ın place
- c Check height difference between cylinder block upper face and front cover upper face Difference must be less than 0 15 mm (0 0059 in).
- d Note that different types of bolts are used
- e Before installing front cover on cylinder block, apply coating of engine oil to sealing lip of oil seal

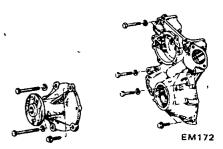
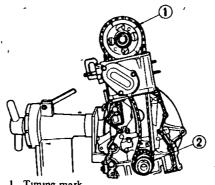



Fig EM-100 Front cover bolts

Tightening torque Size M8 (0 315 in) 10 to 13 kg-m (72 to 94 ft-lb) Size M6 (0 236 in) 0 4 to 0 6 kg·m (2 9 to 4 3 ft-lb)

Install crankshaft pulley and water pump assembly, then set No-1 piston at TDC on its compression stroke

Crankshaft pulley nut tightening torque 12 to 16 kg-m (87 to 116 ft-lb)

- 1 Timing mark
- 2 Timing mark

Fig EM-99 Installing front cover

Notes

a Apply sealant to front cover and corners of upper section of cylinder block as shown in Figure EM-78

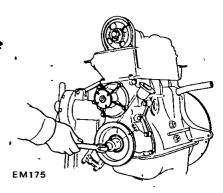
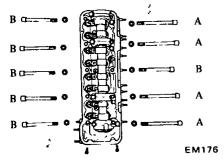


Fig EM-101 Installing crankshaft pulley and water pump


Finally, tighten head bolts to the specified torque in three steps according to the tightening sequence shown in Figure EM-96

Note that two types of bolts are used

Special tool Cylinder Head Bolt Wrench ST10120000

Tightening torque
1st turn
4 0 kg-m (29 ft-lb)
2nd turn
6 0 kg-m (43 ft-lb)
3rd turn
7 0 to 8 5 kg-m

(51 to 61 ft-lb)

Fig EM-102 Cylinder head bolts

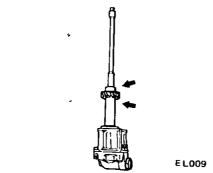


Fig EM-103 Setting distributor driving spindle

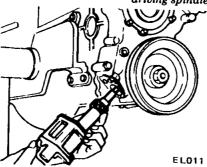


Fig EM-104 Installing oil pump

Tightening torque
Oil strainer bolts

0 8 to 1 1 kg-m (5 8 to 8 0 ft-lb)
Oil pan bolts

0 6 to 0 9 kg-m (4 3 to 6 5 ft-lb)

Notes

- a Apply sealant to the step portions at four mating surfaces as shown in Figure EM-80.
- b Oil pan should be tightened in criss-cross pattern to a final torque of 0 6 to 0 9 kg-m (4 3 to 6 5 ft-lb)
- 26 Adjust valve clearance to the specified dimensions

Special tool
Pivot Adjuster ST10640001
Tightening torque

5 0 to 6 0 kg-m (36 to 43 ft-lb)

Notes

a First set clearance to the cold specifications

Notes '

- a Be sure to tighten two small bolts
- b After engine has been operated for several minutes retighten if necessary
- 23. Install oil pump and distributor driving spindle in front cover

Tightening torque
1 1 to 1 5 kg-m

(8 0 to 10 8 ft-lb)

24 Install fuel pump, water inlet elbow and front engine slinger in their positions

Fuel pump tightening torque 1 2 to 1 8 kg-m (8 7 to 13 0 ft-lb)

Note Do not forget to install fuel pump spacer and packing between spacer and block, spacer and fuel pump

25 Install oil strainer, oil pan gasket and oil pan

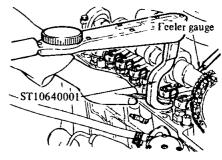


Fig EM-105 Adjusting value clearance

b After engine has been assembled, run it for at least several minutes, and finally adjust clearance to the warm specifications

Notes

- a Assemble oil pump and drive spindle, aligning driving spindle face with oil pump hole
- b Install oil pump together with drive spindle so that the projection on its top is located at the 11 25 a m position At this point, the smaller bow-shape will be facing toward the front.
- c Do not forget to install gasket

Valve clearance mm (m)	; C-14	Intake	0 20 (0 0079)
	Cold	Exhaust	0 25 (0 0098)
		Intake	0 25 (0 0098)
	Warm	Exhaust	0 30 (0 0118)

27 Install cooler compressor bracket to cylinder block, if so equipped

28 Install rear engine slinger, exhaust manifold and intake manifold

Tightening torque 1 5 to 2 0 kg-m (11 to 14 ft-lb)

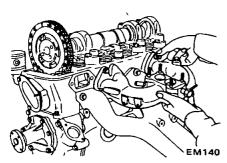


Fig EM-106 Installing manifolds

29 Install distributor assembly 30 Install carburetor assembly and carburetor insulator with stamp facing upward

Tightening torque 0 5 to 1 0 kg-m (3 6 to 7 2 ft-lb)

31 Install fuel pipes and vacuum hose

All pipes and hoses should be clamped securely, being careful not to allow them to interfere with adjacent or surrounding parts

- 32 Install thermostat housing, thermostat and water outlet in their positions. Do not forget to install gasket
- 33 Install rocker cover

- 34 Install spark plugs
- 35 Connect distributor to plug high tension lead wire
- 36 Install left engine mount bracket
- 37 Install clutch assembly on flywheel with Clutch Aligning Bar ST20660000

Tightening torque 1 2 to 2 2 kg-m (8 7 to 15 9 ft-lb)

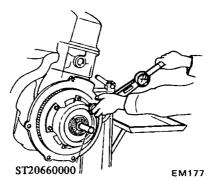


Fig EM-107 Installing clutch assembly

38 Using an overhead hoist and lifting cable, hoist engine up a way from engine stand and then down onto engine carrier

Justing bar, alternator, fan pulley, fan and fan belt in this order Then, check to be sure that deflection of fan belt is held within 8 to 12 mm (0 315 to 0 472 in) when thumb pressure is applied midway between pulleys [A pressed force is about 10 kg (22 0 lb)]

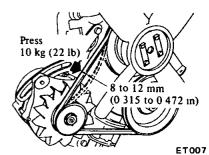


Fig EM-108 Fan belt tension

40 Install right engine mount bracket, oil filter, oil pressure switch, oil level gauge and water drain plug When installing an oil filter, fasten it on cylinder block by hand

Note Do not overtighten filter, or oil leakage may occur.

41 Power engine oil up to specified level

SERVICE DATA AND SPECIFICATIONS

GENERAL SPECIFICATIONS

Engine model L18 Cylinder arrangement 4, in-line Displacement cc (cu in) 1,770 (108 0) Bore and stroke mm (in) 85 x 78 (3 35 x 3 07) Valve arrangement OHC Firing order 1-3-4-2 Engine idle rpm Manual transmission 700 Automatic transmission (in "N" position) 800 Compression ratio 8 5 Oil pressure (Warm at 2,000 rpm) kg/cm² (psi) 35 to 40 (50 to 57)

SPECIFICATIONS

a) Valve mechanism

Valve clearance (Warm) mm (in) Intake 0 25 (0 0098) Exhaust . 0 30 (0 0118) Valve clearance (Cold) mm (in) Intake 0 20 (0 0079) **Exhaust** 0 25 (0 0098) Valve head diameter mm (in) Intake 42 0 to 42 2 (1 654 to 1 661) Exhaust 35 0 to 35 2 (1 378 to 1 386) Valve stem diameter mm (in) Intake 7 965 to 7 980 (0 3136 to 0 3142) Exhaust 7 945 to 7 960 (0 3128 to 0 3134) Valve length mm (in) Intake_ 114 9 to 115 2 (4 524 to 4 535) Exhaust . 115 7 to 116 0 (4 555 to 4 567) Valve lift mm (in) Intake 100 (0 394) Exhaust 10 5 (0 413) Valve spring out-of-square mm (in) less than 1 6 (0 063) Valve spring free length mm (in) Intake and exhaust Outer 49 98 (1 968) Inner . 44 85 (1 766)

Engine Mechanical

Valve spring pressured length (valve open)	mm/kg (ın/lb)				ı
Intake and exhaust Outer Inner					29 5/49 0 (1 161/108) 24 5/25 5 (0 965/56 2)
Valve spring assembled height (valve close) Intake and exhaust Outer	mm/kg (ın/lb)				40 0/21 3 (1 575/47 0)
Inner					35 0/12 3 (1 378/27 1)
Valve guide length Intake and exhaust	mm (ın)				59 0 (2 323)
Valve guide height from head surface	mm (ın)				10 6 (0 417)
Valve guide inner diameter Intake and exhaust	mm (ın)		•		8 000 to 8 018 (0 3150 to 0 3157)
Valve guide outer diameter (service parts) Intake and exhaust	mm (ın)				12 223 to 12 234 (0 4812 to 0 4817)
Valve guide to stem clearance Intake Exhaust	mm (ın)	-			0 020 to 0 053 (0 0008 to 0 0021) 0 040 to 0 073 (0 0016 to 0 0029)
Valve seat width Intake Exhaust	mm (ın)				1 4 (0 0551) 1 3 (0 0512)
Valve seat angle Intake and exhaust .					45° ,
Valve seat interference fit Intake Exhaust	mm (ın)				0 081 to 0 113 (0 0032 to 0 0044) 0 064 to 0 096 (0 0025 to 0 0038)
Valve guide interference fit	mm (ın)			1	0 027 to 0 049 (0 0011 to 0 0019)
Camshaft and timing chain	()		٠.,		0.00 0.00 (0.0000 0.000)
Camshaft end play	mm (ın)	•		• _	0 08 to 0 38 (0 0032 to 0 0150)
Camshaft lobe lift Intake and exhaust	mm (in)	•			`7 0 (0 276)
Camshaft journal diameter 1st, 2nd, 3rd and 4th	mm (ın)	V	.		47 949 to 47 962 (1 8877 to 1 8883)
Camshaft bend	mm (ın)				0 02 (0 0008)
Camshaft journal to bearing clearance	* *		•	•	0 038 to 0 067 (0 0015 to 0 0026) ~
Camshaft bearing inner diameter 1st, 2nd, 3rd and 4th	mm (in)		•		48 000 to 48 016 (1 8898 to 1 8904)-

Engine Mechanical

c) Connecting rod			
Center distance	mm (ın) .		130 35 (5 1319)
Bearing thickness (Standard)	mm (ın) .		1 493 to 1 506 (0 0588 to 0 0593)
Big end play	mm (ın)		0 20 to 0 30 (0 008 to 0 012))
Connecting rod bearing clearance	mm (ın)	• ••	0 025 to 0 055 (0 0010 to 0 0022)
Connecting rod bend or torsion (per	100 mm or 2 937 in mm (in) .	1)	less than 0 03 (0 0012)
d) Crankshaft and main bearing		•	
Journal diameter	mm (ɪn)		59 942 to 59 955 (2 3599 to 2 3604
Journal taper & out-of-round	mm (in) .	••	less than 0 01 (0 0004)
Crankshaft free end play	mm (ın) .		0 05 to 0 18 (0 0020 to 0 0071)
Wear limit of dittoed play	mm (ın) .		0 3 (0 0118)
Crank pin diameter	mm (ın)		49 961 to 49 974 (1 9670 to 1 9675
Crank pin taper & out-of-round	mm (in) .		less than 0 01 (0 0004)
Main bearing thickness (Standard)	mm (ın)	• •	. 1 827 to 1 835 (0 0719 to 0 0722)
Main bearing clearance	mm (ın)		0 020 to 0 062 (0 0008 to 0 0024)
Wear limit of dittoed clearance	mm (ın)	•	0 12 (0 0047)
Crankshaft bend	mm (ın) .	• •	. 0 05 (0 0020)
Flywheel runout at clutch disc cont	act face mm (ɪn)	í	less than 0 15 (0 0059)
e) Piston			
Piston diameter (Service standard)	mm (in) .		84 985 to 85 035 (3 3459 to 3 3478)
0 50 (0 0197) Oversize	mm (ın)		85 465 to 85 515 (3 3648 to 3 3667)
1 00 (0 0394) Oversize	mm (in)		85 965 to 86 015 (3 3844 to 3 3864)
Ring groove width Top .	mm (ın)		2 030 to 2 050 (0 0799 to 0 0807)
Second	·	• • •	2 020 to 2 040 (0 0795 to 0 0803)
Oil .	• •		4 015 to 4 040 (0 1581 to 0 1591)
Piston to bore clearance	mm (ın)		0 025 to 0 045 (0 0010 to 0 0018)
Piston pin hole off-set	mm (ın)		0 95 to 1 05 (0 0374 to 0 0413)
Piston pin hole diameter	mm (ın)	1	21 001 to 21 008 (0 8268 to 0 8271)
, ,			,
f) Pıston pin			,
Pin diameter	mm (m) .		20 993 to 20 998 (0 8265 to 0 8267)
Pin length	mm (ın)		72 25 to 73 00 - (2 8445 to 2 8740)
Piston pin to piston clearance	mm (ın)		0 003 to 0 015 (0 0001 to 0 0006)
Interference fit of piston pin to conn	ecting rod bushing		
	mm (ın) .		0 015 to 0 035 (0 0006 to 0 0014)

g) Piston ring					,	_
Ring height	mm (ın)				1.055.	1,000 (0,0770 (, 0,0703)
Top and second Side clearance	mm (in)		• ••• •		1977 to	o 1 990 (0 0778 to 0 0783)
Top						0 0 073 (0 0016 to 0 0029)
Second		• • •	••		0.030 to	0 070 (0 0012 to 0 0028)
Ring gap Top	mm (ın)		••			0 40 (0 0098 to 0 0157)
Second . Oil	• •		• • •			0 50 (0 0118 to 0 0197) 0 90 (0 0118 to 0 0354)
·	•	•		• • ••	0 30 10	0 70 (0 0110 10 0 033 1)
h) Cylinder block						
Cylinder bore inner diameter	mm (ın)			•		to 85.050
Wear limit of dittoed inner dia	meter mm (ın)				0 2 (0 0	i to 3 3484) 1079)
Cylinder bore taper and out-of	` ,	••			0.015 (•
Difference in cylinder bore	mm (ın)				0 05 (0	·
Surface flatness	mm (ın)	• •			less than	n 0 05 (0 0020)
i) Cylinder head						
Surface flatness	mm (ın)				less than	n 0 05 (0 0020)
			1			
TIGHTENING TOR	QUE		~,			
Cylinder head bolts	kg-m (ft-lb)	*** **			٠	7 0 to 8 5 (51 to 61)
Connecting rod big end nuts	kg-m (ft-lb) .	•	••	• ••	• ••	4 5 to 5 5 (33 to 40)
Flywheel fixing bolts	kg-m (ft-lb)	. •			• •••	14 to 16 (101 to 116)
Main bearing cap bolts	kg-m (ft-lb)					4 5 to 5 5 (33 to 40)
Camshaft bracket bolts	kg-m (ft-lb)					1 8 to 2 0 (13 to 15)
Camshaft sprocket bolt	kg-m (ft-lb)			r		12 to 16 (87 to 116)
Oil pan bolts	kg-m (ft-lb)					0 6 to 0 9 (4 3 to 6 5)
Oil pump bolts	kg-m (ft-lb)					1 1 to 1 5 (8 0 to 10 8)
Oil strainer bolts	kg-m (ft-lb)					0 8 to 1 1 (5 8 to 8 0)
Oıl pan draın plug	kg-m (ft-lb)				•	2 0 to 3 0 (14 to 22)
Rocker pivot lock nuts	kg-m (ft-lb) .					5 0 to 6 0 (36 to 43)
Camshaft locating plate bolts	kg-m (ft-lb)					0 6 to 0 9 (4 3 to 6 5)
Carburetor nuts	kg-m (ft-lb)					05 to 10(36 to 72)
Manifold bolts	kg-m (ft-lb)		•			1 5 to 2 0 (11 to 14)
Fuel pump nuts	kg-m (ft-lb)					1 2 to 1 8 (8 7 to 13 0)
Crank pulley bolt	kg-m (ft-lb)			•		12 to 16 (87 to 116)
Water pump bolts	kg-m (ft-lb)					0 4 to 0 5 (2 9 to 3 6)
Front cover bolts	kg-m (ft-lb)	•		8 mm (0 31	s in) qia	1 0 to 1 3 (7 2 to 9 4)
	··· (0)			6 mm (0 23	•	0 4 to 0 6 (2 9 to 4 3)
		FM	.29			

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
I Noisy engine		
Knocking of crankshaft	Loose main bearing	Replace
and bearing	Seized bearing	Replace
	Bent crankshaft	Repair or replace
1	Uneven wear of journal	Correct
	Excessive crankshaft end play	Replace center bearing
Knocking of piston	Loose bearing	Replace
and connecting rod	Seized bearing	Replace
	Loose piston pin	Replace pin or bushing
	Loose piston in cylinder	Recondition cylinder
	Broken piston ring	Replace
	Improper connecting rod alignment	Realign
Camshaft knocking	Loose bearing	Replace
	Excessive axial play	Replace bearing thrust plate
	Rough gear teeth	Repair
	Broken cam gear	Replace
Timing chain noise	Improper chain tension	Adjust
ı	Worn and/or damaged chain	Replace
	Worn sprocket	Replace
	Worn and/or broken tension adjusting mechanism.	Replace
	Excessive camshaft and bearing clearance	Replace
Camshaft and valve	Improper valve clearance	Adjust ,
mechanism knocking	Worn adjusting screw	Replace
'	Worn rocker face	Replace
	Loose valve stem in guide	Replace guide
	Weakened valve spring	Replace
	Seized valve	Repair or replace
Water pump knocking	Improper shaft end play	Replace .
-	Broken impeller	Replace
II Other mechanical tro	ubles	
Stuck valve ,	Improper valve clearance	Adjust
	Insufficient clearance between valve stem and guide:	Clean stem or ream guide
	Weakened or broken valve spring	Replace
	Biting or damage of valve stem	Replace or clean
-	Poor quality of fuel	Use good fuel

Engine Mechanical

Condition	Probable cause	Corrective action
Seized valve seat	Improper valve clearance	Adjust
	Weakened valve spring	Replace
	Thin valve head edge	Replace valve
	Narrow valve seat	Reface
	Overheating	Repair or replace
	Over speeding	Drive at proper speeds
	Stuck valve guide	Repair
Excessively worn	Shortage of engine oil	Add or replace oil
cylinder and piston	Dirty engine oil	Clean crankcase, replace oil and oil filter element
	Poor quality of oil	Use right oil
	Overheating	Repair or replace
	Wrong assembly of piston with connecting rod	Repair or replace
	Improper piston ring clearance	Adjust
	Broken piston ring	Replace
	Dirty air cleaner	Clean
	Mixture too rich	Adjust
	Engine over run	Drive at proper speeds
•	Stuck choke valve	Clean and adjust
•	Overchoking	Start correct way
Faulty connecting	Shortage of engine oil	Add oil
rod	Low oil pressure	Correct
	Poor quality of engine oil	Use proper oil
	Rough surface of crankshaft	Grind and replace bearing
•	Clogged oil passage	Clean
	Bearing worn or eccentric	Replace
ı	Bearing improperly assembled	Correct
•	Loose bearing	Replace
	Connecting rod alignment incorrect	Repair or replace
Faulty crankshaft	Shortage of engine oil	Add or replace
bearing	Low oil pressure	Correct
	Poor quality of engine oil	Use proper oil
	Crankshaft journal worn or out-of-round	Repair
	Clogged oil passage in crankshaft	Clean
	Bearing worn or eccentric	Replace
· ·	Bearing improperly assembled	Correct
	Eccentric crankshaft or bearing	Replace

SPECIAL SERVICE TOOL

No	Tool number &	Description	For use	Reference page or
1	ST0501S000	Unit mm (in) This engine stand assembly is used for disassembling or assembling engine block or differential carrier throughout	All models	Fig EM-13 Page EM-21
	Engine stand assembly ST05011000 Engine stand ST05012000 Base	360° in all directions SE184	models	rage EM-21
2	ST05260001 Engine attachment	This engine attachment is installed to engine stand ST0501S000 in disassembling or assembling engine	L18	Fig EM-13 Page EM-21
3	ST10120000 Cylinder head bolt wrench	Special hollow set bolts are used in tightening cylinder heads in L-series engines. This wrench is used to torque cylinder head bolts and its head can be inserted into the torque wrench. 110 (0 39) SE186	All L-series	Fig EM-18 Page EM-24
4	ST10640001 Pivot adjuster	This tool is used together with a torque wrench in tightening pivot lock nut for valve clearance adjustment	All L-series	Fig EM-105
		SE 187	-	

No	Tool number & tool name	Description Unit mm (in)	For use on,	Reference page or Figure No
5	ST1103S000 Valve guide reamer set - ST11031000 Reamer (12 2 mm dia) - ST11032000 Reamer (8 0 mm dia) - ST11033000 Drift	This guide is used for Pressing used guide out of place Driving a new guide into place Finishing the bore of new guide	All L-series	Fig EM-44
	,	\$E 192		
6	ST11650001 Valve seat cutter set	This valve seat cutter set is used to or refinish a valve seat	All L-series	Fig EM-45
		SE 193		. `
7	ST12070000	-		
	Valve lifter	This tool is used to compress valve spring by the combined action of its cam and lever, thereby facilitating the removal or installation of valve collet (for general use)	All 'models'	Fig EM-32 Fig EM-81
	- *	SE 194		

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
8.	ST13030001 Piston pin press stand	This tool is used with a press to drive pin into, or out of, connecting rod 20 (0 79) 20 (0 79) 20 (3 94) SE188	All L-series	Fig EM-29 Fig EM-84
9.	ST15310000 Crankshaft rear oil seal drift	This tool is used to push a lip type rear oil seal for L-series engine into place by giving hammer blows	All L-series	Fig EM-91
10	ST1651S000 Crankshaft main bearing cap puller ST16511000 Body ST16512001 Adapter	This tool is used to remove the cap from main bearing When using this tool, turn its adapter into the threaded hole in main bearing cap 250 (9 8) 280 (11 0) SE 190	All L-series	Fig EM-25
11	ST16610001 Pilot bushing puller	This tool is used to pull pilot bushing out of place	L18	Fig EM-66

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
12	ST17420001 Chain stopper	This tool is used to prevent chains from falling out of place in removing cylinder heads or cam gears and shafts	All L-series	Fig EM-19
		230 (9 06)		
		SE 195		
13	ST19320000 Oil filter wrench	This tool is used to take oil filter out of place. In tightening the filter, do not use this tool, to prevent excess tightening	All models	Page EM-4
		120 (4 7)		
		SE197		
14	ST20660000	This tool is used to install clutch assembly to engine	L20B	Fig EM-107
	Clutch aligning bar			
		SE001		
15	EM03470000 Piston ring compressor	This tool is used to compress piston rings while piston is being inserted into cylinder	All models	Fig EM-92
				-
		SE 199		i

SERVICE MANUAL

DATSUN MODEL 610 SERIES

SECTION EL

ENGINE LUBRICATION SYSTEM

F

ENGINE LUBRICATION SYSTEM	EL- 2
SERVICE DATA AND SPECIFICATIONS	EL- 5
TROUBLE DIAGNOSES AND CORRECTIONS	EL- 5

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

ENGINE LUBRICATION SYSTEM

ENGINE LUBRICATION SYSTEM

CONTENTS

LUBRICATION CIRCUIT	EL-2	Inspection	EL-3
OIL PUMP /	EL-2	OIL PRESSURE REGULATOR VALVE	EL-4
Removal	EL-2	OIL FILTER	EL-4
Installation	EL-2	RELIEF VALVE	EL-4
Disassembly and assembly	F1-3		/

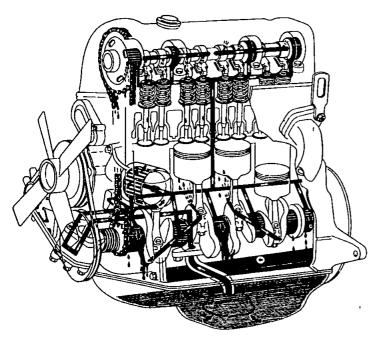


Fig EL-1 Lubricating circuit

LUBRICATION CIRCUIT

The pressure lubrication of the engine is accomplished by a trochoid-type oil pump This pump draws the oil through the oil strainer into pump housing and then forces it through the full flow type oil filter into the main oil gallery Part of the oil is supplied to all crankshaft bearings, chain tensioner and timing chain Oil supplied to crankshaft bearings is fed to connecting rod bearings through the drilled passages in the crankshaft Oil injected from jet holes on connecting rods lubricates the cylinder walls and piston pins The other part of the oil is brought to the oil gallery in the

cylinder head to provide lubrication of the valve mechanism and timing chain as shown in Figure EL-2

Fig EL-2 Lubricating cylinder head

From this gallery, oil holes go directly to all camshaft bearings through cam brackets

Oil supplied through the No 2 and No 3 camshaft bearings is then fed to the rocker arm, valve and cam lobe through the oil gallery in the camshaft and the small channel at the base circle portion of each cam

OIL PUMP

The oil pump is located in the bottom of the front cover by four bolts and driven by the oil pump drive spindle assembly which is driven by the helical gear on the crankshaft

The oil pump assembly consists of an oil pressure regulator valve and outer and inner rotors

The spring-loaded oil pressure regulator valve limits the oil pressure to a maximum of 5 6 kg/cm² (80 psi)

Removal

- 1 Remove distributor
- 2 Drain engine oil
- 3 Remove front stabilizer
- 4 Remove splash shield board
- 5 Remove oil pump body with drive spindle assembly

Installation

1 Before installing oil pump in engine, turn crankshaft so that No 1 piston is at T D C $\,$

ENGINE LUBRICATION SYSTEM

2 Fill pump housing with engine oil, then align punch mark of spindle with hole in oil pump as shown in Figure EL-3

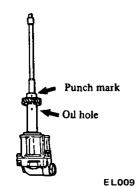


Fig EL-3 Aligning punch mark and oil hole

3 Using a new gasket, install oil pump and drive spindle assembly so that the projection on its top is located in 11 25 am. position, at this time, the smaller bow-shape will be placed toward the front as shown in Figure EL-4

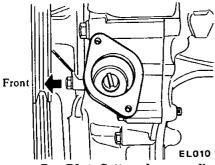


Fig EL-4 Setting drive spindle

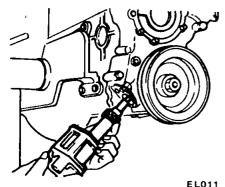


Fig EL-5 Installing oil pump

Ascertain whether the engagement is in order or not by checking the top

of spindle through distributor fitting hole

4. Tighten bolts securing oil pump to front cover

Disassembly and assembly

- 1. Remove pump cover attaching bolts, pump cover and cover gasket, and slide out pump rotors
- 2 Remove regulator cap, regulator valve and spring
- 3 Install pressure regulator valve and related parts
- 4 Install outer rotor, inner rotor and shaft in pump body and do not turn cover gasket up
- 1 Oil pump body
- 2 Inner rotor and shaft
- 3 Outer rotor
- 4 Oil pump cover
 5 Regulator valve
 6 Regulator spring
 7 Washer
 8 Regulator cap
 9 Cover gasket

 EL012

4 5 6 7 8

Fig EL-6 Oil pump

Inspection

Wash all parts in cleaning solvent and dry with compressed air

- 1 Inspect pump body and cover for cracks or excessive wear
- 2 Inspect pump rotors for damage

- or excessive wear
- 3. Check inner rotor shaft for looseness in pump body
- 4 Inspect regulator valve for wear or scoring
- 5 Check regulator spring to see that it is not worn on its side or collapsed
- 6 Using a feeler gauge, check tip clearance and outer rotor-to-body clearances shown in Figure EL-7

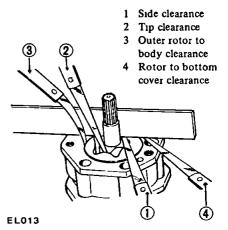
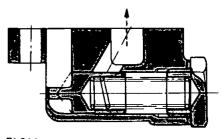


Fig EL-7 Checking rotor clearances

7 Place a straight edge across the face of pump as shown in Figure EL-7 Check side clearance (outer to inner rotor) and gap between body and straight edge

The gap should be -0 03 to 0 06 mm (-0 0012 to 0 0024 in), then rotor to bottom cover clearance with gasket should satisfy the specifications


	`	Standard	Wear limit
Rotor side clearance (outer to inner rotor)	mm (ın)	0 04 to 0 08 (0 0016 to 0 0031)	0 20 (0 0079)
Rotor tip clearance	mm (ın)	Less than 0 12 (0 0047)	0 20 (0 0079)
Outer rotor to body clearance	mm (ın)	0 15 to 0 21 (0 0059 to 0 0083)	0 50 (0 0197)
Rotor to bottom cover clearance	mm (ın)	0 03 to 0 13 (0 0012 to 0 0051)	0 20 (0 0079)

ENGINE LUBRICATION SYSTEM

Note: Pump rotors and body are not serviced separately If pump rotors or body are damaged or worn, replacement of the entire oil pump assembly is necessary

OIL PRESSURE REGULATOR VALVE

The oil pressure regulator valve is not adjustable At the released pisition, the valve permits the oil to by-pass through the passage in the pump cover to the inlet side of the pump Check regulator valve spring to ensure that spring tension is correct

EL014

Fig EL-8 Regulator valve

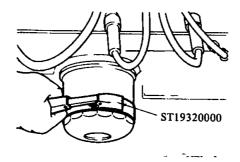
Tightening torque

Oil pump mounting bolts	kg-m (ft-lb)	1 1 to 1 5 (8 to 11)
Oil pump cover bolts	kg-m (ft-lb)	07 to 10 (5 to 7)
Regulator valve cap nut	kg-m (ft-lb)	4 to 5 (29 to 36)
pecifications		

Sp

ecifications		
Oil pressure at idling	kg/cm ² (psi) .	0 8 to 2 8 (11 to 40)
Regulator valve spring		1
Free length	mm (in)	52 5 (2 067)
Pressured length	mm (ın)	34 8 (1 370)
Regulator valve opening pressure	kg/cm ² (psi) .	3 5 to 4 2 (50 to 60)

OIL FILTER


The oil filter is of a cartridge type The oil filter element should be replaced periodically with the use of Oil Filter Wrench ST19320000

When installing an oil filter, fasten it on cylinder block by hand

Note Do not overtighten filter, or oil leakage may occur

RELIEF VALVE

The relief valve located at the center portion securing oil filter in the cylinder block by-passes the oil into the main gallery when the oil filter element is excessively clogged.

EL015 Fig EL-9 Removing oil filter

With oil filter removed, check valve unit for operation Inspect for a cracked or broken valve If replacement is necessary, remove valve by prying it out with a screwdriver. Install a new valve in place by tapping it.

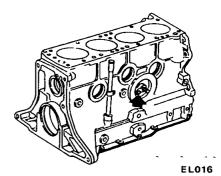


Fig EL-10 Relief valve

ENGINE LUBRICATION SYSTEM

SERVICE DATA AND SPECIFICATIONS

Oil pump

		Standard	Wear limit
Rotor side clearance (outer to inner rotor)	mm (ın)	0 04 to 0 08 (0 0016 to 0 0031)	0 20 (0 0079)
Rotor tip clearance	mm (ın)	less than 0 12 (0 0047)	0 20 (0 0079)
Outer rotor to body clearance	mm (ın)	0 15 to 0 21 (0 0059 to 0 0083)	0 50 (0 0197)
Rotor to bottom cover clearance	mm (ın)	0 03 to 0 13 (0 0012 to 0 0051)	0 20 (0 0079)
Oil pressure regulator valve			
Oil pressure at idling	kg/cm² (psi)	0 8 to 2 8 (11 to 4	0)
Regulator valve spring			
Free length	mm (ın)	52 5 (2 067)	
Pressured length	mm (ın)	34 8 (1 370)	
-Regulator valve opening pressure	kg/cm² (psı)	3 5 to 4 2 (50 to 6	0)
Tightening torque			
Cd pump mounting bol's	kg-m (ft-lb)	1 1 to 1 5 (8 to 11)
Oil pump cover bolts	kg-m (ft-lb)	0 7 to 1 0 (5 to 7)	
Regulator valve cap nut	kg-m (ft-lb)	4 to 5 (29 to 36)	•

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Oil leakage	Damaged or cracked body cover	Replace
_	Oil leakage from gasket	Replace
	Oil leakage from regulator valve	Tighten or replace
	Oil leakage from blind plug	Replace
Decreased oil	Leak of oil in engine oil pan	Correct
pressure	Dirty oil strainer	Clean or replace
•	Damaged or worn pump rotors	Replace
	Malfunctioning regulator	Replace
	Use of poor quality engine oil	Replace
Warning light	Decreased oil pressure	Previously mentioned
remains "on"-	Oil pressure switch unserviceable	Replace
engine running	Electrical fault	Check circuit
Noise	Excessive backlash in pump rotors	Replace

SERVICE MANUAL

DATSUN
MODEL 610 SERIES

NISSAN MOTOR CO., LTD.

SECTION CO

COOLING SYSTEM

CO

COOLING SYSTEM	CO- 2
SERVICE DATA AND SPECIFICATIONS	CO- 5
TROUBLE DIAGNOSES	CO- 6

COOLING SYSTEM

CONTENTS

DESCRIPTION	CO-2	Fan belt adjustment	CO-3
Coolant level	CO-2	THERMOSTAT	CO-3
Draining and flushing the cooling system	CO-2	Removal and installation	CO-3
WATER PUMP	CO-2	Inspection	CO-3
Removal	CO-3	RADIATOR	CO-4
Disassembly	CO-3	Removal and installation	CO-4
Inspection	CO-3	Inspection	CO-4
Installation	CO-3	•	00 4

DESCRIPTION

The cooling system is of the conventional pressure type A centrifugal pump built the front cover serves to circulate the coolant

The pressure type radiator filler cap installed on the radiator operates the cooling system at higher than atmospheric pressure. The higher pressure rises the boiling point of the

coolant and increases the cooling efficiency of the radiator

When the thermostat is closed, the coolant remains in the cylinder head and block for swift warming up of the engine After reached normal operating temperature, the coolant circulates through the radiator

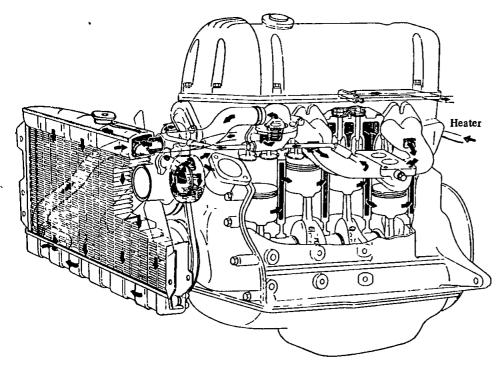


Fig CO-1 Cooling system

Coolant level

The radiator coolant level should be checked and maintained 25 4 mm (1 in) below the bottom of the filler neck when the engine is cold The expansion and contraction of the coolant will cause the level to drop by over-flow

CAUTION

To avoid serious personal injury, never remove radiator cap quickly when the engine is hot Sudden release of cooling system pressure is very dangerous

If it is necessary to remove the radiator cap when the radiator is hot, turn the cap slowly counterclockwise to first stop After all pressure in cooling system is released, then turn the cap past the stop and remove it

Draining and flushing the cooling system

To drain the cooling system remove the radiator cap, release the drain cock at the bottom of the radiator and a drain plug on the right side of the cylinder block. If the heater system is installed, set the heater temperature control valve at open position

After the coolant is drained completely, close the drain cock and plug and refill the system with clean water

WATER PUMP

The water pump is of a centrifugal type, which is mounted on the engine front cover The fan and pulley are bolted at the pulley hub

The pump shaft is supported by a double row ball bearing press fit in an aluminum die cast pump body The bearings are permanently lubricated and sealed to prevent loss of lubricant entry of dirt

The pump contains an impeller that turns on a steel shaft which rotates in the ball bearings, and the volute chamber is built in the front cover assembly The inlet of the pump is connected to the radiator lower tank by a hose

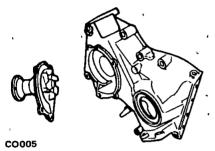


Fig CO-2 Water pump and front cover

Inspection

Inspect pump assembly for the following conditions, and replace it if necessary

- Badly rusted or corroded body assembly and vane
- Excessive end play or roughness of bearings in operation

Installation

- Make sure to clean the gasket surfaces on pump and front cover Always use new gasket when installing pump assembly Be sure to tighten bolts uniformly
- Fill cooling system and check 2 for leaks at pump
- Install fan pulley and fan blade. and tighten fixing bolts securely Install belt and adjust for proper tension

function of thermostat is to control the flow of coolant, facilitating fast engine warm up and regulating coolant temperature The thermostats are designed to open and close at predetermined temperatures and if not operating properly should be removed and tested as listed below

Removal and installation

- Drain coolant partially
- Disconnect upper radiator hose at water outlet
- Loosen two securing nuts and remove water outlet, gasket, and thermostat from thermostat housing
- After checking thermostat satisfactorily, reinstall, replacing with a new housing gasket
- Reinstall water outlet and tighten securing nuts
- Replenish coolant and check for leaks

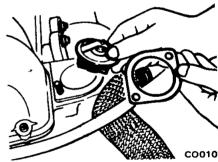


Fig CO-4 Removing thermostat

Removal

- 1 Drain coolant into a clean container
- Loosen four bolts retaining fan 2 to radiator and remove shroud shroud
- Loosen belt, then remove fan blade and pulley from hub
- Remove five bolts, assembly, and gasket from front cover

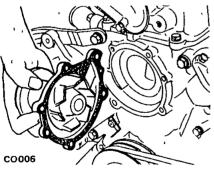


Fig CO-3 Removing water pump

Fan belt adjustment

The fan belt should be properly adjusted at all time A tight belt serves wear of alternator and water pump bearings A loose belt cause improper cooling fan, water pump and alternator operation

Check the belt slack between alternator and fan pulley by pressing a force of 10 kg (22 lb)

Slackness of fan belt

8 to 12 mm (0 31 to 0.47 in)

If adjustment is necessary, loosen bolt retaining alternator adjusting bar to alternator Move alternator toward or away from engine until the correct tension is obtained

THERMOSTAT

A wax pellet type thermostat is mounted in the thermostat housing at the cylinder head water outlet adjacent to the inlet manifold The

Inspection

A sticking thermostat will prevent the cooling system from functioning properly If the thermostat sticks in the open position, the engine will warm up very slowly. If thermostat sticks in the closed position, overheating will result Therefore, the thermostat should be inspected so as to make sure that it is in good condition

1. Submerge thermostat in hot water 5°C (9°F) above the temperature specified in the following table

Disassembly

The water pump is made of aluminum, and its bearing outer race is press fit For this reason, the body, shaft bearing should not be disassembled

	Standard	For cold areas	For tropical areas
Valve opening temperature °C (°F)	80 5 to 83 5	86 5 to 89 5	75 to 78
	(177 to 183)	(187 to 193)	(167 to 172)
Maximum valve lift mm/°C (in/°F)	above 8/95	above 8/100	above 8/90
	(0 315/203)	(0 315/212)	(0 315/194)

Note. It is necessary to check a new thermostat before installing it in the engine

- 2 Measure the lift height of valve by inserting a screwdriver marked at the point about 8 mm (0 315 in) from its tip
- 3 Remove thermostat and place in water 5°C (9°F) below temperature stamped on the frame
- 4 Under the above condition, valve should be closed completely In this case, agitate water thoroughly.

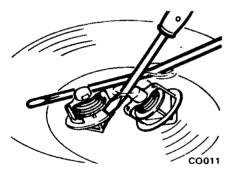


Fig CO-5 Inspecting thermostat

If thermostat does not operate at the above specified temperatures, it must be replaced because it can not be repaired

RADIATOR

The radiator is a conventional down flow type having the top and bottom tanks to distribute the coolant flow uniformly through the vertical tube of the radiator core

The radiator filler cap is designed to maintain a pre-set pressure [0.9 kg/cm² (13 psi)] above atmospheric pressure. The relief valve consisted of a blow-off valve and a vacuum valve, helps to prevent coolant loss from boiling for by raising the pressure on the coolant. On the contrary, as the pressure is reduced below atmospheric pressure the vacuum valve allows air to re-enter the radiator, preventing the formation of vacuum in the cooling system.

The bottom tank on cars equipped with the automatic transmission incorporates an oil cooler for the transmission fluid

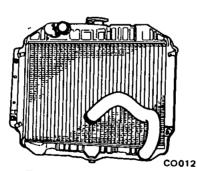


Fig CO-6 Radiator for manual transmission

Removal and installation

- 1 Drain coolant into a clean container
- 2 Remove front grille
- 3 Disconnect radiator upper and lower hoses On a vehicle with automatic transmission, disconnect cooler inlet and outlet lines from radiator
- 4 Remove bolts retaining radiator from radiator side supports and remove radiator upwards
- 5 Install radiator in reverse sequense of removal

Inspection

Radiator cap should be checked for pressure at regular tune up intervals First, check rubber seal on cap for tears, cracks or deterioration after cleaning it Then, install radiator cap on a tester If cap does not hold pressure or will not release at the proper pressure, replace cap

Also, inspect radiator for water leakage using the cap tester under applying a pressure of 1 6 kg/cm² (22 8 psi) If such fault is detected, repair or replace radiator

SERVICE DATA AND SPECIFICATIONS

For tropical , For cold Standard areas areas Valve opening temperature 80 5 to 83 5 86 5 to 89 5 75 to 78 (177 to 183) (187 to 193) (167 to 172) Maximum valve lift mm/°C (in/°F) 8/95 8/100 8/90 (0.31/203)(0.31/212)(0.31/194)

Radiator

Type

Manual transmission
Automatic transmission

Cap relief pressure

kg/cm² (psi)

Cooling system

Leakage testing pressure

kg/cm² (psi)

Capacity

With heater Without heater liters (US qt, Imp qt) liters (US qt, Imp qt) 1 6 (22 8)

09 (13)

Corrugated fin type

65(6 ¼,5 ¾) 60(6 ¾,5 ¼)

Corrugated fin type equipped with oil cooler

Fan

Number of blades x outer diameter

mm (ın)

 $4 \times 350 (14)$

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Loss of water	Damaged radiator seams	(Repair
	Leaks at heater connections or plugs	Repair
,	Leak at water temperature gauge	Tighten
· ,	Loose joints	Tighten
• •	Damaged cylinder head gasket	Replace Check engine oil for contamination and refil as necessary
ť	Cracked cylinder block	Replace Check engine oil in crankcase for mixin with water by pulling oil level gauge
	Cracked cylinder head	Replace
	Loose cylinder head bolts	Tighten
Poor circulation	Restriction in system	Check hoses for crimps, and clear the system of rust and sludge by flushing radiator
	Insufficient coolant	Replenish
	Inoperative water pump	Replace
	Loose fan belt	Adjust
	Inoperative thermostat	Replace
Corrosion	Excessive impurity in water	Use soft, clean water (Rain water is satisfactory)
	Infrequent flushing and draining of system	Cooling system should be drained and flushed periodically Permanent anti-freez (Ethylene glycol base) can be used through out the seasons of the year, and chang periodically at intervals recommended
Overheating	Inoperative thermostat	Replace
	Radiator fin choked with mud, chaff, etc	Clean out air passage thoroughly by using air pressure from engine side of radiator
	Incorrect ignition and valve timing	Adjust
	Dirty oil and sludge in engine	Refill
	Inoperative water pump	Replace
	Loose fan belt	Adjust
	Restricted radiator	Flush radiator
	Inaccurate temperature gauge	Replace
	Impurity in water	Use soft, clean water
Overcooling	Inoperative thermostat	Replace
	Inaccurate temperature gauge	Replace

SERVICE MANUAL

the second of the second

DATSUN MODEL 610 SERIES

NISSAN

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

SECTION EF

ENGINE FUEL

•

.

, --

.

- -

FUEL STRAINER

FUEL PUMP

TWO-BARREL CARBURETOR

ΕF

. ž . ž

EF- 2

FF. A

FUEL STRAINER

DESCRIPTION

The fuel strainer is of a cartridge type It uses a paper element which can be checked for condition from the outside This strainer should be replaced periodically

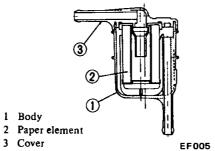


Fig EF-1 Sectional view of cartridge type fuel strainer

REMOVAL

Disconnect inlet and outlet fuel lines from fuel strainer, and remove fuel strainer

Note Before disconnecting fuel lines, use a container to receive the remaining fuel in lines

FUEL PUMP

CONTENTS

DESCRIPTION
FUEL PUMP TESTING
Static pressure test
Capacity test

DESCRIPTION

The fuel pump transfers fuel from the tank to the carburetor in sufficient quantity to meet the engine requirements at any speed or load

The fuel pump is of a pulsating type designed for easy maintenance. It consists of a body, rocker arm assembly, fuel diaphragm, fuel diaphragm spring, seal inlet- and outlet-valve. Figure EF-2 shows a cross-sectional view of the pump.

The fuel diaphragm consists of specially treated rubber, which is not affected by gasoline and held in place by two metal discs and a pull rod

This type of fuel pump is used in the L14, L16 and L18 engines

FUEL PUMP TESTING

A fuel pump is operating properly when its pressure is within specifications and its capacity is equal to

EF-2 REMOVAL AND DISASSEMBLY EF-3
EF-2 INSPECTION EF-4
EF-3 ASSEMBLY EF-4
EF-3

the engine's requirements at all speeds Pressure and capacity must be determined by two tests, while the pump is still mounted on the engine Be sure there is fuel in the tank when carrying out the tests

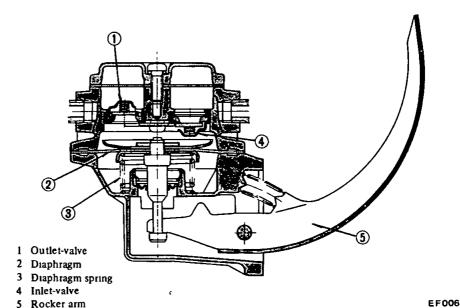


Fig EF-2 Schematic view of fuel pump

Static pressure test

The static pressure test should be conducted as follows

- 1 Disconnect fuel line between carburetor and fuel pump
- 2 Connect a rubber hose to each open end of a T-connector, and connect this connector-hose assembly between carburetor and fuel pump

Note Locate this T-connector as close to carburetor as possible

- 3 Connect a suitable pressure gauge to the opening of T-connector, and fasten the hose between carburetor and T-connector with a clip securely
- 4 Start and run the engine at varying speeds
- 5 The pressure gauge indicates static fuel pressure in the line The gauge reading should be within the following range

0 18 to 0 24 kg/cm² (2 6 to 3 4 psi)

Note If the fuel in the carburetor float chamber has run out and engine has stopped, remove clip and pour fuel into carburetor. Fasten clip securely and repeat static pressure test

Pressure below the lower limit indicates extreme wear on one part or a small amount of wear on each working part It also indicates ruptured diaphragm, worn, warped, dirty or gumming valves and seats, or a weak diaphragm return spring Pressure above the upper limit indicates an excessively strong tension of diaphragm return spring or a diaphragin that is too tight Both of these conditions require the removal of pump assembly for replacement or repair

Capacity test

The capacity test is conducted only when static pressure is within the specification To conduct this test, proceed as follows

- 1 Disconnect pressure gauge from T-connector and, in its vacant place, install a suitable container as a fuel sump
- 2 Start engine and run at 1,000 rpm
- 3 The pump should deliver 1,000 cc (211 US pts) of fuel in one minute or less

If little or no fuel flows from the open end of pipe, it is an indication that fuel line is clogged or pump is malfunctioning

REMOVAL AND DISASSEMBLY

Remove fuel pump assembly by unscrewing two mounting nuts and disassemble in the following order

- 1 Separate upper body and lower body by unscrewing body set screws
- 2 Take off cap and cap gasket by removing cap screws
- 3 Unscrew elbow and connector
- 4 Take off valve retainer by unscrewing two valve retainer screws and two valves are easily removed
- 5 To remove diaphragm, press down its center against spring force With diaphragm pressed down, tilt it until the end of pull rod touches the inner wall of body Then, release the diaphragm to unhook push rod Use care during this operation not to damage diaphragm or oil seal

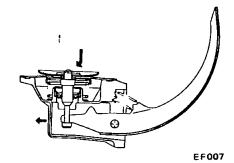
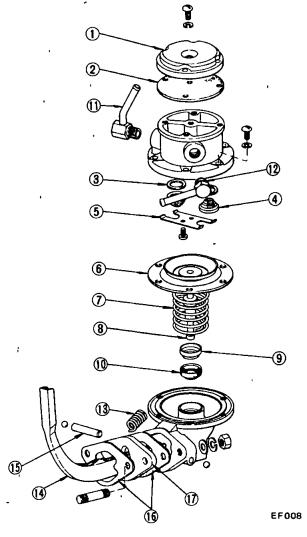



Fig EF-3 Removing pull rod

6 Drive out rocker arm pin by using a press or hainmer

- 1 Fuel pump cap
- Cap gasket
- 3 Valve packing assembly
- 4 Fuel pump valve assembly
- 5 Valve retainer
- 6 Diaphragm assembly
- 7 Diaphragm spring
- 8 Pull rod
- 9 Lower body seal washer
- 10 Lower body seal
- 11 Inlet connector
- 12 Outlet connector
- 13 Rocker arm spring
- 14 Rocker arm
- 15 Rocker arm side pin
- 16 Fuel pump packing
- 17 Spacer-fuel pump to cylinder block

Fig EF-4 Structure of fuel pump

INSPECTION

- 1 Check upper body and lower body for cracks
- 2 Check valve assembly for wear on valve and valve spring Blow valve assembly with breath to examine its function
- 3 Check diaphragm for small holes, cracks or wear
- 4 Check rocker arm for wear at the portion in contact with camshaft
- 5 Check rocker arm pin for wear A worn pin may cause oil leakage
- 6 Check all other components for any abnormalities and replace with new parts if necessary

ASSEMBLY

Reverse the order of disassembly Closely observe the following instructions

- 1 Use new gaskets
- 2 Lubricate rocker arm, rocker arm link and rocker arm pin before installation
- 3 To test the function, proceed as follows

Position fuel pump assembly about 1 meter (3 3 ft) above fuel level of fuel strainer and connect a pipe from strainer to fuel pump

Operate rocker arm by hand If fuel is drawn up soon after rocker arm is released, fuel pump is functioning properly

TWO-BARREL CARBURETOR

CONTENTS

DESCRIPTION	EF- 5	TROUBLE DIAGNOSES AND	
STRUCTURE AND OPERATION	EF- 5	CORRECTIONS	EF-10
Primary system	EF- 6	SPECIFICATIONS AND SERVICE DATA	EF-11
Secondary system	EF- 7	AUTOMATIC CHOKE	EF-12
Float system	EF- 8	Description	EF-12
ADJUSTMENT	EF- 8	Inspection	EF-13
Fuel level adjustment	EF- 8	Trouble diagnoses and corrections	EF-13
Dash pot adjustment (A/T only)	EF- 8	Auto-choke heater	EF-13
MAJOR SERVICE OPERATION	EF- 9	Auto-choke relay and wiring	EF-14
Removal	EF- 9	Adjustment	EF-14
Disassembly	EF- 9	IDLE COMPENSATOR	EF-16
Cleaning-and-inspection	- EF- 9 ~	Description	EF-16
Assembly and installation	EF-10	Inspection	EF-16
JÉTS	EF-10	Replacement	EE 16

DESCRIPTION

Applied engine	
L18 with manual transmission	
L18 with automatic transmission	

As almost all the mechanism of these carburetors are quite similar, the general explanation applies with all except for some variations

These are downdraft type and are designed to increase power and fuel economy

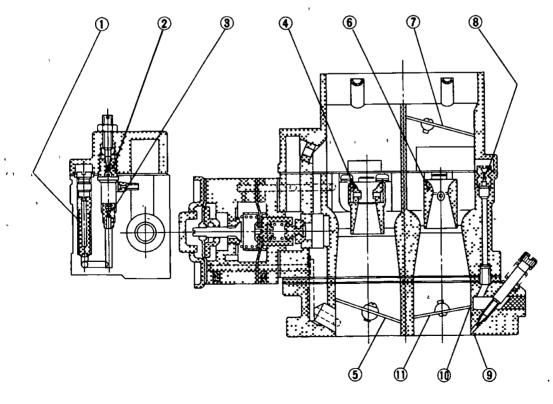
These carburetors present several distinct features of importance to the car owners

A summary of features is as follows

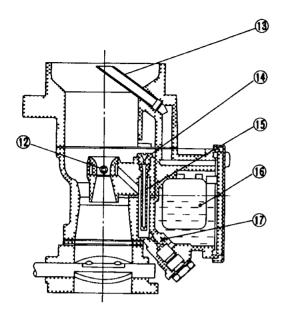
1 Secondary throttle valve is operated by the diaphragm which is actuated by the vacuum so that the higher power and better acceleration are achieved as compared with the mechanical throttle valve type

- 2 The power valve mechanism, so-called vacuum piston type, affords high speed performance
- 3 Accelerating pump gives excellent acceleration
- 4 The carburetor for automatic transmission is equipped with so-called dash pot, that is, it makes smooth deceleration without engine stall at any operating condition
- 5 BCDD is installed in order to reduce HC emission during deceleration
- 6 An automatic choke system is adoped
- 7 Anti-dieseling solenoid is also added

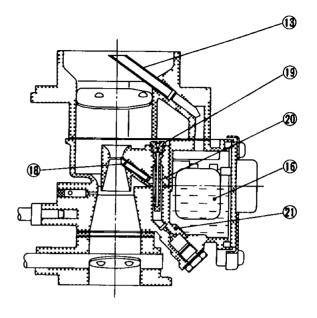
These carburetors are almost similar in appearance as explained above except the dash pot for the automatic transmission models


The differences in performance are explained in the following specifications table

STRUCTURE AND OPERATION


These carburetors consist of the primary system for normal running and the secondary system for full load running

- The float system which is commonly used by primary and secondary systems, the secondary switchover mechanism, the starting mechanism, accelerating mechanism, etc are also attached


On these carburetors, both primary and secondary main systems adopt Stromberg type nozzle

- 1 Coasting air bleed (1st)
- 2 Coasting air bleed (2nd)
- 3 Coasting jet
- 4 S small venturi
- 4 S small venturi
- 5 S throttle valve
- 6 P small venturi
- 7 Choke valve 8 Slow air bleed
- 9 Idle nozzle
- 10 By-pass hole11 P throttle valve

Secondary

Primary

12	S main nozzle
13	Air vent pipe

17 S main jet 18 P main nozzle

14 S main air bleed 15 S emulsion tube

19 P main air bleed 20 P emulsion tube

16 Float

21 P main jet

EF644

Fig EF-5 Sectional view of two-barrel carburetor

Primary system

1 Primary main system

The primary main system is of Stromberg type Fuel flows through the main jet, mixing with air which comes in from the main air bleed and passes through the emulsion tube, and is pulled out into the venturi through the main nozzle See Figure EF-5

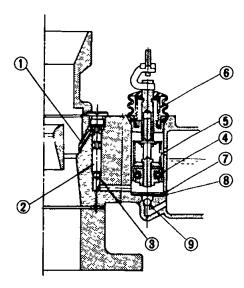
2 Idling and slow system

During low engine speed, as shown in Figure EF-5, fuel flows through the slow jet located in the rear left side of the main jet, mixing with air coming from the slow air bleed, and passes through the slow economizer jet, mixing with air coming from the slow air bleed and then is pulled out into the engine through the idle hole and bypass hole

Adoption of the submerged type of slow jet eliminates such hesitation as occurs on sudden deceleration of the car

Slow economizer system is useful to obtain smooth deceleration at high speed Models 21 A 304-03 and -04 are equipped with the idle nozzle as shown in Figure EF-5 Through this nozzle, idling mixture is further atomized by air stream below throttle valve and ensures the stable idling

Small opening of the throttle valve in idling or partial load creates a large negative pressure in the intake manifold


By this negative pressure, fuel is -- measured through the slow jet located behind the main jet And air coming from the economizer bleed is mixed

with fuel in the emulsion hole

This mixture is further mixed and atomized with air coming from the slow air bleed. The atomized mixture is supplied to the engine from the idle hole and bypass hole via the slow system passage.

3 Accelerating mechanism

The carburetor is equipped with the piston type accelerating mechanism linked to the throttle valve. When the primary throttle valve is closed, the piston goes up, and fuel flows from the float chamber through the inlet valve into the space under the piston. When the throttle valve is opened, the piston goes down, opening the outlet valve, and fuel is forced out through the injector. See Figure EF-6

- 1 Pump injector
- 2 Weight
- 3 Outlet valve
- 4 Piston
- 5 Damper spring
- 6 Piston return spring
- 7 Clip
- 8 Strainer
- 9 Inlet valve

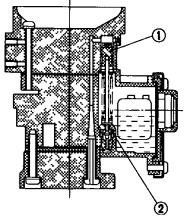

EF 645

Fig EF-6 Acceleration mechanism

4 Power valve mechanism

The power valve mechanism, socalled vacuum piston type, utilizes the vacuum below the throttle valve

When the throttle valve is slightly opened during light load running, a high vacuum is created in the intake manifold. This vacuum pulls the vacuum piston upward against the spring, leaving the power valve closed. When the vacuum below the throttle valve is lowered during full load or accelerating running, the spring pushes the vacuum piston downward, opening the power valve to furnish fuel.

- 1 Vacuum piston
- 2 Power jet

EF646

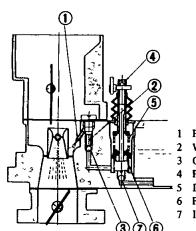
Fig EF-7 Power valve mechanism

Dash pot device

The dash pot device is provided only for model 21A304-04 carburetor for an automatic transmission

A dash pot is interlocked with the primary throttle valve through a link mechanism. The dash pot, which is exclusively installed on cars equipped with automatic transmission, is intended to prevent engine stall that would result from quick application of the brake immediately after driving the car, or from the quick release of the accelerator pedal after treading it slightly

When the primary throttle valve is closed at 11° point from fully closed position, a throttle lever strikes against the dash pot stem and makes the primary throttle valve gradually close, thus keeping the engine running


Secondary system

1 Secondary main system

The secondary main system is of Stromberg type

Fuel-air mixture produced by the functions of the main jet main air bleed and emulsion tube, in the same manner as in the primary system, is pulled out through the main nozzle into the small venturi

The structure is almost the same as the primary side, but emulsion tube and venturi are different. Take care not to assemble improperly

- Pump injector
 Weight
 Outlet valve
- 4 Piston
- 5 Damper spring 6 Piston return spring
- 7 Inlet valve ET023
- 1 Primary vacuum port
- 2 Secondary vacuum port
- 3 Diaphragm chamber cover
- 4 Diaphragm spring
- 5 Diaphragm
- 6 Secondary throttle valve
- 7 Primary throttle valve

ET025

Fig EF-9 Full throttle at high speed

2 Step system .

The construction of this system may correspond to the idling and slow system of the primary system

This system aims at the proper filling up of the gap when fuel supply is transferred from the primary system to the secondary one. The step port is located near the secondary throttle valve edge in its fully closed state.

3 Secondary switchover mechanism

The secondary throttle valve is linked to the diaphragm which is actuated by the vacuum created in the venturi. A vacuum jet is provided at each of the primary and secondary venturies, and the composite vacuum of these jets actuates the diaphragm

As the linkage, shown in Figure EF-8, causes the secondary throttle valve not to open until the primary throttle valve opening reaches approximately 50°, fuel consumption during normal operation is not excessive

During high speed running, as shown in Figure EF-9, as the vacuum at the venturi is increased, the diaphragm is pulled against the diaphragm spring force, and then secondary throttle valve is opened

The other side, during low speed running (as the primary throttle valve opening does not reach 50°), the secondary throttle valve is locked to close completely by the locking arm which is interlocked with primary throttle arm by linkage

When the primary, throttle valve opening reaches wider position than 50°, the secondary throttle valve is ready to open, because the locking arm revolves and leaves from the secondary throttle arm

Float system

There is only one float chamber, while two carburetor systems, primary, and secondary, are provided

Huel fed from the fuel pump flows through the filter and needle valve into the float chamber A constant fuel level is maintained by the float and needle valve

Because of the inner air vent type of the float chamber ventilation, the

fuel consumption will not be influenced by some dirt accumulated in the air cleaner

The needle valve includes special hard steel ball and will not wear for all its considerably long use Besides, the insertion of a spring will prevent the flooding at rough road running.

ADJUSTMENT

Fuel level adjustment

A constant fuel level is maintained by float level and ball valve

If the fuel level is in accord with level gauge line, float level is properly set If float level is not correct, adjust it by bending float seat as shown in Figure EF-10

Approximately *H mm is required for effective stroke of needle valve So adjust gap between valve stem and float seat to *H mm with float fully lifted up by bending float stopper

*H 10 mm (0 039 in)

EF017

Fig EF-10 Adjusting float seat

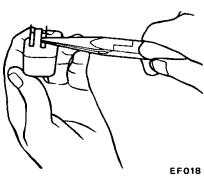


Fig EF-11 Adjusting float stopper

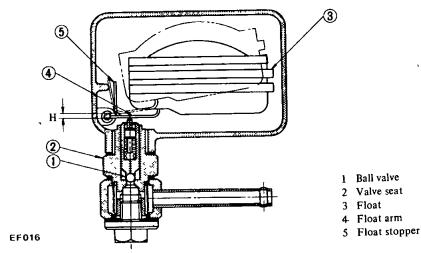


Fig EF-12 Adjusting fuel level

Dash pot adjustment (A/T only)

Proper contact between throttle lever and dash pot stem provides normal dash pot performance Adjustment of the proper contact can be made by dash pot setscrew

If normal set can not be obtained between dash pot stem and throttle arm, rotate dash pot to the proper position

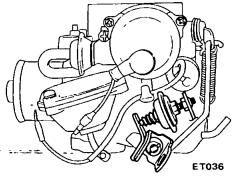


Fig EF-13 Dash pot adjustment

- It is necessary that the idling speed of engine and mixture have been well tuned up and engine is sufficientlv warm
- Turn throttle valve by hand, and read engine speed when dash pot just touches the stopper lever
- Adjust the position of dash pot by turning nut until engine speed is in the range of 1,650 to 1,850 rpm
- Then fasten loosened lock nut
- Make sure that the engine speed is smoothly reduced from 2,000 to 1,000 rpm in about three seconds

MAJOR SERVICE **OPERATION**

1 The perfect carburetor deliver's the proper fuel and air ratios for all speeds of the particular engine for which it was designed By completely disassembling at regular intervals, which will allow cleaning of all parts and passages, the carburetor can be returned to, its original condition and it will then deliver the proper ratios as it, did when new

To maintain the accurate carburetion of passages and discharge holes, extreme care must be taken in cleaning

Use only carburetor solvent and compressed air to clean all passages and discharge holes Never use wire or other pointed instrument to clean as calibration of carburetor will be affected


Removal

- Remove air cleaner
- Disconnect fuel line, vacuum line and electrical wires from carburetor.
- Remove throttle lever
- 4 Remove four nuts and washers retaining carburetor to manifold
- Lift carburetor off manifold
- Remove and discard the gasket used between carburetor and manifold Replace it, if necessary

Disassembly

Main jets and slow jets on both primary and secondary sides are accessible from outside carburetor for disassembly

Auto-choke heater housing can be removed by loosening three set screws

- - ET038
- Thermostat cover
- Pump lever
- Throttle return spring
- Pump rod

Fig EF-14 -Removing auto-choke heater housing

- Primary and secondary emulsion tubes can be disassembled for a check by removing main air bleed on respective sides
- To check accelerator pump, pump arm can be removed

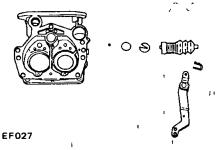
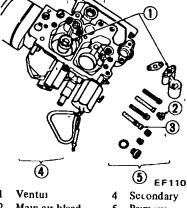



Fig EF-15 Removing accelerator

- Main air bleed
- Primary
- Emulsion tube
- Fig EF-16 Removing emulsion tubes

Throttle chamber can be detached from float chamber by removing rod linking diaphragm with the secondary throttle valve, and loosening three set screws that hold it

It is preferable to leave 'throttle valve intact unless otherwise required

If throttle valve must be disassembled to remedy a defect, secondary throttle valve must be installed to be

Otherwise, stable idling and slow performance will not be speed obtained

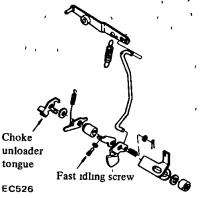


Fig EF-17 Removing throttle value

To check float, float chamber cover' can be removed as instructed in a separate paragraph

Fig EF-18 Disassembling float

- Diaphragm can be disassembled by removing three set screws that hold diaphragm chamber and other three set screws that hold diaphragm chamber cover In reassembling it, take care so that edge of diaphragm will not be turned up
- In disassembling and reassembling interlocking links, take care so that each linkage has a smooth action, and that it is not fitted in any forced position

Cleaning and inspection

Dirt, gum, water or carbon contamination in or on exterior moving parts of a carburetor are often responsible for unsatisfactory performance For this reason, efficient carburetion depends upon careful cleaning and inspection while servicing

1 Blow all passages and castings with compressed air and blow off all parts until dry

Note Do not pass drills or wires through calibrated jets or passages as this may enlarge orifice and seriously affect carburetor calibration

- 2 Check all parts for wear If wear is noted, defective parts must be replaced Note especially the following
- (1) Check float needle and seat for wear If wear is noted, assembly must be replaced
- (2) Check throttle and choke shaft bores in throttle chamber and choke chamber for wear or out-of-roundness
- (3) Inspect idle adjusting needle for burrs or ridges Such a condition requires replacement
- 3 Inspect gaskets to see if they appear hard or brittle or if edges are torn or distorted If any such condition is noted, they must be replaced
- 4 Check filter screen for dirt or lint Clean, and if it is distorted or remains plugged, replace
- 5 Check linkage for operating condition
- 6 Inspect operation of accelerating pump Pour fuel into float chamber and make throttle lever operate And

check condition of fuel injection from the accelerating nozzle

7 Push connecting rod of diaphragm chamber and block passage of vacuum by finger And when connecting rod becomes free, check for leakage of air and damage of diaphragm

Assembly and installation

Follow disassembly and removal procedures in reverse

Replace gaskets, if necessary

In disassembling and reassembling interlock link and related components, be careful not to bend or deform any of components

Careful reassembly will restore smooth operation of all interlock parts

JETS

The carburetor performance depends on jets and air bleeds That is why these components must be fabricated with utmost care. To clean them, use cleaning solvent and blow air on them Larger inner numbers stamped on the jets indicate larger diameters Accordingly, main and slow jets with larger numbers provide richer mixture, and the smaller numbers the leaner mixture Inversely, the main and slow air bleeds, which are for air to pass through, make the fuel leaner if they bear larger numbers, and the smaller numbers the richer fuel

Replacement of designated jets to meet the service condition of the vehicle must be carried out keeping in mind the above directions. To cite a practical example, when it becomes necessary to economize fuel at a limited sacrifice of output to meet frequent light-load operation, use smaller main jets or slow jets, or larger main air bleeds or slow air bleeds than regularly specified This should meet the purpose Inversely, when increase in output is desired at the limited sacrifice of fuel consumption, use larger main jets or slow jets, or smaller main air bleeds or slow air bleeds, and that should bring a satisfactory result

Carburetor secondary jets such as secondary main jet, secondary main air bleed, step jet and step air bleed could be distinguished by their white color painting from jets or air bleed of primary system

TROUBLE DIAGNOSES AND CORRECTIONS

In the following table, the symptoms and causes of carburetor troubles and remedies for them are listed to facilitate quick repairs

There are various causes of engine troubles. It sometimes happens that the carburetor which has no defect seems apparently to have some troubles, when electric system is defective. Therefore, whenever the engine has troubles, electric system must be checked first before taking to carburetor adjustment.

Condition	Probable cause	Corrective action
Overflow	Dirt accumulated on needle valve Fuel pump pressure too high Needle valve seat improper	Clean needle valve Repair pump Lap or replace
Excessive fuel consumption	Fuel overflow Each main jet, slow jet too large Each main air bleed clogged Choke valve does not fully open Outlet valve seat of accelerator pump improper Linked opening of secondary throttle valve too early	See above item Replace Clean Adjust Lap Adjust

Engine Fuel

Condition	Probable cause	Corrective action
Power shortage	Each main jet clogged	Clean
	Each throttle valve does not fully open	Adjust
	Idling adjustment incorrect	Repair
	Fuel strainer clogged	Clean
	Vacuum jet clogged	Clean
	Air cleaner clogged	Clean
	Diaphragm damaged	Replace
	Power valve operated improperly	Adjust
Improper idling	Slow jet clogged	Clean
	· Each throttle valve does not close	Adjust
	Secondary throttle valve operated impro- perly	Overhaul and clean
	Each throttle valve shaft worn	Replace .
	Packing between manifold/carburetor defec- tive	Replace packing
	Manifold/carburetor tightening improper	Correct tightening
	Fuel overflow	See the first item
Engine hesitation	Main jet or slow jet clogged	Clean
	By pass hole, idle passage clogged	Clean tube
	Emulsion tube clogged	Clean
	Idling ajdustment incorrect	Correct adjustment
	Secondary throttle valve operated improperly	Overhaul and clean
Engine does not	Fuel overflows	See the first item
start	No fuel	Check pump, fuel pipe and needle valve
	Idling adjustment incorrect	Adjust
	Fast idle adjustment incorrect	Adjust

SPECIFICATIONS AND SERVICE DATA

Carburetor type		21A304-03 21A304-04		
Applied engine		L18		
			Primary	Secondary
Outlet diameter	mm		30	34
Venturi diameter	mm		_23 16 x 8	30 18 × 9
Main jet		•	#102	#165
Main air bleed			# 60	# 60
Slow jet .		,	# 48	# 80

Slow air bleed		#160	#100
Slow economizer	mm	18	_
Slow economizer bleed		#100	,
Power jet		# 4	1
Float level	mm	22	
Fuel pressure	kg/cm²	0 24	ţ
Main nozzle	mm	2 6	2 5

AUTOMATIC CHOKE

DESCRIPTION

The automatic choke serves to open the choke plate automatically under varying engine conditions

This system consists of an autochoke heater, an unloader mechanism and some electrical wiring, as illustrated in the following figure When the engine is cold, the choke plate closes fully

The auto-choke heater is located in the thermostat cover and electric current flows into the heater through the auto-choke relay

The auto-choke relay is located in the relay bracket of the engine compartment and is actuated by the alternator "N" terminal voltage Consequently, the auto-choke heater actuates only while the engine is running

The bi-metal in the thermostat cover is heated by the heater and opens the choke plate in proportion to its own temperature

The choke unloader mechanism slightly opens the choke plate at wide open throttle

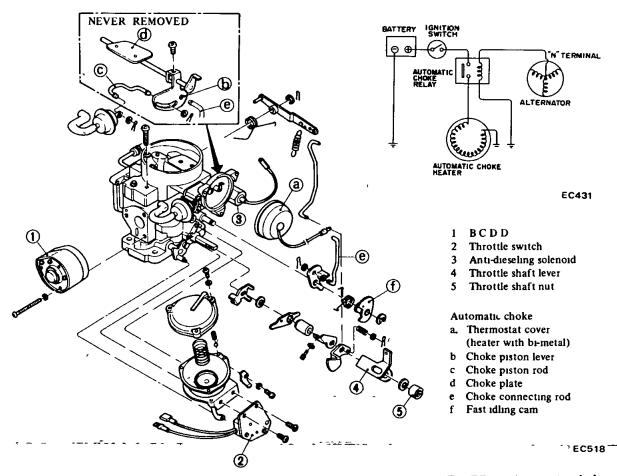


Fig EF-19 Automatic choke

INSPECTION

ET034

- 1 Before starting engine, fully depress accelerator pedal to ensure that choke plate closes properly
- 2 Push choke plate with a finger and check for binding in choke plate

lınkage

3 Check to be sure that thermostat cover is set to meet score marks on the thermostat housing and cover

about 20°C

If it isn't, replace thermostat cover

Note Remove air cleaner to facilitate this operation

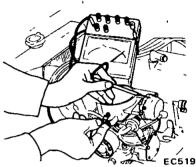
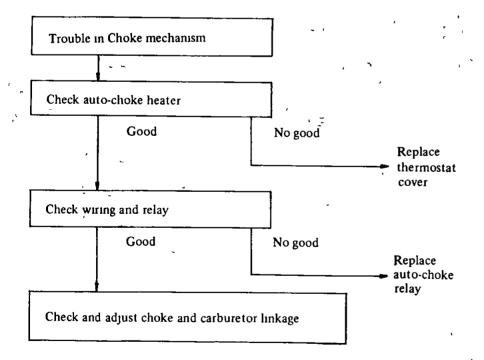


Fig EF-21 Measuring resistance of auto-choke heater

Thermostat cover (Bi-metal chamber)
Thermostat housing
Groove

Fig EF-20 Bi-metal setting


4 Check auto-choke heater source wiring for secure fitting

5 Start engine and check that choke plate progressively opens as engine

warms up

If it doesn't, there is a problem in the auto-choke mechanism So proceed with trouble diagnoses

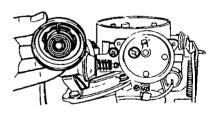
TROUBLE DIAGNOSES AND CORRECTIONS

AUTO-CHOKE HEATER

Inspection

Measure the resistance of auto-

choke heater with a low reading ohm-


Ensure that resistance between auto-choke heater terminal and thermostat housing is $8.6\Omega \pm 0.3$ at

Replacement

The auto-choke heater is installed in the thermostat cover. The cover is secured to the thermostat housing with three screws

1 Remove three screws retaining thermostat cover The cover can then be taken out easily

Note Each screw has a small retainer
Be careful not to lose them

EC520

Fig EF-22 Removing thermostat cover

- 2 Install new cover with three screws In installing cover, bi-metal must be set
- 3 Set thermostat cover score mark to the score mark on thermostat housing Refer to Figure EF-20
- 4 Secure the three screws

AUTO-CHOKE RELAY AND WIRING

Inspection

1 Turn ignition switch "ON" and check the voltage of harness side terminal of auto-choke heater with a low reading voltmeter. No voltage should exist. If voltage exists, auto-choke relay is out of order. Thus check relay.

Note The harness for auto-choke heater is blue (L)

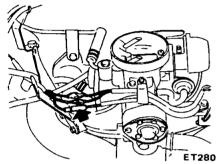


Fig EF-23 Auto-choke heater connector

2 Start engine and check the voltage of harness side terminal of autochoke heater with a low reading voltmeter as in step 1

If a voltage of 12V exists, the relay is in good condition

If it doesn't, check auto-choke re-

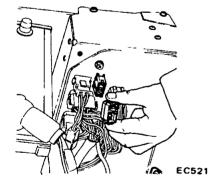


Fig EF-24 Checking auto-choke relay

3 Disconnect connector for autochoke relay and check the continuity through auto-choke relay In the normal condition, continuity should not exist between (1) and (2)

When 6V direct current is applied between 3 and 4, continuity between 1 and 2 should exist If it doesn't, replace auto-choke relay

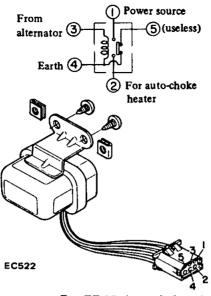


Fig EF-25 Auto-choke relay

Replacement

The auto-choke relay is installed behind the relay bracket in the engine compartment (R/H)

1. Remove screws retaining relay bracket to dash side panel (R/H)

Note Three screws are at upper end of bracket and other two at bottom

- 2 Remove screw retaining autochoke relay to relay bracket Relay can then be taken out
- 3 Install new relay in the reverse sequence of removal

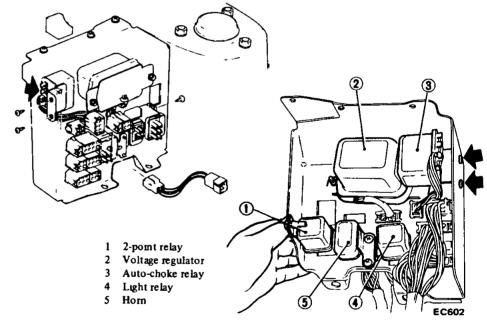
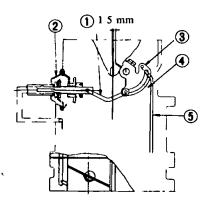



Fig EF-26 Removing auto-choke relay

ADJUSTMENT

Vacuum break adjustment

- 1 Completely close choke valve
- 2 Hold choke valve close by stretching a rubber band between choke piston lever and stationary part of carburetor
- 3 Grip vacuum break rod with pliers, and pull straight fully
- 4 Under this condition, adjust the gap between choke valve and carburetor body to 15 mm by bending vacuum break-rod See Figures EF-27 and EF-28

- Choke piston rod
- ET033
- 2 Diaphragm
- 3 Choke piston lever
- Choke valve
- Choke connecting rod

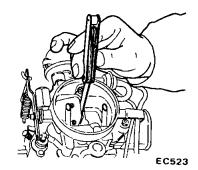
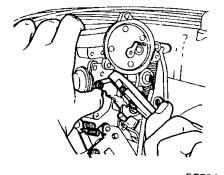
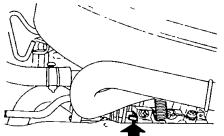


Fig EF-27 Vacuum break adjustment




Fig EF-28 Adjusting vacuum break rod

Choke unloader adjustment

- Close choke valve completely
- Hold choke valve close by stretching a rubber band between choke piston lever and stationary part of carburetor
- Open throttle lever all the way Under this condition, adjust the clearance between choke plate and carburetor body to 25 mm by bending unloader tongue See Figure EF-29

Note Make sure that throttle valve opens when carburetor is mounted on the car

If throttle valve fails to open, unloader becomes inoperative, resulting in poor acceleration after engine is started

EC525

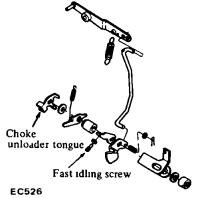


Fig EF-29 Adjusting choke unloader

Fast idling adjustment (Carburetor removed)

If a new or reconditioned carburetor is being installed, tune as follows With carburetor assembly removed from engine, measure throttle valve clearance ("A" in Figure EF-30) with a wire gauge, placing the upper side of fast idling screw on the second step of the fast idling cam

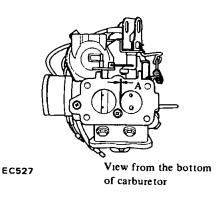
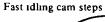
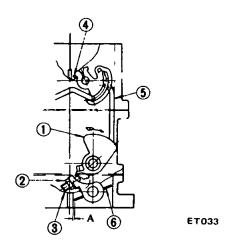



Fig EF-30 Measuring throttle valve clearance

EC528


Fig EF-31 Fast idling cam

The clearance should be specified value in the following table

M/T	0 76 mm
A/T	0 98 mm

If it isn't, adjust the clearance by fast idling screw

:	Throttle opening (degree)	Clearance "A" mm	Engine revolution (rpm)
Manual Transmission	11 ± 0 5	0 76 ± 0 05	2,000 ± 100
Automatic Transmission	13 ± 0 5	0 98 <u>+</u> 0 05	2,400 ± 100

- 1 Fast idling cam
- 2 Nut
- 3 Fast idling screw
- 4 Choke valve
- 5 Choke connecting rod
- 6 Throttle valve

Fig EF-32 Adjusting the clearance of throttle valve

- 3 Install carburetor on engine Start engine and ensure that fast idling screw is on the second step
- 4 After warming up, measure engine rpm It should be at the specified value
- 5 To adjust fast idle rpm, turn fast idling screw clockwise to increase and counterclockwise to decrease

Fast idling adjustment (Carburetor installed)

If fast idling speed is too high or too low, adjust fast idling

- 1. Warm up engine thoroughly
- 2 Stop engine and adjust fast idling screw

Turn fast idling screw clockwise to increase, or counterclockwise to decrease, engine speed See Figure EF-32

3. Start engine and place upper side of fast idling screw on second step of fast idling cam See Figure EF-31

Ensure that engine speed is_within __ the specified range

If not, repeat above operation to obtain correct engine speed

IDLE COMPENSATOR

DESCRIPTION

The idle compensator is basically a thermostatic valve which functions to introduce the air directly from the air cleaner to the intake manifold to compensate for abnormal enrichment of mixture in high idle temperature

The bi-metal attached to the idle compensator detects the temperature of intake air, and opens or closes the valve

The idle compensator operates in response to the underhood air temperature as shown below

Intake air temperature	Bi-metal function
Below 50°C	Fully close
50°C to 65°C	Close to open
Above 65°C	Fully open

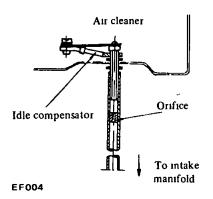


Fig EF-33 Construction of idle compensator

INSPECTION

- 1 Warm up engine completely
- 2 Open engine hood and remove air cleaner cover
- 3 Direct warm air to idle compensator with a heat gun

And measure operating temperature of idle compensator

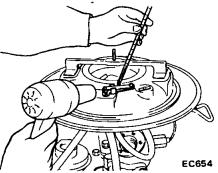


Fig EF-34 Checking idle compensator for operation

Notes

- a. Engine operation is not stabilized due to warm air flow before idle compensator reaches 50 to 65°C As idle compensator reaches its operating temperature, secondary air is introduced into intake manifold and engine operation becomes stabilized.
- b Locate stick temperature gauge as close to sensor as possible so that warm air from dryer is directed to these parts evenly.
- 4 Idle compensator is in good order if a "hissing" sound is heard when its temperature reaches 50 to 65°C

If not, replace idle compensator

REPLACEMENT

- 1 Remove air cleaner
- 2 Disconnect hose from idle compensator
- 3 Remove two setscrews from back of air cleaner lower cover

Idle compensator can then be taken out easily

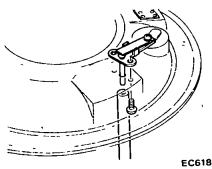


Fig EF-35 Removing idle compensator (L24 and L26 engines)

4 Installation is in the reverse sequence of removal

SERVICE MANUAL

DATSUN MODEL 610 SERIES

SECTION EC

EMISSION CONTROL SYSTEM

E C

GENERAL DESCRIPTION	EC· 2
CRANKCASE EMISSION CONTROL SYSTEM	EC- 2
EXHAUST EMISSION CONTROL SYSTEM	EC- 3
EVAPORATIVE EMISSION CONTROL SYSTEM	EC-11

NISSAN MOTOR CO., LTD.

GENERAL DESCRIPTION

There are three types of control system

They are

- (1)Crankcase emission control system
- (2) Exhaust emission control system
- Evaporative emission control system (3)

CRANKCASE EMISSION CONTROL SYSTEM

CONTENTS

DESCRIPTION INSPECTION PCV valve

EC-2 Ventilation hose EC-2 REPLACEMENT EC-2

EC-2 EC-3

DESCRIPTION

This system returns blow-by gas to both the intake manifold and carburetor air cleaner

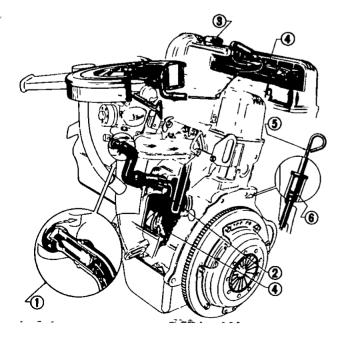
The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air

The ventilating air is then drawn from the clean side of the carburetor air cleaner, through the tube connecting the carburetor air cleaner to the rocker cover, into the crankcase

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve, and its flow goes through the tube connection in the reverse direction


On cars with an excessively high blow-by, some of the flow will go through the tube connection to the carburetor air cleaner under all conditions

INSPECTION

P.C.V. valve

Check PCV valve in accordance with the following method

With engine running at idle, remove ventilation hose from PCV valve, if valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet Replace P C V valve in accordance with the Maintenance Schedule

- 1 Crankcase ventilation control valve
- 2 Oil separator
- 3 Sealed filler cap
- 4 Baffle plate
- 5 Oil level gauge
- "O" Ring

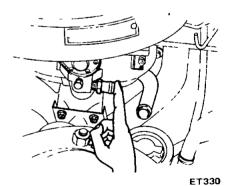


Fig EC-2 Checking PC V value

Ventilation hose

- Check hoses and hose connections for leaks
- -2 Disconnect all hoses-and-cleanwith compressed air If any hose cannot be freed of obstructions, replace

EC031

Fig EC-1 Crankcase emission control system

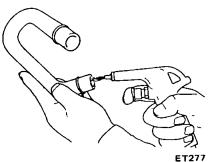


Fig EC-3 Checking ventilation hose

Ensure that flame arrester is se-

curely inserted in hose between air

cleaner and rocker cover

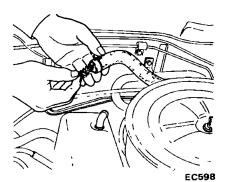


Fig EC-4 Checking flame arrester

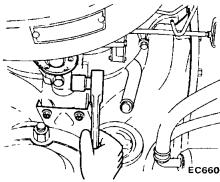


Fig EC-5 Removing PC V value

3 To install, reverse the removal procedure

Notes

- a After installing PCV valve on intake manifold, ensure that there is no air leakage
 - Tightening torque 3 0 to 4 0 kg-m
- b. If ventilation hose clamp is fatigued, replace

REPLACEMENT

- 1 Disconnect ventilation hose from PCV valve
- 2 Remove P C V valve from intake manifold See Figure EC-5

EXHAUST EMISSION CONTROL SYSTEM

CONTENTS

SPARK ADVANCE CONTROL SYSTEM		EC- 3	DISTRIBUTOR (2-point type)	EC- 8
DESCRIPTION		EC- 3	BOOST CONTROLLED DECELERATION	20 0
INSPECTION	/	EC- 4	DEVICE (BCDD)	EC- 8
TROUBLE DIAGNOSES AND			DESCRIPTION	EC- 8
CORRECTIONS		EC- 5	INSPECTION	EC- 9
WATER TEMPERATURE SWITCH		EC- 5	ADJUSTMENT	EC- 9
2-POINT RELAY		EC- 5	REPLACEMENT	EC-10
THROTTLE SWITCH	-	EC- 7		20.10

SPARK ADVANCE CONTROL SYSTEM

DESCRIPTION

The spark advance control system serves to change ignition timing under varying car running conditions so as to reduce HC and NOx emissions

This system consists of a throttle switch, a two-point distributor and some electrical wiring and sensors as illustrated in the following figure. The main component of this system is the distributor, which has two breaker points. One is for advance — optimum ignition timing and the other for retard — delayed by 6° from optimum timing.

When the car is running in wide open throttle, the advance timing (optimum one) is used in order to improve fuel consumption. Conversely, the retard timing is used when the car is running in urban areas. The throttle switch detects such running conditions by monitoring the throttle valve opening.

The advance and retard timings are changed by a relay which monitors whether the throttle opens more than 40° or less than 40° But when the

engine is cold, the optimum timing is always obtained with the aid of the water temperature switch

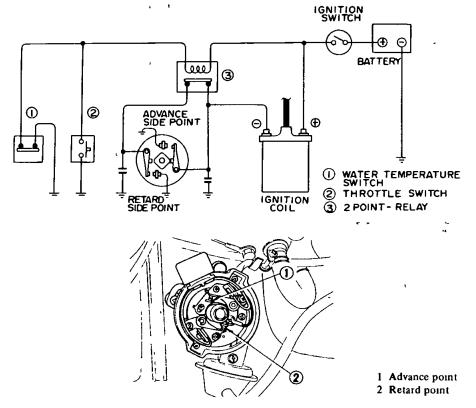


Fig EC-6 Throttle control system

INSPECTION

- 1 Warm up engine completely and then turn it off
- 2 Disconnect pair of wires from throttle switch installed beside carburetor

Note To facilitate disconnecting these wires, remove air cleaner

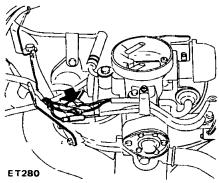
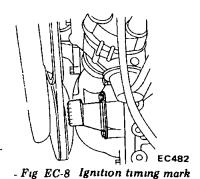


Fig EC-7 Disconnecting throttle switch wire

3 Start engine and keep it at idling speed

Check ignition timing while repeatedly connecting and disconnecting the two harness side lead wires which were connected to throttle switch

4 If the results are as below, the system is in good condition

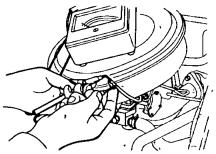

Connect two harness wires

→ Advance timing

Disconnect two harness wires

→ Retard timing

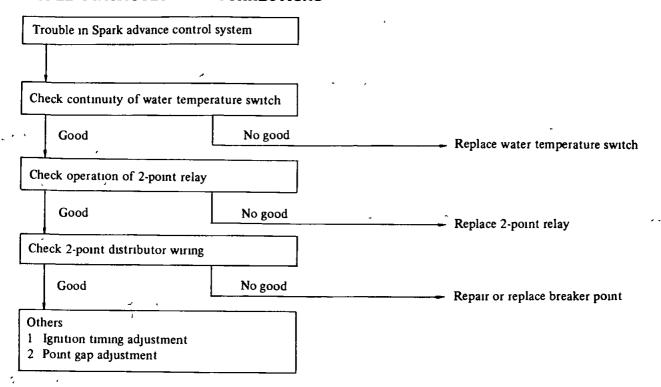
Note Difference between "Advance" and "Retard" is about 6°.


5 If not, proceed with trouble diagnoses

If the system is in good condition, proceed as follows

- 6 After stopping engine, check continuity between two lead wires of throttle switch with an ohmmeter or test lamp
- When accelerator pedal is depressed more than half its stroke, continuity should exist
- Conversely, when accelerator is released, continuity should not exist

If above test does not produce proper results, replace or adjust throttle switch


Accelerator pedal	Continuity
Depressed	Yes
Released	No

EC483

Fig EC-9 Checking throttle switch

TROUBLE DIAGNOSES AND CORRECTIONS

WATER TEMPERATURE SWITCH

The water temperature switch, equipped with a pair of lead wires, is installed on the thermostat housing

One lead wire is connected to the harness wire and the other is for body earth. When the engine is warmed up (coolant is above 50°C), there is no continuity. Conversely, when the engine is cold (coolant is below 50°C), there is continuity between the two terminals.

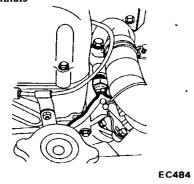


Fig EC-10 Water temperature switch

Inspection

1 Disconnect water temperature switch lead wires from harness wire

2 Check continuity between the terminal and engine body with an ohmmeter or test lamp

There should be no continuity when engine is sufficiently warmed up (coolant temperature is above 50°C) If continuity exists, replace water temperature switch

Note After engine has cooled down, ensure that there is continuity in the switch.

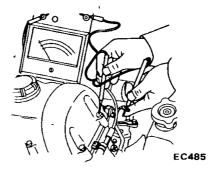


Fig EC-11 Checking continuity of water temperature switch

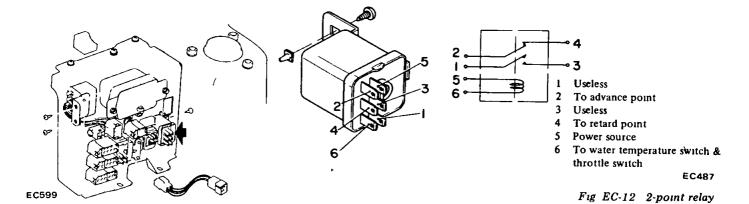
...

Replacement

- 1 Disconnect pair of lead wires from water temperature switch
- 2 Remove water temperature switch from thermostat housing

- Note Some coolant will flow out when switch is removed, so have a rag handy.
- 3 Install new water temperature switch

Tightening torque 2 0 to 3 0 kg-m


Note Prior to installing switch to thermostat, housing, be sure to apply sealer to thread of new switch.

2-POINT RELAY

The 2-point relay is installed on the relay bracket and is connected to the engine compartment harness

This relay changes the ignition timing by breaking or not breaking the retard side point circuit

In the normal condition, the retard side point circuit is alive When the engine is warmed up and the throttle valve is opened wide, this 2-point relay breaks the retard side point circuit. Then the ignition timing is changed to the advance side (optimum) timing

Inspection

Turn ignition switch on

Note It is unnecessary engine

Disconnect pair of distributor lead wires at connector

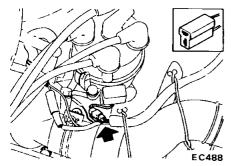


Fig EC-13 Disconnecting distributor lead wire

Check continuity between harness side terminals in the connector disconnected in step 2

When engine is warm enough, continuity should exist If not, replace 2-point relay

Note When engine is cold, disconnect water temperature switch terminal

Then depress accelerator pedal more than half its stroke, and check continuity as in step 3

If continuity does not exist, 2-point relay is in good condition

If it does, replace 2-point relay

Replacement

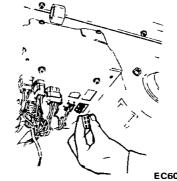
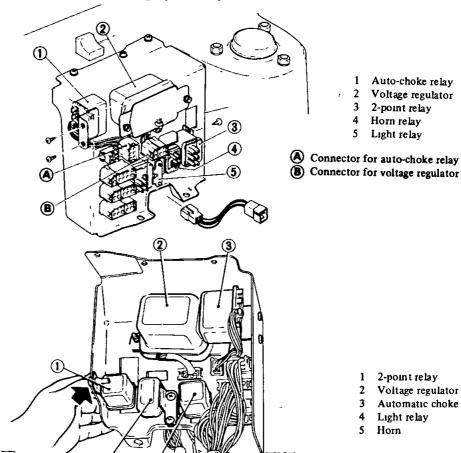



Fig EC-14 Disconnecting 2-point relay

The 2-point relay is installed behind the relay bracket in the engine compartment

- Disconnect battery ground cable and relay connector
- Remove screws retaining relay bracket and pull bracket out a little

Note. Three screws are at upper side of bracket and other two are at the bottom.

Auto-choke relay Voltage regulator 2-point relay Horn relay Light relay

- 2-point relay Voltage regulator
- Automatic choke
- Light relay
- Horn

Fig EC-15 2-point relay replacement

- 3 After removing 2-point relay retaining screw, relay can easily be taken out
- 4 Install new relay in the reverse sequence of removal

THROTTLE SWITCH

Inspection

- 1 Check continuity between two lead wires of throttle switch with an ohmmeter or test lamp
- o When accelerator pedal is depressed more than half its stroke, continuity should exist
- o When accelerator is released, continuity should not exist

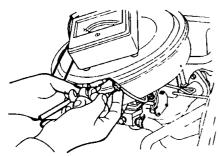


Fig EC-16 Checking continuity of throttle switch

2 If above conditions are not met, replace or adjust throttle switch

Replacement

The throttle switch is installed on the rear side of the carburetor

Whenever the throttle switch is removed from the carburetor, the throttle switch touch point must be readjusted

- 1 Remove air cleaner housing
- 2 Disconnect two throttle switch lead wires
- 3 Remove two screws retaining throttle switch to carburetor

Throttle switch can then be taken out

4 Installation can be carried out in the reverse sequence of removal

Note In reinstalling throttle switch, some adjustment is necessary. Refer to the following section, Adjustment

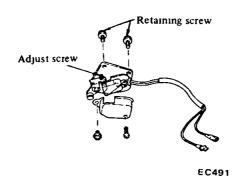


Fig EC-17 Throttle switch

Adjustment

The throttle switch should operate at the throttle valve opening of about 40°

Consequently, touch point adjustment of the throttle switch is necessary

- 1 Disconnect accelerator torsion shaft from carburetor Torsion shaft can be disconnected by pulling pin securing stopper
- 2 Install a "bolt with opening gauge" onto throttle shaft nut of carburetor as in the following figure

Notes

- Opening gauge can be made with a conventional M8 bolt and paper
 On the paper, mark the 40° point
- b Indicator is also necessary
 Indicator should be installed on
 static part of carburetor

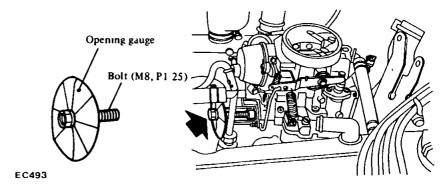
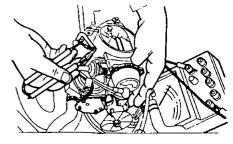



Fig EC-18 Installing throttle opening gauge

3 Then pull throttle lever shaft by hand and confirm that touch point is at 40° opening of throttle valve. If not, adjust touch point by adjusting throttle switch adjusting screw

Notes

- a Touch point can be detected with ohmmeter or test lamp.
- b. The throttle switch also clicks at touch point

EC494

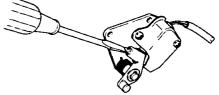


Fig EC-19 Adjusting touch point of throttle switch

DISTRIBUTOR (2-point type)

The 2-point type distributor has two breaker points and condensers located opposite to each other with a phase difference of 6°

Other than the dual point mechanism, the construction of the distributor follows the conventional design

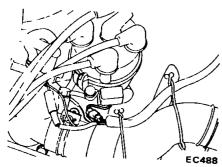


Fig EC-20 Distributor

When wear on contact points is

noticeable, replace points together with contact arm

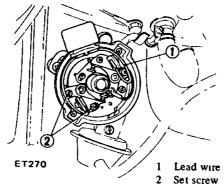


Fig EC-21 Breaker

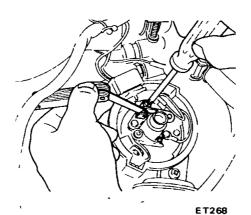


Fig EC-22 Adjusting point gap

When point surface is rough, remove irregularities with fine sandpaper of #500 or #600 or with oil stone.

following items and correct the malfunction as required Check vacuum inlet for signs of leakage at its connection If necessary, retighten or replace

≪ Vacuum advance mechanism

mechanical parts >>

2 Check vacuum diaphragm for air leak

If vacuum advance mechanism fails

to operate properly, check for the

, If leak is found, replace vacuum controller assembly

Inspect breaker plate for smooth movement

If plate does not move smoothly, this condition could be due to sticky steel balls or pivot Apply grease to steel balls or, if necessary, replace breaker plate as an assembly

Inspection

≪CAP AND ROTOR HEAD≫

The cap and rotor head must be inspected at regular intervals. In addition, point replacement and point gap adjustment also should be carried out at regular intervals

1 Remove cap and clean all dust and carbon deposits from cap and rotor

If cap is cracked or leaking, replace ıt

2 Check insulator of point lead wires

If insulator is cracked or deteriorated, replace it , , ,

≪ Contact point replacement >>

First turn out setscrews 1 to 15 turns at contact arm and primary lead wire connection just far enough to pull out primary lead terminal

Referring to Figure EC-21, unscrew two contact set fixing screws and remove lead wire

Holding contact arm with fingers, pull contact set out toward you by raising it slightly Contact point and arm can then be removed together

Install new contact point and arm ment can be made by loosening point assembly in reverse sequence of reasonable Complete combustion of fuel is moval Apply a light coating of grease to cam

≪Condenser ≫

Satisfactory performance of condenser depends on capacity and degree of insulation Thus ensure that terminals are clean and setscrews are tight

Condenser should be checked with a condenser tester

DECELERATION DEVICE (B.C.D.D.)

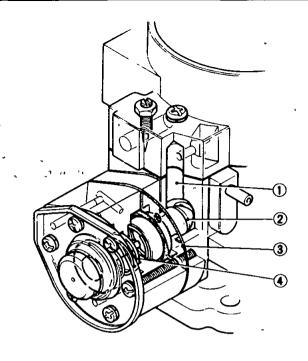
BOOST CONTROLLED

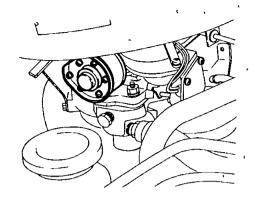
DESCRIPTION

The BCDD serves to reduce HC emissions during coasting

The high manifold vacuum during coasting prevents the complete combustion of the mixture gas due to the reduced amount of mixture gas available

As a result, an excess amount of HC is emitted into the atmosphere


When manifold vacuum exceeds the set value, this BCDD operates to supply additional mixture gas of optimum mixture ratio' - .


assisted by this additional mixture, and HC emissions are thereby reduced

≪ Contact point adjustment ≫

Contact point should be replaced in accordance with the Maintenance Schedule

Standard point gap is 0 45 to 0 55 mm If size is off the standard, adjustscrews Gap gauge is required for adjustment

- 1 Air passage
- 2 Mixture control valve
- 3 Diaphragm-II
- 4 Vacuum control valve

EC514

Fig EC-23 Boost controlled deceleration device

INSPECTION

1 Connect vacuum gauge to intake manifold

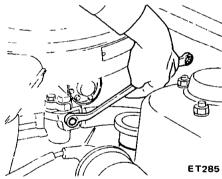
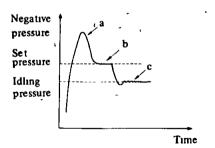


Fig EC-24 Connecting vacuum gauge


Note A service plug is installed on intake manifold. Remove this plug and install an attachment which is equipped with a vacuum gauge

2 Start engine and observe vacuum gauge while flooring and releasing accelerator pedal abruptly

Note This operation simulates the engine coasting condition

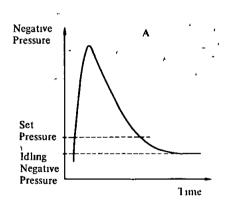
3 If BCDD is in good condition, vacuum gauge will indicate the following phenomena

- a It will suddenly rise up to about -600 mmHg
- b It will decrease gradually to -560 mmHg and stay there for a while
- c It will drop to idle boost pulse
 - a Maximum negative pressure
 - b 'Operating pressure
 - c Idling pressure

Characteristic curve of B C D D

EC50

Fig EC-25 Characteristic curve of BCDD


4 If it does not react as described above, set pressure must be adjusted In such a case, refer to Adjustment

ADJUSTMENT

≪ High operating pressure ≫

When operating pressure is too high,

B C D D remains inoperative and negative pressure decreases with no sustained plateaus while it is falling See diagram (A) In such a case, adjust operating pressure as follows

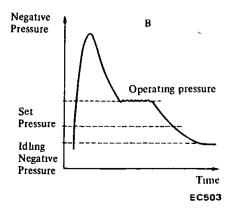


Fig EC-26 Characteristic curve (high operating pressure)

≪ Low operating pressure ≫

When operating pressure is too low, engine rpm will not fall to idle speed

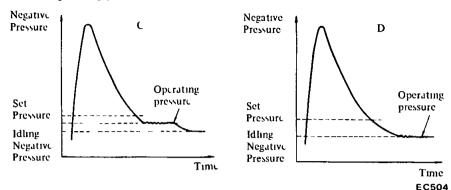


Fig EC-27 Characteristic curve (low operating pressure)

- 1 Remove rubber cap at bottom of B C D D
- 2 Turn adjusting screw slightly Then, race engine and confirm that operating pressure is at the specified value

B C D D set pressure $-560 \pm 10 \text{ mmHg}$

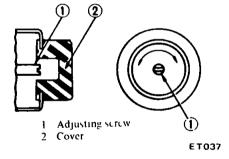


Fig EC-28 Adjusting control valve

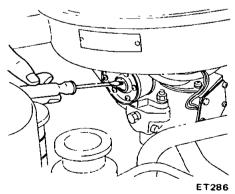
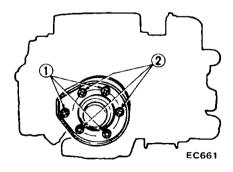


Fig EC-29 Adjusting setscrew


Notes

- a Turning adjusting screw one quarter rotation will cause a change in operation pressure of about 20 mmHg
- b. Do not fit tip of screwdriver tightly into screw slot
- 3 After adjustment has been completed, install rubber hose and service plug in their original position

REPLACEMENT

l Remove three BCDD securing screws, BCDD assembly can then be taken out from carburetor

Note There are six screws at the bottom of BCDD Three of them are BCDD securing screws and others are BCDD assembly screws

- 1 Securing screws
- 2 Assembly screws

/ ~~~~***

Fig EC-30 Removing BCDD

2 New BCDD assembly can be installed in the reverse sequence of removal

Tightening torque 0 2 to 0 4 kg-m

Note After securing three securing screws, rescrew other three B C D D assembly screws in order to avoid warping B C D D body

EVAPORATIVE EMISSION CONTROL SYSTEM

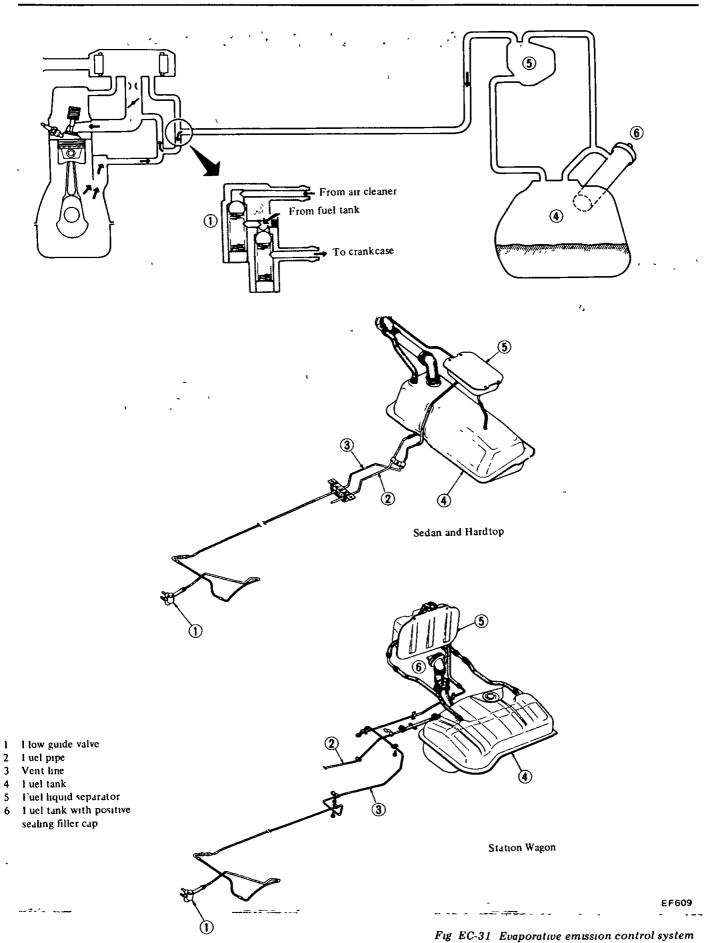
CONTENTS

DESCRIPTION	EC-11	Checking fuel tank vacuum relief valve	
INSPECTION	ĒC-13	operation	EC-13
Checking fuel tank, fuel liquid separator		REPLACEMENT	EC-13
and vapor vent line	EC-13	Flow guide valve	EC-13
Checking flow guide valve	EC-13	Fuel liquid separator (Sedan and Hardtop)	EC-14
	•	Fuel liquid separator (Station Wagon)	EC-14

DESCRIPTION

This system is adopted to prevent fuel vapor from evaporating into the atmosphere. The fuel vapor from the sealed fuel tank is led into the crankcase of engine

This system consists of four basic elements indicated below


l Fuel tank with positive sealing filler cap

- 2 Fuel liquid separator
- 3 Vapor vent line
- 4 Flow guide valve

The flow guide valve prevents blow-by gas from flowing into the fuel tank and guides fresh air into it, preventing gasoline vapor from escaping into the carburetor air cleaner

While the engine is stopped, the evaporative gas opens the flow guide

valve and is led to the crankcase Once the engine starts, the gas evaporating in the crankcase, is sucked into the manifold for combustion. When the pressure of the sealed type fuel tank, fuel liquid separator and vapor vent line becomes negative by decreasing the fuel, the flow guide valve opens to send fresh air from the carburetor air cleaner to the fuel tank.

INSPECTION

Checking fuel tank, fuel liquid separator and vapor vent line

- 1 Check all hoses and fuel tank filler cap
- 2 Disconnect the vapor vent line connecting flow guide valve to fuel liquid separator

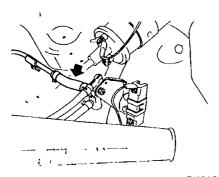


Fig EC-32 Disconnecting vapor vent line

- 3 Connect a 3-way connector, a manometer and a clamp (or an equivalent 3-way change cock) to end of vent line
- 4 Supply fresh air into vapor vent line through cock little by little until pressure becomes about 400 mm Aq (Water height) Then, leave clamp and cock closed for 2 5 minutes
- 5 After 2 5 minutes, measure height of liquid in manometer

Variation in height should remain within 25 mm Aq (Water height)

If height should drop to zero in a short time, some piping may be damaged

6 If height-does not drop to zero in short time when filler cap is removed, hose is stuffy

Note In case vent line is stuffy, breathing in fuel tank is not thoroughly made, thus causing insufficient delivery of fuel to engine or vapor lock. It must therefore be repaired or replaced.

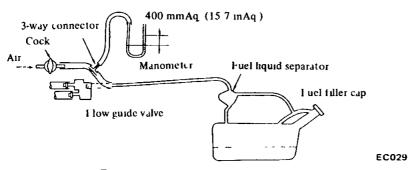


Fig EC-33 Checking evaporative emission control system

Checking flow guide valve

This valve is mounted in the engine compartment Marks A, F and C are engraved in the body of the valve to indicate the connection of the vapor vent line

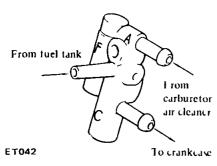


Fig EC-34 Checking flow guide value

- 1 Disconnect all hoses connected to the flow guide valve
- While lower pressure air is pressed into the flow guide valve from the ends of vent line of fuel tank side (F), the air should go through the valve and flow to crankcase side (C) If the air does not flow, the valve should be replaced But when the air is blown from crankcase side (C), it should never flow to the other two vent lines
- 3 While the air is pressed into the flow guide valve from the carburetor air cleaner side (A), it flows to the fuel tank side (F) and/or crankcase side (C)
- 4 This valve opens when the inner pressure is 10 mmHg In case of improper operations or breakage, replace it

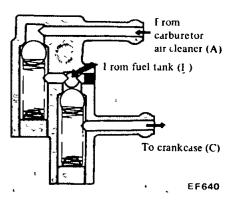
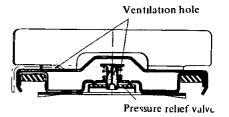



Fig EC-35 Flow guide value

Checking fuel tank vacuum relief valve operation

Remove fuel filler cap and see it functions properly

- 1 Wipe clean valve housing and have it in your mouth
- 2 Inhale air A slight resistance accompanied by valve indicates that valve is in good mechanical condition. Note also that, by further inhaling air, resistance should be disappeared with valve clicks.
- 3 If valve is clogged, or if no resistance is felt, replace cap as an assembled unit

ET072
Fig EC-36 Fuel filler cap

REPLACEMENT

Flow guide valve

The flow guide valve is secured to the bracket in the engine compartment

Remove bolt securing flow guide valve to bracket Valve can then be taken out easily Installation is in the reverse sequence of removal

Fig EC-37 Removing flow guide

Fuel liquid separator (Sedan, Hardtop)

On the Sedan or Hardtop model, the fuel liquid separator is located on the lower side of the parcel shelf

- 1 Remove rear parcel shelf finisher by removing rivets
- 2 Remove four bolts securing fuel liquid separator to parcel shelf panel

- 3 Fuel liquid separator can then be taken out in the trunk room
- 4 Installation is in the reverse sequence of removal

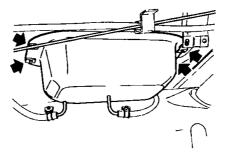


Fig EC-38 Removing fuel liquid separator (Sedan)

Fuel liquid separator (Station Wagon)

1 Remove R H side body trim by removing rivets

- 2 Loosen three screws retaining fuel liquid separator
- 3 Taking out fuel liquid separator, disconnect fuel vapor hoses Fuel liquid separator can then be taken out easily
- 4 Installation is in the reverse sequence of removal

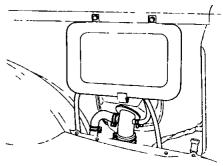


Fig EC-39 Removing fuel liquid separator (Station Wagon)

DATSUN MODEL 610 SERIES

SECTION EE

ENGINE ELECTRICAL SYSTEM

4 =

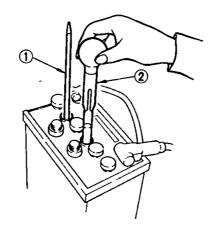
BATTERY	EE- 2
STARTING MOTOR	EE- 3
CHARGING CIRCUIT	EE-11
ALTERNATOR	EE-13
REGULATOR	EE-19
IGNITION CIRCUIT	EE-25
DISTRIBUTOR	EE-26
IGNITION COIL	EE-31
SPARK PLUG	EE-32

NISSAN MOTOR CO., LTD.

BATTERY

CONTENTS

REMOVAL		
CHECKING	ELECTROLYTE	LEVEL
CHECKING	SPECIFIC GRAV	/ITY



REMOVAL

- 1 Disconnect negative and positive terminals
- 2 Remove nuts from battery clamps, take out clamps
- 3 Remove battery

CHECKING

(68°F) standard

St + 0.0007 (t - 20)

CHECKING ELECTROLYTE LEVEL

Remove six filler plugs and check the electrolyte level in each filler If necessary, add only distilled water to bring the level to the indicator in each filler opening. Do not overfill

SPECIFIC GRAVITY

Specific gravity of battery electro-

lyte is tested by a hydrometer. If the

state of charge of battery is 60% full,

or specific-gravity reading is below

120 [as corrected at 20°C (68°F)],

battery must be recharged or batteryelectrolyte concentration adjusted

according to whether the electrolyte temperature is above or bellow 20°C

Add or subtract gravity points

The gravity of electrolyte changes

Where

- St Specific gravity of electrolyte at toC
- S20 Specific gravity of electrolyte corrected at 20°C (68°F)
- t Electrolyte temperature

For example A hydrometer reading of 1 260 at 30°C (86°F) would be 1 267 corrected to 20°C (68°F), indicating fully charged battery On the other hand, a hydrometer reading of 1 220 at -10°C (14°F) would be 1 199 corrected to 20°C (68°F), indicating a partially charged battery

The state of charge of battery can be determined by the following table if the specific gravity of electrolyte is known Before checking, check to be sure that cells are filled to correct level.

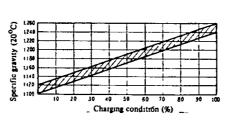
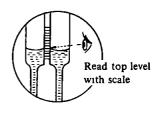
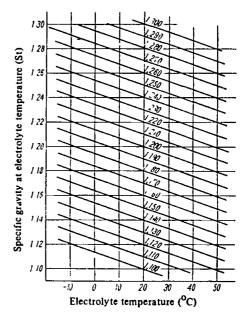



Fig EE-2 Charging condition

- 1 Thermal gauge
- 2 Hydrometer

EE001


EE-3

EF-3

EE-3

Fig EE-1 Checking specific gravity

Converted specific gravity (S20)

EE003

Fig EE-3 Specific gravity at electrolyte temperature

0 0007 for every $1^{\circ}C_{-}(1\ 8^{\circ}\bar{E})$ temperature A correction can then be made by using the following formula

Battery freezing

Temperatures at which battery electrolyte freezes vary with acid concentration or its specific gravity A battery with a insufficient state of charge will freeze at lower temperatures If specific gravity of a

battery falls below 1 1, the indication is that the battery is completely discharged and will freeze readily when temperatures fall below freezing

Note Use extreme caution to avoid freezing battery since it will generally ruin the battery

munals should be cleaned with a brush and common baking-soda solution In addition, the following items should be observed during recharging battery

- 1 Be sure that electrolyte level is above top of each plate
- 2 Keep removed plugs in a safe location
- 3 Do not allow electrolyte temperature to go over 45°C (113°F)
- 4 After recharging, check to be certain that specific gravity does not exceed 1 260 [at 20°C (68°F)] Correction can be made by adding distilled water into cells as necessary
- 5 Keep battery away from open flame while it is being recharged
- 6 After all vent plugs have been tightened, clean all spraying of electrolyte off upper face of battery

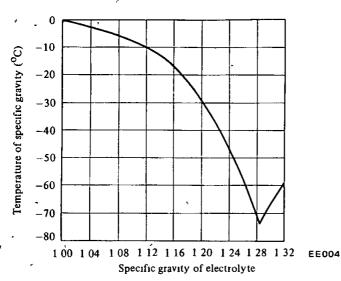


Fig EE-4 Freezing point of electrolyte

CHARGING

Battery must be recharged when electrolyte-gravity reading falls below 1 20 with electrolyte level being satisfactory If battery is quick-

charged to bring it up to full charge, the operation should be carried out with negative terminal removed

Prior to charging, corroded ter-

INSTALLATION

- 1 Install and tighten clamps securely
- 2 After clamps have been tightened, clean battery cable terminals and apply grease to retard formation of corrosion

STARTING MOTOR

CONTENTS

SPECIFICATIONS	EE- 4	Over-running clutch assembly	•	EE- 8
DESCRIPTION	EE- 4	Brush holder test for ground		EE- 8
OPERATION	EE- 4	Pinion case bearing metal		EE- 8
CONSTRUCTION	EE- 5	Magnetic switch assembly		EE- 8
REMOVAL	EE- 5	ASSEMBLY	•	EE- 8
DISASSEMBLY	EE- 5	TEST		EE- 8
CLEANING AND INSPECTION	EE- 6	Performance test		EE- 8
Terminal '	EE- 6	Diagnosis of test		EE- 9
Field coil	EE- 6	Magnetic switch assembly test		EE- 9
Brushes and brush lead wire	EE- 7	SERVICE DATA		EE-10
Brush spring tension	EE- 7	TROUBLE DIAGNOSES AND		
Armature assembly	EE- 7	CORRECTIONS .		EE-10
· · · · · · · · · · · · · · · · · · ·	,			

SPECIFICATIONS

Type

Voltage

Output

Starting current (voltage)

No load current (voltage)

No load starter revolution

Shift type of pinion gear

Number of teeth on pinion gear

Number of teeth on ring gear

Weight

kg (lb)

HITACHI S114-103P

12 volts

10 KW

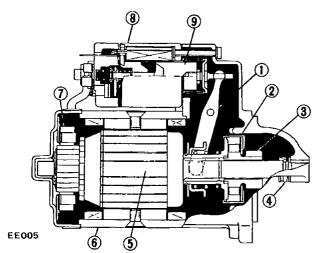
Less than 480 amps (6 volts)

Less than 60 amps (12 volts)

More than 7,000 rpm

Magnetic shift

9


120

5 1 (11)

DESCRIPTION

The function of the starting system, consisting of the battery, ignition switch, starting motor and solenoid, is to crank the engine The electrical energy is supplied from the battery,

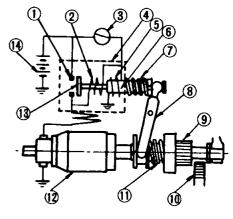
the solenoid completes the circuit to operate the starting motor, and then the motor carries out the actual cranking of the engine

- 1 Shift lever
- 2 Over-running clutch
- 3 Pinion
- 4 Pinion stopper
- 5 Armature
- 6 Yoke
- 7 Brush
- 8 Magnetic switch Ass'y
- 9 Plunger

Fig EE-5 Sectional view of starting motor

OPERATION

When the ignition switch is turned fully clockwise to the START position, battery current flows through "series" and "shunt" coils of the solenoid, magnetizing the solenoid The plunger is pulled into the solenoid so that it operates the shift lever to move the drive pinion into the flywheel ring gear—Then=the solenoid switch contacts close after the drive pinion is partially engaged with the


ring gear

Closing of the solenoid switch contacts causes the motor to crank the engine and also cut out the "series" coil of the solenoid, the magnetic pull of the "shunt" coil being sufficient to hold the pinion in mesh after the shifting has been performed

After the engine-starts running, the driver releases the ignition key and it automatically returns to the ON

position

This breaks the solenoid circuit so that reverse current flows through the series coil, and the magnetic field builds up in the direction in which the plunger moves back. As this happens, the resultant force of the magnetic fields in the shunt coil and the series coil becomes zero. The return spring then actuates the shift lever to pull the plunger, which allows to open the solenoid switch contacts. Consequently, the starting motor stops.

EE006

- 1 Stationary contact 8 Shift lever 2 Series coil 9 Drive pinion 3 Ignition switch 10 Ring gear
- 4 Solenoid 11 Pinion sleeve spring 5 Shunt coil 12 Armature
- 6 Plunger 13 Movable contactor
 7 Return spring 14 Battery

Fig EE-6 Starting motor circuit

More positive meshing and demeshing of the pinion and the ring gear teeth are secured by means of the over-running clutch. The over-running clutch employs a shift lever to slide the pinion along the armature shaft, into or out of mesh with the ring gear teeth. The over-running clutch is designed to transmit driving torque

from the motor armature to the ring gear, but permit the pinion to over-run the armature after the engine has started

CONSTRUCTION

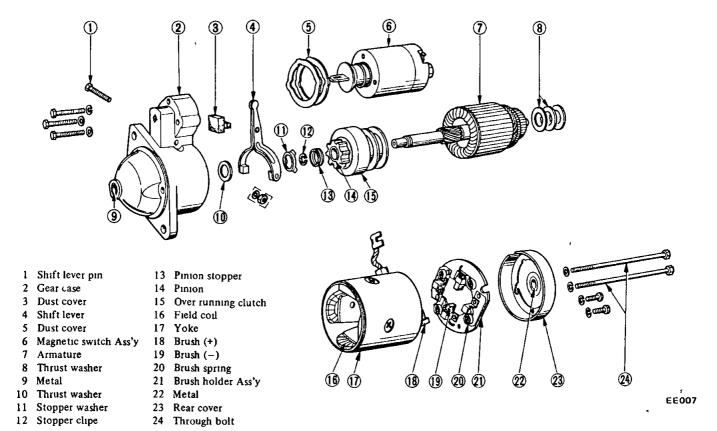


Fig EE-7 Exploded view of starting motor

REMOVAL

- 1 Disconnect battery ground cable Disconnect black wire with yellow tracer from magnetic switch terminal, and black battery cable from battery terminal of magnetic switch
- 2 Remove two bolts securing starting motor to gear case Pull starter assembly forward and remove starting motor

DISASSEMBLY

I Loose nut securing connecting plate to magnetic switch "M" terminal Remove three screws securing magnetic switch and remove magnetic switch assembly

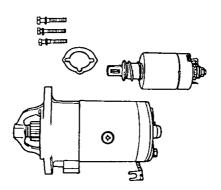
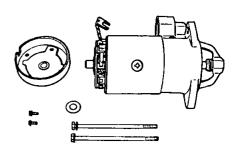



Fig EE-8 Removing magnetic switch assembly

2 Remove two through bolts and brush cover assembly

EE009

Fig EE-9 Removing brush cover

3 Remove yoke assembly by hitting lightly with a wooden hammer

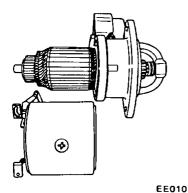


Fig EE-10 Removing yoke assembly

4 Withdraw armature assembly and shift lever

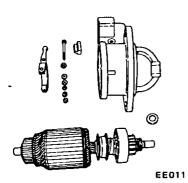
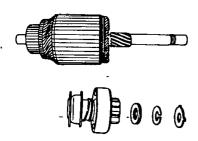



Fig EE-11 Removing armature assembly and shift lever

5 Remove pinion stop ring located at the end of armature shaft To remove stop ring, first push stop ring to clutch side and then, after removing snap ring, remove stop ring with over-running clutch Withdraw over-running clutch assembly from armature shaft

EE012

Fig EE-12 Removing over-running clutch assembly

6 Unsolder brushes, using 'a soldering-iron and remove each brush

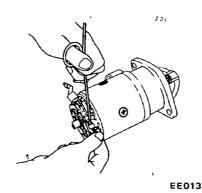
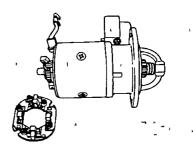



Fig EE-13 Removing brush

EE014

Fig EE-14 Removing brush holder

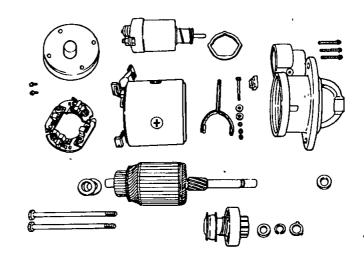


Fig EE-15 Disassembly

EE015

CLEANING AND INSPECTION

Clean all disassembled parts, but do not use grease dissolving solvents for cleaning over-running clutch, armature assembly, magnetic switch assembly and field coils since such a solvent would dissolve grease packed in clutch mechanism and would damage coils or other insulators

Check them for excessive damage or wear, and they should be replaced if necessary

Field coil

Check field coil for insulation If the insulation of coil is damaged or worn it should be replaced.

Testing field coal for continuity:

Connect the probe of a circuit tester or an ohmmeter to field coil positive terminal and positive brush holder

If tester shows no conduction field circuit or coil is open

Terminal

Check terminal for damage; and wear, and replace if necessary

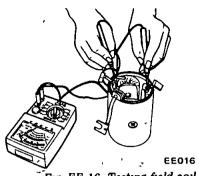


Fig EE-16 Testing field coil for continuity

Testing field coil for ground:

- Place one probe of circuit tester onto yoke and the other onto field coil lead (positive terminal)

If very little resistance is read, field coil is grounded

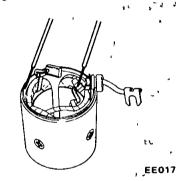


Fig EE-17 Testing field coil for ground

Field coul tester for short:

Unsolder the connecting portion of each coil and proceed to the same mentioned above

If a defective coil is found, it should be replaced

Brushes and brush lead wire

Check the surface condition of brush-contact and wear of brush If a less than 60 mm (0 236 in), replace be replaced

If brush is worn and its height is less than 60 mm (0 236 in), replace

Check the connection of lead clip and lead wire

Check brush holders and spring clip to see if they are not deformed or bent, and will properly hold brushes against the commutator

If brushes or brush holders are dirty, they should be cleaned

Brush spring tension

Check brush spring tension by a spring scale as shown in Figure EE-18. The reading should be 1.6 kg (3.5 lb)

Replace spring if tension is lower than 1 4 kg (3 1 lb)

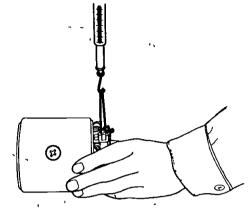


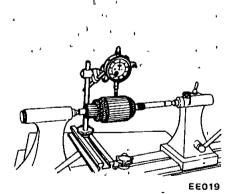
Fig EE-18 Inspecting brush spring tension

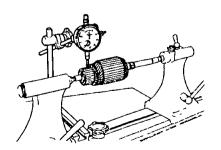
EE018

Armature assembly

Check external appearance of armature and commutator

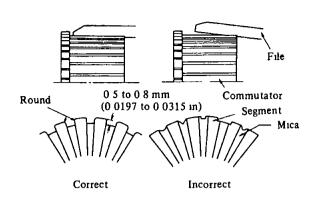
1., Measure armature shaft for bend by a dial gauge Replace armature shaft if the bend exceeds 0.08 mm (0.0031,in).




Fig EE-19 Inspecting armature shaft for bend

2 Inspect commutator If the surface of commutator is rough, it must be sanded lightly with a No 500 emery paper Commutator must be checked also for out-of-round If the out-of-round is more than 0.2 mm (0.0079 in), or the depth of insulating mica is less than 0.2 mm (0.0079 in)

from commutator surface Commutator (armature) should be turned in a lathe, so that the out-of-round is less than 0.05 mm (0.0020 in) Insulating mica should also be undercut so that the depth of it is from 0.5 to 0.8 mm (0.0197 to 0.0315 in)


The wear limit of commutator diameter is 2 mm (0 079 in) If commutator is beyond repair, replace

Note It is recommended to replace commutator as an assembly if worn or damaged

EE020

Fig EE-20 Inspecting commutator

EE021

Fig EE-21 Undercutting insulating mica

6 Check armature for continuity by placing probes of tester on two segments side by side If tester shows no conduction, the circuit is open

3 Inspect soldered connection of armature lead and commutator If loose connection is found, solder it using rosin flux

4 Armature test for ground

Using a circuit tester, place one test probe onto armature shaft and other onto each commutator bar

If tester shows conductive, armature is grounded and must be replaced

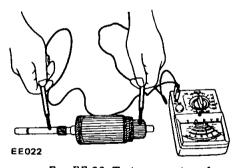


Fig EE-22 Testing armature for ground

5 Check armature for short by placing on armature tester (glora) and with a piece of iron over armature core, rotate armature If the plate vibrates, armature is shorted

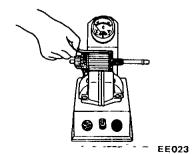


Fig EE-23 Testing armature for short

Over-running clutch assembly

Inspect pinion assembly and screw sleeve Screw sleeve must slide freely along armature shaft splines. If damages are found or resistance would be felt when sliding, it must be repaired. Inspect pinion teeth. If excessive rubbing would be found on teeth, it should be replaced. Flywheel ring gear also must be inspected.

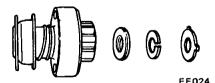


Fig EE-24 Over-running clutch assembly

Brush holder test for ground

Using a circuit tester, place one test probe onto negative side brush holder and another onto positive side If tester shows conduction, brush holder is shorted to ground Replace an insulator or brush holder

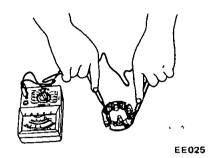


Fig EE-25 Testing brush for ground

Pinion case bearing metal

Inspect bearing metal for wear or side play If the clearance between bearing metal and armature shaft is more than 0.2 mm (0.0079 in), replace metal. Press in a new bearing and adjust the clearance 0.03 to 0.10 mm (0.0012 to 0.0039 in). Bearing metal should be so pressed in that the end of the bearing metal would be equal to gear case end plane.

Magnetic switch assembly

Inspect magnetic switch contacts If a rough welding be found on the contact, it should be repaired

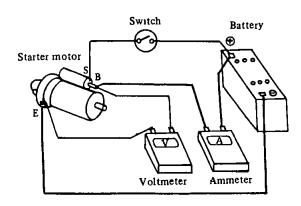
ASSEMBLY

Reassemble starting motor in reverse sequence of disassembly

When assembling, make sure to apply grease to gear case and rear cover bearing metal, and apply oil to pinion slightly

TEST

Performance test


Starter motor should be subjected to a "no-load" test whenever it has been overhauled to ensure that its performance will be satisfactory when installed to engine Starter motor

should also be subjected to the test when the cause of abnormal operation is to be determined A brief outline of the test is given below

No-load test

Connect starting motor in series with specified (12 volts) battery and an ammeter capable of indicating 1,000 amperes

Specified current draw and revolution in these test are shown in "specification"

EE026

Fig EE-26 No-load testing

Diagnosis of test

- 1 Low speed with no-load and high current draw may result from the following causes
- (1) Tight, dirty or worn bearings
- (2) Bent armature shaft or loosened field probe
- (3) Shorted armature, Check armature further
- (4) A ground armature or field,
- a Remove input terminal
- b Raise two negative side brushes from commutator
- c Using a circuit tester, place one probe onto input terminal and the other onto yoke
- d If tester indicates conduction, raise the other two brushes and check field and armature separately to determine whether field or armature is grounded
- 2 Failure to operate with high current draw may result from the

following items

- (1) A grounded or open field coil
 Inspect the connection and trace
 circuit by a circuit tester
- (2) Armature coil does not operate Inspect commutator for excessive burning In this case, are may occur on defective commutator, when motor is operated with no-load
- (3) Burned out commutator bar

Weak brush spring tension, broken brush spring, rubber bush, thrust out of mica in commutator or a loose contact between brush and commutator would cause to burn commutator bar

3 Low current draw and low no-load speed would cause high internal resistance due to loose connections, defective leads, dirty commutator and causes listed on item 2-(3)

Magnetic switch assembly test

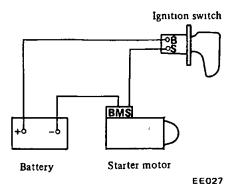


Fig EE-27 Circuit of magnetic switch assembly test

If the starting motor check is "OK," check magnetic switch assembly Connect cables between "negative" battery terminal and starting motor "M" terminal, "positive" battery terminal and starting motor "S" terminal connecting ignition switch in series as shown in Figure EE-27

With ignition switch on, measure the gap " ℓ " between pinion front edge and pinion stopper

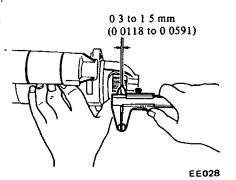


Fig EE-28 Measuring gap "L"

SERVICE DATA

Armature shaft diameter (pinion side)	mm (in)	' 10 950 to 10 968 (0 4311 to 0 4318)
Armature shaft diameter (rear end)	mm (in)	11 450 to 11 468 (0 4508 to 0 4515)
Amendment limit of shaft diameter	mm (ın)	0 1 (0 0039)
Amendment limit of shaft bent	mm (ın)	0 08 (0 0031)
Clearance between shaft and bush	mm (ın)	0 03 to 0 1 (0 0012 to 0 0039)
Amendment limit of dittoed clearance	mm (ın)	0 2 (0 0079)
Outer diameter of commutator	mm (ın)	35 0 (1 378)
Wear limit of commutator diameter	mm (ın)	2 0 (0 079)
Brush length	mm (ın)	18 5 (0 728)
Wear limit of dittoed length (remaining brush should be more than)	mm (ın) mm (ın)	6 0 (0 236) ² 12 5 (0 492)
Brush spring tension	kg (lb)	08(18)
Front bracket metal inner diameter	mm (m)	11 000 to 11 018 (0 4331 to 0 4338)
Rear cover metal inner diameter	mm (ın)	11 500 to 11 521 (0 4528 to 0 4536)

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Starting motor will not operate	Discharged battery Defective solenoid switch Loosen connections of terminal Defective brushes Defective starting motor	Charge or replace battery Repair or replace solenoid switch Clean and tighten terminal Replace brushes Remove starting motor and make test
Noisy starting motor	Loose securing bolt Worn pinion gear Poor lubrication Worn commutator Worn brushes	Tighten bolt Replace pinion gear Fill in oil Disassemble motor Replace brushes
Starting motor cranks slowly	Discharged battery Loose connection of terminal Worn brushes Locked brushes	Charge or replace battery Clean and tighten terminal Replace brushes Inspect brush spring tension-or-repair brush holder

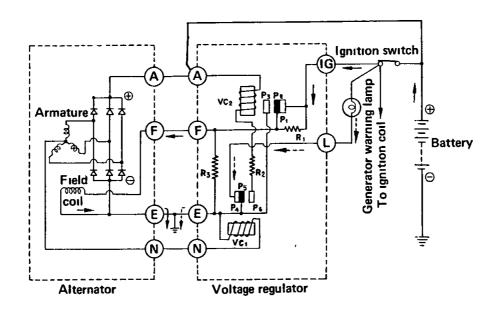
Condition	Probable cause	Corrective action
Starting motor cranks slowly	Dirty or worn commutator Armature rubs field coil Defective solenoid switch	Clean and repair Replace assembly -Repair or replace switch
Starting motor operates but does not crank engine	Worn pinion Clocked pinion guide Worn ring gear	Replace pinion Repair pinion guide Replace ring gear
Starting motor will not disengage even ignition switch is turned off	Defective solenoid switch Defective gear teeth	Repair or replace solenoid switch Replace defective gear

CHARGING CIRCUIT

The charging circuit consists of the battery, alternator, regulator and necessary wiring to connect these parts. The purpose of this system is to convert mechanical energy from the engine into electrical energy which is used to operate all electrically operated units and to keep the battery fully charged.

When the ignition switch is set to... "ON," current flows from the battery to ground through the ignition switch, voltage regulator IG terminal, primary side contact point "P1,", movable... contact point "P2," voltage regulator "F" terminal, alternator "F" terminal, field coil and alternator "E" terminal, as shown in Figure EE-29 by full line arrow marks Then the rotor in the alternator is excited On the other hand, current flows from the battery to ground through the ignition switch, warning lamp, voltage regulator "L" terminal, lamp side contact point "P4," movable contact point "P5," and voltage regulator "E" terminal, as shown by dotted line arrow marks

Then, the warning lamp lights


When the alternator begins to operate, three-phase alternating current is induced in the armature. This alternating current is rectified by the positive and negative silicon diodes. The rectified direct current output reaches the alternator "A" and "E" terminals.

On the other hand, the neutral point voltage reaches "N" and "E" terminals (nearly a half of the output voltage), and current flows from voltage regulator "N" terminal to "E" terminal or ground through the coil "VC1" as shown in Figure EE-30 by the dotted line arrow marks Then, the coil "VC1" is excited, and the movable contact point "P5" comes into contact with voltage winding side contact point "P6" This action causes to turn off the warning lamp and complete the voltage winding circuit, as shown by the full line arrow marks

When the alternator speed is increased or the voltage starts to rise excessively, the movable contact point


"P2" is separated from the primary side contact "P1" by the magnetic force of coil "VC2" Therefore, registor "R1" is applied into the field circuit and output voltage is decreased. As the output voltage is decreased, the movable, contact point "P2" and primary side contact "P1" comes into contact once again, and the alternator voltage increases. Thus, the rapid vibration of the movable contact point "P2," maintains an alternator output voltage constant

When the alternator speed is further increased or the voltage starts to rise excessively, the movable contact point "P2" comes into contact with secondary side contact point "P3" Then, the field current is shut off and alternator output voltage is decreased immediately. This action causes to separate movable contact "P2" from secondary contact "P3". Thus, the rapid vibration of the movable contact point "P2" or breaking and completing the field circuit maintains an alternator output voltage constant.

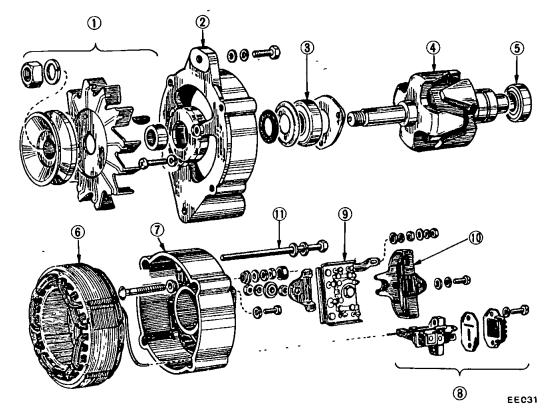
EE029

Fig EE-29 Charging circuit (I)

EE030

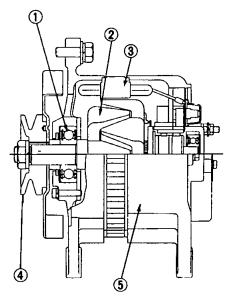
Fig EE-30 Charging circuit (II)

ALTERNATOR


CONTENTS

DESCRIPTION	EE-13	Inspection of brush	EE-16
REMOVAL	EE-14	Spring pressure test	EE-17
DISASSEMBLY	EE-14	REASSEMBLY	EE-17
INSPECTION AND REPAIR	EE-15	ALTERNATOR TEST	EE-17
Rotor inspection	EE-15	SPECIFICATIONS AND SERVICE DATA	EE-18
Inspection of stator	EE-15	Specifications	EE-18
Inspection of diode	EE-15	Service data	EE-18

DESCRIPTION


In the alternator, a magnetic field is produced by the rotor which consists of alternator shaft, field coil, pole pieces, and slip rings. The slip rings pressed in the shaft conduct only a small field current. Output current is generated in the armature coils located in the stator The stator has three windings and generates three-phase alternating current Silicon diodes act like a one-way valve for electricity so that charging current passes easily but reverse current is shut out. In this alternator, six diodes (three negative and three positive), are installed in positive and negative plates as an assembly

Pack-type silicon diodes are used in this alternator. These diodes are direct-soldered at their tips, and constructed with positive and negative conjunction. They are mounted on the two plates which combine the function of heat-dissipating plate and positive/negative terminals and are light in weight and easy to service.

- 1 Pulley assembly
- 2 Front cover
- 3 Front bearing
- 4 Rotor
- 5 Rear bearing
- 6 Stator
- 7 Rear cover
- 8 Brush assembly
- 9 Diode set plate assembly
- 10 Diode cover
- 11 Through bolts

Fig EE-31 Exploded view of alternator

- 1 Front bearing
- 2 Rotor
- 3 Stator

REMOVAL

- 1 Disconnect negative battery termınal
- 2 Disconnect two lead wires and connector from alternator
- Loosen adjusting bolt
- 4 Remove alternator drive belt.
- 5 Remove parts associated with alternator from engine
- Remove alternator from vehicle

DISASSEMBLY

Remove pulley nut, pulley rim, fan and spacer

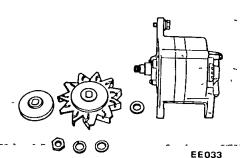
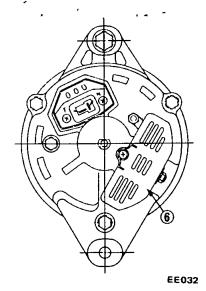
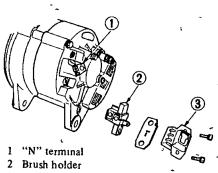



Fig EE-33 Removing pulley and fan



- 4 Pulley
- 5 Front cover
- 6 Encased diode

Fig EE-32 Sectional view of alternator

Remove brush holder fixing screws, and remove brush holder cover Remove brush holder forward, and remove brushes together with brush holder

Note Do not disconnect N terminal from stator coil lead wire

Brush holder cover

Fig EE-34 Removing brush -

Loosen and remove through bolts Separate front cover with rotor from rear cover with stator by lightly tapping front bracket with a wooden mallet

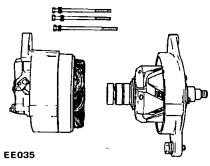


Fig EE-35 Separating front cover with rotor from rear cover

Remove three set screws from bearing retainer, and separate rotor from front cover

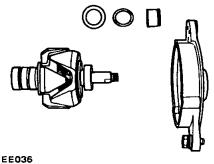


Fig EE-36 Removing rotor

Pull out rear bearing from rotor assembly with a press or bearing puller

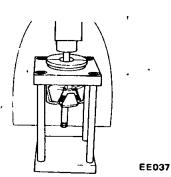


Fig EE-37 Pulling out of rear bearing (I)

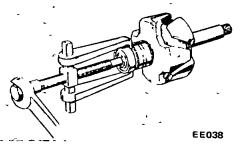


Fig EE-38 Pulling out of rear bearing (II)

- 6 Remove diode cover fixing screw, and remove diode cover Disconnect three stator coil lead wires from diode terminal with a soldering iron
- 7 Remove A terminal nut and diode installation nut, and remove diode assembly

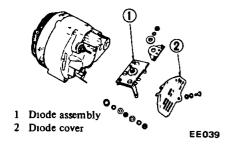


Fig EE-39 Removing diode assembly.

Note Use care in håndling diode assembly to prevent an undue stress on it

INSPECTION AND REPAIR

Remove alternator from vehicle and apply tester between lead wire F (white with black tracer) and lead wire E (black color)

When the resistance is approximately 5Ω , the condition of brush and field coil is satisfactory. When no conduction exists in brush or field coil, or when resistance differs remarkably between those parts, disassemble and inspect

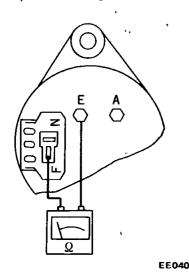
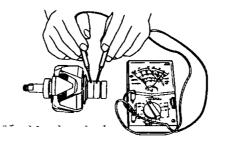
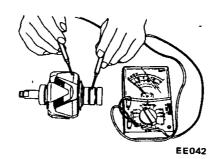



Fig EE-40 Inspecting alternator

Rotor inspection

1 Conduction test of rotor coil

Apply tester between slip rings of rotor as shown in Figure EE-41 If there is no conduction, discontinuity of field coil may exist When resistance is approximately 44Ω at normal ambient temperature, condition is satisfactory

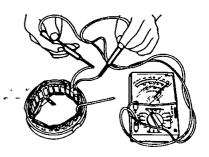


EE041

Fig EE-41 Conduction test of rotor coil

2 Ground test of rotor coil

Check conduction between slip ring and rotor core If conduction exists, replace rotor assembly, because field coil or slip ring may be grounded


Fgi EE-42 Testing rotor coil for ground

Inspection of stator

1 Conduction test

Stator is normal when there is conduction between individual stator coil terminals When there is no conduction between individual terminals, cable is broken

Replace with stator assembly

EE043

Fig 43 Testing stator for conduction

2 Ground test

If each lead wire of armature coil (including neutral wire) is not conductive with stator core, condition is satisfactory. If there is conduction, stator coil is grounded

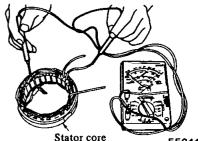
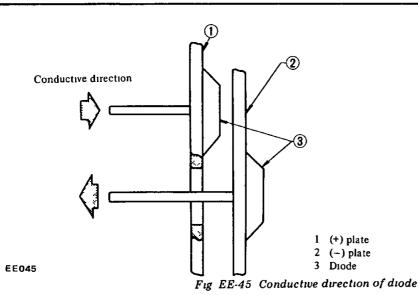
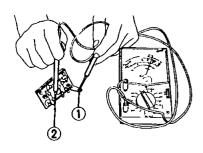



Fig EE-44 Testing stator for ground

Inspection of diode

Perform a conduction test on diodes in both directions, using an ohmmeter A total of six diodes are used, three are mounted on the positive
plate, and other three are on the negative
plate The conduction test should be performed on each diode, between the terminal and plate

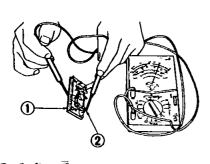


If current flows toward both positive and negative directions, diode is short-circuited If current flows in the same direction only, diode is in good condition. These diodes are unserviceable. If there is a defective diode, replace all diodes (six diodes) as an assembly (See below table.)

Diode installed on

plate is a positive diode which allows current

flowing from terminal to \bigoplus plate only In other words, current does not flow from \bigoplus plate to terminal



1 (+) plate 2 Terminal

EE046

Fig EE-46 Inspecting positive diode

Diode installed on \bigcirc plate is a negative diode which allows current flowing from \bigcirc plate to terminal only In other words, current does not flow from terminal to \bigcirc plate

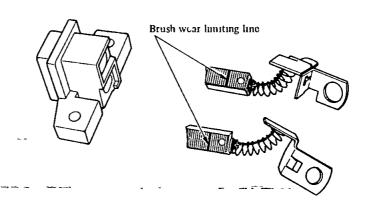
1 (-) plate 2 Terminal

EE047

Fig EE-47 Inspecting negative diode

Test probe of a circuit tester		Conduction
Θ	⊕	Conduction
terminal	① plate	×
⊕ plate	terminal	_
terminal	⊖ plate	-
⊖ plate	termınal	×
⊖ plate	⊕ plate	×
⊕ plate	⊖ plate	_

Inspection of brush


Check movement of brush and if movement is unsmooth, check brush holder and clean it

Check brush for wear If it is worn

Fig EE-48 Inspecting diodes

down to less than the specified limit, replace brush assembly

Check brush pig tail and, if found defective, replace

EE048

Fig EE-49 Brush wear limit

Spring pressure test

With brush projected approximately 2 mm (0 079 in) from brush holder, measure brush spring pressure by the use of a spring balance Normally, the rated pressure of a new brush spring is 255 to 345 g (9 0 to 12 2 oz)

Moreover, when brush is worn, pressure decreases approximately 20 g (0 7 oz) per 1 mm (0 039 in) wear

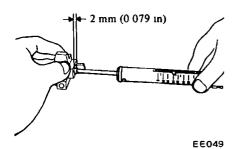


Fig EE-50 Measuring spring pressure

REASSEMBLY

Reassemble alternator in the reverse sequence of disassembly noting following matters

- 1 When soldering each stator coil lead wire to diode assembly terminal, carry out the operation as fast as possible
- When installing diode A terminal, install insulating bush and insulating tube correctly

3 Tighten pulley nut with tightening torque of 350 to 400 kg-cm (303 to 347 in-lb) When pulley is tightened, make sure that deflection of V-groove is less than 0.3 mm (0.0118 in)

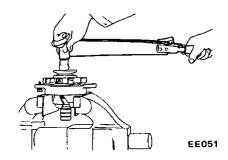


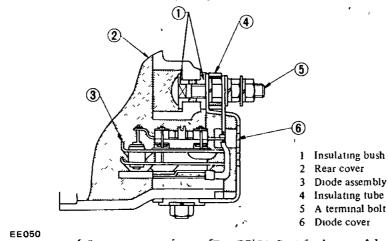
Fig EE-52 Tightening pulley nut

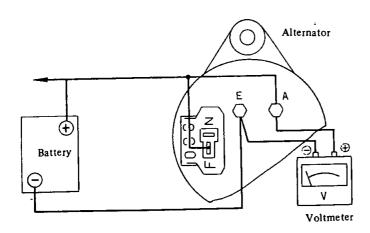
ALTERNATOR TEST

Before conducting an alternator test, make sure that the battery is fully charged

To conduct a test, it is necessary to use a 30-volt voltmeter and suitable test probes

Set up a test circuit as shown in Figure EE-53 and test alternator in the manner indicated in the flow chart below




Fig EE-51 Sectional view of diode and A terminal

- 1 Disconnect connectors at alternator
- 2 Connect one test probe from voltmeter positive terminal to "N" terminal or "BAT" terminal Connect the other test probe to ground Make sure that voltmeter registers battery voltage
- 3 Turn on headlights and switch to Main Beam
- 4 Start engine
- 5 Increase engine speed gradually until it is approx 1,100 rpm, and take the voltmeter reading

Measured value Below 12 5 volts

Alternator is in trouble remove and check it for condition

Measured value Over 12 5 volts
Alternator is in good condition

Note

- a Do not run engine at the speed of more than 1,100 rpm while test is being conducted on alternator
- b. Do not race engine

EE052

Fig EE-53 Testing alternator

SPECIFICATIONS AND SERVICE DATA

Specifications

Model	
Item	LT150-05B
Applicable to	610 all models
Maker	НІТАСНІ
Nominal rating	12V-50A
Ground polarity	Negative '
Revolution	1,000 to 13,500 rpm
Minimum revolution under no load	Less than 1,000 rpm
Output current	37 5A (14V, 2,500 rpm)
Pulley ratio	2 25

Service data

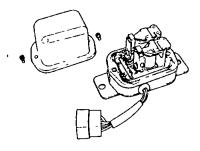
Stator coil		
Resistance per a phase	Ω	0 17 [at 20°C (68°F)]
Rotor coil	,	
Resistance	Ω	4 4 [at 20°C (68°F)]
Brush		
Brush length	mm (m)	14 5 (0 571)
Wear limit	mm (m)	7 (0 276)
Spring pressure	kg (lb)	0 25 to 0 35 (0 55 to 0 77)

Slip ring

Outer dia	mm (ın)	31 (1 22)
Reduction limit	mm (ɪn̪)	1 (0 039)
Repair accuracy	mm (ın)	0 05 (0 0020)

REGULATOR

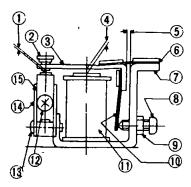
CONTENTS


DESCRIPTION	EE-19 ^{`¹}	Charging relay	EE-22
MEASUREMENT OF REGULATOR	~	SPECIFICATIONS AND SERVICE	
VOLTAGE -	EE-20	DATA .	EE-23
ADJUSTMENT	EE-22	TROUBLE DIAGNOSES AND	
Voltage regulator	EE-22	CORRECTIONS (Including alternator)	EE-24

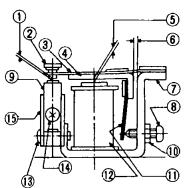
DESCRIPTION

The regulator consists basically of a voltage regulator and a charge relay The voltage regulator has two sets of contact points, a lower set and upper set, to control alternator voltage An armature plate placed between the two sets of contacts, moves upward or downward or vibrates The lower contacts, when closed, complete the field circuit direct to ground, and the upper contacts, when closed, complete the field circuit to ground through a resistance (field coil), and produces alternator output

The charge relay is similar in construction to the voltage regulator


When the upper contacts are closed, ignition warning lamp goes on

EE053

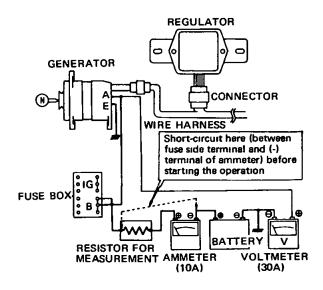

Fig EE-54 View of removing cover

As for the construction, the voltage regulator is very similar to the charge relay as shown in Figure EE-55

- 1 Point gap
- Lower contact
- 3 Armature
- Core gap
- 5 Yoke gap
- Connecting spring 6
- Yoke
- Adjusting screw
- 9 Lock nut

- 10 Adjust spring
- 11 Coil
- 3 mm (0 118 in) dia 12 screw
- 4 mm (0 157 in) dia screw
- Contact set
- 15 Upper contact
- (a) Construction of voltage regulator

EE054


- 1 Point gap
- Charge relay contact
- Connecting spring
- Armature
- Core gap
- Yoke gap
- 7 Yoke
- Adjusting screw
- 9 Voltage regulator contact
- 10 Lock nut
- Adjust spring 11
- 12 Coil
- 3 min (0 118 in) dia screw
- 4 mm (0 157 in) dia screw
- 15 Contact set
- (b) Construction of charge relay Fig EE-55 Structural view

MEASUREMENT OF REGULATOR VOLTAGE

Regulator voltage is measured with regulator assembled with alternator When measuring voltage with regulator mounted on vehicle, it is necessary to rotate engine at high speed

Connect DC voltmeter (15-30V), DC ammeter (15-30A), battery and resistor (0.25 ohms) with cables as shown

- (1) Check to be sure that all electrical loads such as lamps, air conditioner, radio etc are disconnected
- (2) Before starting engine, be sure to make short circuit with a cable between fuse side terminal of resistor (0 25Ω) and negative side terminal of ammeter Failure to follow this caution causes needle of ammeter to swing violently and reversely, resulting in a damaged ammeter

EE055

Fig EE-56 Measuring regulator voltage with regulator on vehicle

(3) Refer to the following chart to determine if regulator and relative

parts are in good condition

2 Rotate engine at 2,500 rpm for several minutes

After racing for several minutes, ammeter readingbelow 5A

After racing for several minutes, ammeter reading-over 5A

Connect a 0 25 ohm resistor in series

Fully charged battery available

- 1 Replace with fully charged battery
- 2 Check to see if current falls below 5A

Current falls below 5A Current does not fall below 5A

Recharge battery and see if current falls below 5A

Fully charged battery not available

Reduce engine speed to idling and then raise it to 2,500 rpm while observing needle of voltmeter

Needle of voltmeter held within limits shown in the below table

Regulator functioning properly

Needle of voltmeter out of limits shown in the following chart

Regulator out of order Have it repaired at authorized shop

Regulator model TL1Z-58B (HITACHI)

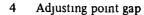
Temperature °C (°F)	Voltage V	
-10 (14)	· 14 75 to 15 25	
0 (32)	14 60 to 15 10	
10 (50)	14 45 to 14 95	
20 (68)	14 30 to 14 80	
30 (86)	14 15 to 14 65	
40 (104)	14 00 to 14 50	

sneed

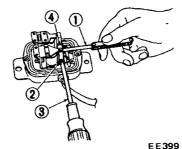
- c Voltage may be approx 0 3 V higher than the rated for two to three minutes after engine is started, or more specifically, when regulator becomes self-heated Measurements should then be made within one minute after starting engine, or when regulator is cold
- d The regulator is of a temperaturecompensating type Before measuring voltage, be sure to measure surrounding temperature and correct measurements according to the table in the left hand side

Notes

- a Do not measure voltage immediately after driving Do this while
- regulator is cold
- b To measure voltage, raise engine speed gradually from idling to rated

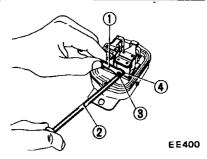

ADJUSTMENT

Voltage regulator


As the result of above measurement, when regulating voltage is deviated from rated value, adjust regulator in accordance with the tollowing instructions

- Inspect contact surface, and if rough, lightly polish surface with fine emery paper (#500 or 600)
- Measure each gap, and adjust if necessary Adjust core gap and point gap in that order No adjustment is required for yoke gap
- Adjusting core gap

Loosen screw [4 mm (0 157 in) diameter] which is used to secure contact set on yoke, and move contact upward or downward properly (See Figure EE-57)



Loosen screw [3 mm (0 118 m) diameter] used to secure upper contact, and move upper contact upward or downward adequately (See Figure EE-58)

- 1 Thickness gauge
- 3 mm (0 118 in) dia
- 3 Crosshead screwdriver
- Upper contact

Fig EE-58 Adjusting point gap

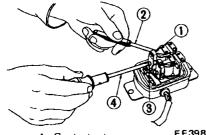
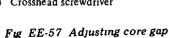

- Wrench
- Crosshead screwdriver
- Adjusting screw
- Lock nut

Fig EE-59 Adjusting regulating voltage

Charging relay

Normal relay operating voltage is 8 to 10V as measured at alternator "A" Relay itself, however, terminal operates at 4 to 5 V

Use a DC voltmeter, and set up a circuit as shown in Figure EE-60



1 Contact set

- 2 Thickness gauge
- 4 mm (0 157 in) dia screw
- Crosshead screwdriver

Adjusting voltage Adjust regulating voltage follows

Loosen lock nut securing adjusting screw Turn this screw clockwise to increase, or counterclockwise to decrease, regulating voltage (See Figure EE-59)

Connect positive terminal of voltmeter to regulator lead connector "N" terminal with negative terminal grounded

- Start engine and keep it idle
- Take voltmeter reading

0 Volt

- Check for continuity between "N" terminals of regulator and alternator
- Alternator circuit defective if continuity exists

Below 5 2 Volt

(Pilot lamp remains lit)

- Check fan belt tension
- If correct, remove regulator and adjust as necessary

Over 5 2 Volt

(Pilot lamp remains lit) Pilot lamp relay coil or contact points out of order Replace regulator

Over 5 2 Volt

(Pilot lamp does not lit) Pilot lamp relay assembly is in good condition

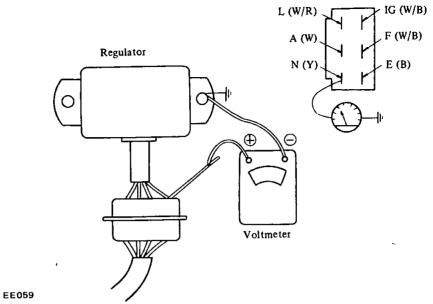


Fig EE-60 Testing charging relay

SPECIFICATIONS AND SERVICE DATA

	TL1Z-58B
/) v	*14 3 to 15 3 [at 20°C (68°F)]
Ω	10 5 [at 20°C (68°F)]
Ω	10
Ω	31 '
Ω	40 '
mm (ɪn)	0 6 to 1 0 (0 0236 to 0 0394)
mm (in)	0 35 to 0 45 (0 014 to 0 018)
V	4 2 to 5 2 at "N" terminal
Ω	37 8 [at 20°C (68°F)]
mm (ın)	0 8 to 1 0 (0 0315 to 0 0394)
mm (ın)	0 4 to 0 6 (0 0157 to 0 0236)
	Ω Ω Ω Ω mm (in) , mm (in) V Ω mm (in)

^{*}Standard temperature gradient -0 015V/°C

TROUBLE DIAGNOSES AND CORRECTIONS (Including alternator)

Condition Probable cause		Corrective action	
No output	Sticking brushes	Correct or replace brushes and brush springs	
	Dirty brushes and slip rings	Clean	
	Loose connections or broken leads	Retighten or solder connections Replace leads if necessary	
	Open stator winding	Repair or replace stator	
	Open rotor winding	Replace rotor	
	Open diodes	Replace diodes	
	Shorted rotor	Replace rotor	
	Shorted stator	Repair or replace stator	
	Grounded "BAT" terminal	Replace insulator	
	Broken fan belt	Replace belt	
Excessive output	Broken neutral wire (color of wire is white)	Replace wire	
	Defective voltage regulator	Check regulator operation and repair of replace as required	
	Poor grounding of alternator and voltage regulator "E" terminal	Retighten terminal connection	
	Broken ground wire (color of wire is black)	Replace wire	
Low output	Loose or worn fan belt	Retighten or replace belt	
	Sticking brushes	Correct or replace brushes and springs if necessary	
	Low brush spring tension	Replace brush springs	
	Defective voltage regulator	Check regulator operation and repair or replace as required	
	Dirty slip rings	Clean	
	Partial short, ground, or open in stator winding	Replace stator	
	Partially shorted or grounded rotor winding	Replace rotor	
	Open or defective diode	Replace diode	
Noisy alternator	Loose mounting	Retighten mounting bolts	
ı	Loose drive pulley	Retighten pulley correctly	
	Defective ball bearing	Replace bearing	
	Improperly seated brushes	Seat brushes correctly	

IGNITION CIRCUIT

The ignition circuit consists of the ignition switch, coil, distributor, wiring, spark plugs and battery

The circuit is equipped with a resistor During cranking, electrical current bypasses the resistor, thereby connecting the ignition coil directly to battery This provides full battery voltage available at coil and keeps ignition voltage as high as possible

The low voltage current is supplied by the battery or alternator and flows through the primary circuit It consists of the ignition switch, resistor, primary winding of the ignition coil, distributor contact points, condenser and all connecting low tension wiring

The high voltage current is produced by the ignition coil and flows through the secondary circuit, resulting in high voltage spark between the electrodes of the spark plugs in engine cylinders. This circuit contains the secondary winding of the ignition coil, coil to distributor high tension cables, distributor rotor and cap

When the ignition switch is turned on and the distributor contact points are closed, the primary current flows through the primary winding of the coil and through the contact points to ground. This flowing produces a magnetic field around the coil winding and then electrical energy in the coil.

When the contact points are opened by the revolving distributor cam, the magnetic field built up in the primary winding of the coil moves through the secondary winding of the coil inducing high voltage The high voltage is produced every time the contact points open This system consists of a throttle switch, a two-point distributor and some electrical wiring and sensors as illustrated in the following figure. The main component of this system is the distributor, which has two breaker points. One is for advance—optimum ignition timing and the other for retard—delayed by 6° from optimum timing

When the car is running in wide open throttle, the advance timing (optimum one) is used in order to improve fuel consumption Conversely, the retard timing is used when the car is running in urban areas. The throttle switch detects such running conditions by monitoring the throttle valve opening.

The advance and retard timings are changed by a relay which monitors whether the throttle opens more than 40° or less than 40° But when the engine is cold, the optimum timing is always obtained with the aid of the water temperature switch

The high voltage current flows through the high tension cable to the distributor cap, then the rotor distributes the current to one of the spark plug terminals in the distributor cap

Then the spark obtains while the high voltage current jumps the gap between the insulated electrode and the ground side electrode of the spark plug. This process is repeated for each power stroke of the engine.

The distributor contact points and spark plugs require periodic service. That is, the breaker points should be inspected, cleaned and regapped at tune up or replaced if necessary. In addition, lubricate distributor shaft and cam heel every suitable maintenance period. Spark plugs should be removed, inspected and maintained to obtain good firing.

The remainder of the ignition component parts should be inspected for only their operation, tightness of electrical terminals, and wiring condition

The ignition circuit is shown below

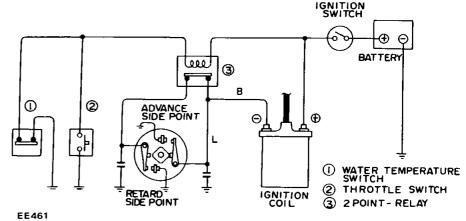


Fig EE-61 Ignition system circuit diagram

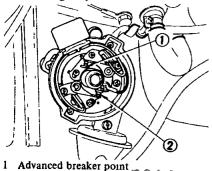
DISTRIBUTOR

CONTENTS

CONSTRUCTION	EE-26	Advance mechanism	EE-28
CHECKING AND ADJUSTMENT	EE-26	DISASSEMBLY AND ASSEMBLY	EE-28
Cap and rotor head	EE-26	Disassembly	EE-28
Point	EE-26	Assembly	EE-29
Replacing distributor breaker points	EE-27	SPECIFICATIONS AND SERVICE	
Checking and adjusting ignition timing	EE-27	DATA	EE-30
Condenser	EE-28		

CONSTRUCTION

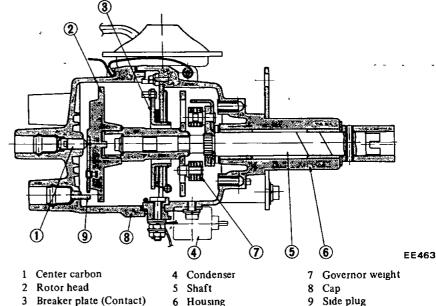
Distributor model	Applied engine	
D4B4-02	L18	


The distributor for the L18 engine has two breaker points, located opposite each other with a phase difference

The difference in phase can be adjusted by turning the adjusting screw

A phase difference of 6° crank angles is adopted Two breaker points, which consist of advance and retard breakers, are placed in parallel with each other in the primary ignition circuit

The retard breaker point works when the relay is switched "ON" and the advance breaker point works when the relay is switched "OFF"


The relay switches OFF when water temperature switch is turned on (if the engine is cold), or when throttle switch is placed in the ON position (when the throttle valve is open more than 40 degrees)

2 Retarded breaker point

Fig EE-62 External view of dual points

The distributor follows the conventional design except for the dual points, i e, breaker plate with contact points, centrifugal advance mechanism, vacuum unit, drive shaft and rotor Figure EE-63 shows a sectional view of the unit

9 Side plug

Fig EE-63 Construction

CHECKING AND **ADJUSTMENT**

Cap and rotor head

Cap and rotor head must be inspected at regular intervals In addition, remove cap and clean all dust and carbon deposits from cap and rotor from time to time If cap is cracked or is leaking, replace with a new one

Point

Standard gap of retarded points is 0 45 to 0 55 mm and standard gap of advanced points is 0 40 to 0 60 mm If the gap is off the standard, adjustment should be made by loosening point screws Gap gauge is required for adjustment

Point gaps must be checked from time to time

Point gap

0 45 to 0 55 mm (Retard side) ⁻0 40 to 0 50 mm (Advance side) Dwell angle

49° to 55°

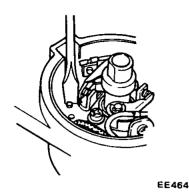


Fig EE-64 Measuring point gap

If point gap is adjusted by examining dwell angle, install distributor on engine and proceed as follows

- 1 Disconnect wiring harness of distributor from engine harness
- 2 Using a lead wire, connect B (black) of engine harness and L (blue) of distributor harness (advance side)
- 3 Adjust dwell angle of advance side by loosening point screw
- 4 Disconnect lead wire from B (black) of distributor harness and then connect it to G (green) of distributor (Retard side)
- 5 Adjust dwell angle of retard side by loosening point screw
- 6 After adjustment, disconnect lead wire then connect engine harness and distributor harness securely

When point surface is rough, take off any irregularities with fine sand paper of No 500 or 600 or with oil stone

At this time, grease must be supplied to camshaft and cam heel

When wear on breaker points is noticeable, replace points together with contact set

Replacing distributor breaker points.

Check distributor breaker points for abnormal pitting and wear Replace points periodically After replacing points, make sure they are in correct alignment for full contact and that point dwell and gap are correct Clean and apply distributor grease to cam lobes

Note Do not apply excess amount of grease

The distributor has two contact points Each point can be replaced independently Both points, however, are usually replaced at the same time

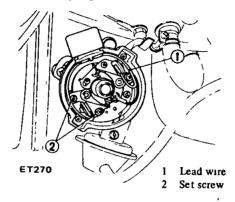


Fig EE-65 Breaker point

- 1 Loosen lead wire setting screws and remove lead wire from contact point set
- 2 Remove two set screws on each point set Point assembly can then be taken out
- 3 Install new contact point in the reverse sequence of removal

Notes

- a Coat cam heel with a light coating of grease
- b Adjust contact point gap properly by measureing point gap with a feeler gauge before set screws are tightened securely

Distributor point gap
0 45 to 0 55 mm
(Retard side)
0 40 to 0 50 mm
(Advance side)
Distributor dwell angle
49 to 55 degrees

Checking and adjusting ignition timing

- 1 Check spark plugs and distributor breaker points for condition
- 2 Thoroughly remove dirt and dust from timing mark on crank pulley and timing indicator on front cover
- 3 Warm up engine sufficiently

- 4 Install a timing light on No 1 cylinder spark plug wire, and install a tachometer
- 5 Set idling speed to the following specifications
- 6 With a timing light, check that ignition timing is at the specified value

Note There are two ignition timings "Retard" and "Advance" The ignition timing adjustment should be carried out on the "Retard" side

EE465

Fig EE-66 Checking ignition timing

Ignition timing

Transmission	M/T	A/T
Timing BTDC/rpm	6°/700	6°/800 (N posi- tion)

*Ignition timing is on "Retard" side

If necessary, adjust it as follows

- (1) Loosen set screw until distributor can be moved by hand
- (2) Adjust ignition timing to the following specifications See Figure EE67
- (3) Lock distributor set screw, and make sure that timing is correct

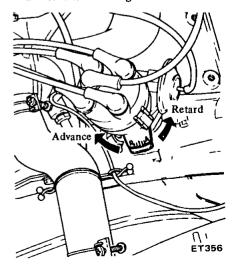


Fig EE-67 Adjusting ignition timing

Inspection and adjustment of phase difference

To check phase difference, install distributor on engine and proceed as follows

- 1 Disconnect wiring harness of distributor from engine harness
- 2 Using a lead wire, connect B (black) of engine harness and G (green) of distributor harness (Retard side) Refer to Figure EE-68

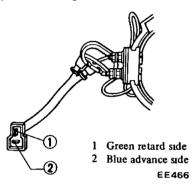


Fig EE-68 Connecting wire

- 3 With engine idling, adjust ignition timing by rotating distributor to specifications $(6^{\circ}/700 \text{ rpm M/T}, 6^{\circ}/800 \text{ rpm A/T}, \text{ retard side})$
- 4 Disconnect lead wire from G (green) of distributor harness and then connect it to L (blue) of distributor harness (Advance side)
- 5 With engine still idling, check to determine that phase delay is 6 degrees in terms of crank shaft angular displacement

To correct, further proceed as follows

(1) Referring to Figure EE-69, turn out adjuster plate set screw 1/2 to 2 turns Adjuster plate is located on advance side

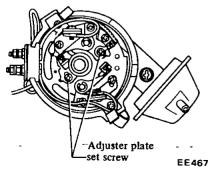


Fig EE-69 Adjuster plate set screws

(2) Using a notch in adjuster plate as a hold, turn adjuster plate as required until correct phase difference is obtained

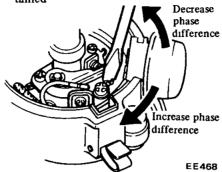


Fig EE-70 Adjusting phase difference

- (3) Tighten adjuster plate set screws to secure the adjustment
- (4) Make sure that the ignition timing of retard side is at the specified value
- (5) After adjustment, remove lead wire and connect wiring harness of distributor to engine harness securely

Condenser

Satisfactory performance of condenser depends on capacity and degree of insulation, requiring attention to be sure that terminals are clean and set screws are tight

Checking of condenser is made by a capacity tester. This can also be made by a circuit tester with its range set to high resistance reading. When needle of tester swings violently and then moves back to infinite gradually, it is an indication that condenser is in good condition.

If needle shows any steady reading or if it registers zero, the likelihood is that transformer is out of order, calling for replacement

Advance mechanism

≪ Vacuum advance mechanism mechanical parts

>

-If vacuum advance mechanism-fails to operate properly, check for the following items and correct the trouble as required

- 1 Check vacuum inlet for signs of leakage at its connection If necessary, retighten or replace with a new one
- 2 Check vacuum diaphragm for air leak

If leak is found, replace vacuum control assembly with a new one

3 Inspect breaker plate for smooth moving

If plate does not move smoothly, this condition could be due to sticky steel balls or pivot Apply grease to steel balls or, if necessary, replace breaker plate as an assembly

When cause of engine trouble is traced to centrifugal advance mechanical part, use distributor tester to check its characteristic

When nothing is wrong with its characteristic, conceivable causes are defectiveness or abnormal wearing-out of driving part or others

So do not disassemble it In case of improper characteristic, take off switch on-off part and check closely cam assembly, governor weight, shaft and governor spring, etc

In case centrifugal advance mechanical part is reassembled, be sure to check advance characteristic by distributor tester

DISASSEMBLY AND ASSEMBLY

Disassembly

To disassemble, follow the below procedure

- 1 Take off cap and disconnect rotor head
- 2 Remove contact set
- ---- Refer -- to Figure EE-65, when-contact set is removed
 - 3 Remove vacuum controller

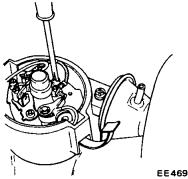
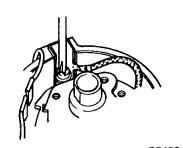



Fig EE-71 Disassembling vacuum controller

- Remove terminal assembly
- Unscrew two contact breaker set screws and remove contact breaker assembly

EE470 Fig EE-72 Unscrewing breaker set screws

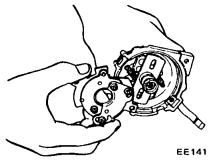


Fig EE-73 Removing contact breaker

Pull knock pin out and disconnect collar to remove the entire rotating parts

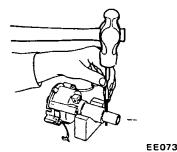


Fig EE-74 Removing knock pin

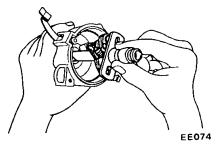


Fig EE-75 Removing rotation parts

When cam is to be removed, first remove set screw since shaft head is fastened by the screw to hold cam down Put match mark across cam and shaft so that original combination can be restored at assembly

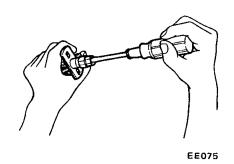


Fig EE-76 Removing cam

When governor weight and spring are disconnected, be careful not to stretch or deform governor spring

After disassembling, apply grease to governor weights

Assembly

Assembly can be made in reverse sequence of disassembly Refer to Figure EE-77 for replacement and reassembly of governor spring and

When assembling shaft and cam set, the driven slit offset direction and rotor head positioning tip should be as shown in Figure EE-77 The governor spring circular hook must be attached to the side of the rotor head positioning tip at the cam

Then weight pin for governor spring A with circular hook comes in long rectangular hole

After assembly, check operation of governor before installing it on engine

Ignition timing should be tested with unit mounted on engine

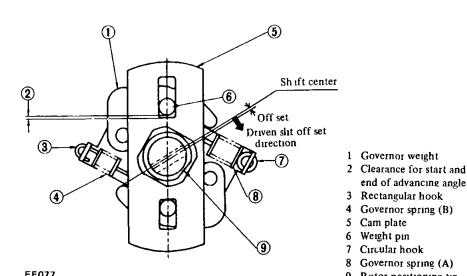


Fig EE-77 Setting governor spring and cam

end of advancing angle

Rectangular hook Governor spring (B)

Governor spring (A)

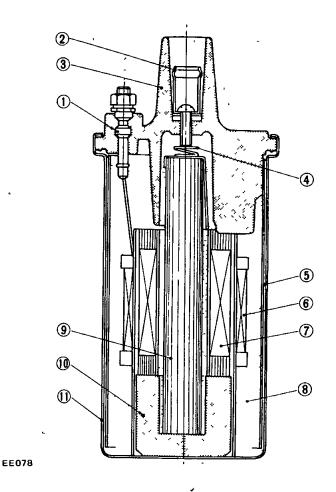
Rotor positioning tip

Cam plate

Weight pin Circular hook

SPECIFICATIONS AND SERVICE DATA

Distributor type	D4B4-02
Make	НІТАСНІ
Applied engine (car)	L18 (610)
Firing order	1-3-4-2
Rotating direction	Counterclockwise
Ignition timing (degree) (Retard side)	6° (B T D C)
Phase difference (degree)	6° at crank angle
Idling adjustment	
M/T	6°/700 rpm
A/T	6°/800 rpm
~ *=	ın "N" position
Dwell angle (degree)	49° to 55°
Condenser capacity (µF)	
Advance side	0 2 to 0 24
Retard side	0 05 ± 15%


IGNITION COIL

The ignition coil is of an oil-filled type The ignition coil case is filled with oil which has good insulating and heat-radiating characteristics

High sparking voltage is produced

from starting to engine high revolution by the resistor which is used in the ignition coil circuit. The internal resistor limits to a maximum safe flow of the primary current through the

coil and distributor contact points Thus, it protects the contact points during slow speed operation when they are closed for long intervals

- 1 Primary terminal
- 2 Secondary terminal
- 3 Cap
- 4 Spring
- 5 Side core
- 6 Primary coil
- 7 Secondary coil
- 8 Insulator oil
- 9 Center core
- 10 Segment
- 11 Case

Fig EE-78 Construction

SPECIFICATIONS

Make and type		HITACHI (C6R-206)
Primary voltage	V	12
Spark gap	mm (ın)	More than 7 (0 2756)
Primary resistance at 20° (68°F)	Ω	1 5 to 1 7
Secondary resistance at 20° (68°F)	$K\Omega$	9 5 to 11 6
Resistor	Ω	16

SPARK PLUG

CONTENTS

DESCRIPTION INSPECTION CLEANING AND REGAP

EE-32 SPECIFICATIONS AND SERVICE DATA TROUBLE DIAGNOSES AND

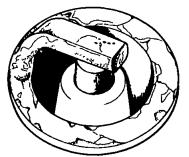
EE-33

EE-32

CORRECTIONS EE-32

EE-33

DESCRIPTION


The spark plugs are of the resister type, having 14 mm threads and 0 8 to 09 mm gap The inspection and cleaning should be made periodically as "Maintenance specified in the Schedule"

Note All spark plugs installed on an engine, must be of the same brand and number of heat range

Overheating White or light gray insulator with black or gray brown spots and bluish burnt electrodes indicate engine overheating Moreover, the appearance results from incorrect ignition timing, loose

spark plugs, low fuel pump pressure, wrong selection of fuel, a hotter plug, etc

It is advisable to replace with plugs having colder heat range

Normal

Carbon fould

Overheating

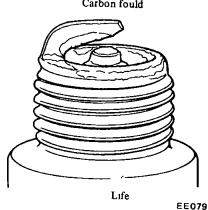


Fig EE-79 Spark plug

INSPECTION

- Remove spark plug wire by pulling on boot, not on wire itself
- Remove spark plugs
- Check electrodes and inner and 3 outer porcelains of plugs, noting the type of deposits and the degree of electrode erosion Refer to Figure EE-79

Normal Brown to grayish-tan deposits and slight electrode wear indicate correct spark plug heat range

Carbon fouled Dry fluffy carbon deposits on the insulator and electrode were mostly caused by slow speed driving in city, weak ignition, too rich fuel mixture, dirty air cleaner, etc

It is advisable to replace with plugs having hotter heat range

Oil fouled Wet black deposits show excessive oil entrance-into combustion chamber through worn rings and pistons or excessive clearance between valve guides and stems If the same condition remains after rapair, use a hotter plug

After cleaning, dress electrodes with a small fine file to flatten the surfaces of both center and side electrodes in parallel Set spark plug gap to specification

Install spark plugs and torque each plug to 1 5 to 2 0 kg-m (11 to 14 ft-lb)

Connect spark plug wires

CLEANING AND REGAP

Clean spark plugs in a sand blast

type cleaner Avoid excessive blasting Clean and remove carbon or oxide deposits, but do not wear away porcelain If deposits are too stubborn, discard plugs

After cleaning spark plugs, renew firing surface of electrodes with file mentioned above Then gap spark plugs to 08 to 09 mm (0 0315 to 0 0354 in) using a round wire feeler gauge All spark plugs new or used should have the gap checked and reset by bending ground electrode

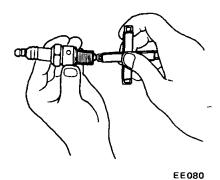


Fig EE-80 Setting spark plug

SERVICE DATA AND SPECIFICATIONS

Make	NGK
Item Model	BP-6ES
Applied engine	L18 (with single carb)
Size (screw dia x reach) mm	14 x 19
Plug gap mm	0 8 to 0 9
Tightening torque kg-m	2 0 to 3 0

TROUBLE DIAGNOSES AND CORRECTIONS

1 When engine does not start
If there is no trouble in fuel system, ignition system should be checked
This can be easily done by detaching a

high tension cable from spark plug, starting engine and observing condition of spark that occurs between high tension cable and spark plug terminal After checking this, repair as necessary

Spark length	Location	Probable cause	Corrective action
No sparks at all	Distributor	Defective insulation of condenser	Replace
		Breakage of lead-wire on low tension side	Repair
		Defective insulation of cap and rotor head	Replace
		Point does not open or close	Repair
	Ignition coil	Wire breakage or short circuit of coil	Replace with new one
	High tension cable	Wire coming off	Repair
		Defective insulation	Replace
1 to 2 mm (0 0394 ,	Distributor	Point gap too wide	Correct
to 0 0787 in) or irregular		Oil sticking on point	Clean
		Point burnt too much	Replace
Less than 6 mm	Spark plugs	Electrode gap too wide	Correct or replace
(0 2362 in)		Too much carbon	Clean or replace
		Broken neck of insulator	Replace
		Expiry of plug life	Replace

When engine rotates but does not run smoothly

In this case, there are many causes

resulting from the ignition system and other engine conditions not related to ignition. Therefore, first complete

inspection of ignition system should be carried out

Condition	Location	Probable cause	Corrective action
Engine misses	Distributor	Dirty point	Clean
		Improper point gap	Correct
		Leak of electricity of cap and rotor head	Repair or replace
		Defective insulation of condenser	Replace
		Defective arm.	Oıl shaft
		Defective spring of arm	Replace assembly
		Breakage of lead wire	Replace
		Worn out or shaky breaker plate	Replace assembly
		Worn out or shaky distributor shaft	Replace assembly
	Ignition coil	Layer short circuit or use of inferior quality	Replace with good one
· ·	High tension code	Deterioration of insulation and leak of electricity	Replace
	Spark plugs	Dirty	Clean
		Leak of electricity at upper porcelain insulater	Repair or replace
Engine causes	Distributor	Improper and advance timing	Correct the fitting
knocking very often		Coming off or breakage of governor spring	Correct or replace
onen		A pin or a hole of governor portion worn out	Replace
	Spark plugs	Burnt too much	Replace
Engine does not	Distributor	Improper and retarded timing	Correct the fitting
give enough power		Defective function of governor	Replace assembly
power		Dirty point	Clean
		Point gap too narrow	Correct
	Spark plugs	Dirty	Clean

SERVICE MANUAL

DATSUN
MODEL 610 SERIES

SECTION ER

ENGINE REMOVAL & INSTALLATION

ER

ENGINE REMOVAL AND INSTALLATION

ER- 2

NISSAN MOTOR CO., LTD.

ENGINE REMOVAL AND INSTALLATION

CONTENTS

REMOVAL INSTALLATION

ER-2	ENGINE MOUNTING INSULATOR
ER-4	FRONT INSULATOR
	REAR INSULATOR

ER-4 ER-4

ER-4

REMOVAL

It is much easier to remove engine and transmission as a single unit than to remove only engine from the engine compartment After removal, the engine can be separated from the transmission assembly

Notes

- a Be sure to hoist engine and jack up transmission in a safe manner
- b Fender covers should be used to prevent damaging car body
- c Place wheel chocks in front of front wheels and in rear of rear wheels
- 1 Disconnect battery ground cable from battery terminal
- 2 Remove hood as follows
- (1) Mark hood hinge locations on hood to facilitate proper reinstallation
- (2) Support hood with hand and remove bolts securing it to hood hinge, taking care not to let hood slip when bolts are removed See Figure ER-1

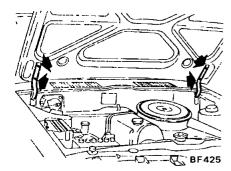
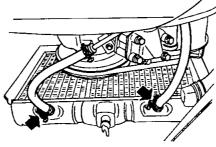



Fig ER-1 Removing hood securing bolts

- (3) Remove hood from hood hinge with the help of an assistant
- 3 Drain engine coolant and engine oil
- 4 Remove radiator grille .
- 5 Disconnect upper and lower hoses from radiator

- Notes On automatic transmission equipped cars
- a Remove splash board
- b Disconnect oil cooler hoses at oil cooler installed at the lower end of radiator See Figure ER-2

ER121

Fig ER-2 Removing oil cooler hoses

- c Disconnect vacuum hose
- d Disconnect wire connections at inhibitor switch and at downshift solenoid
- 6 Remove four bolts securing radiator to body and detach radiator and radiator shroud (if so equipped)
- 7 Disconnect engine ground cable at the body connection end See Figure ER-3

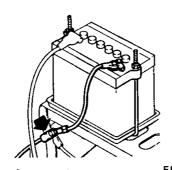
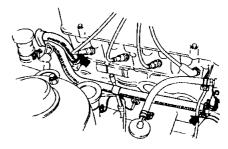



Fig ER-3 Disconnecting engine ground cable

8 Disconnect hose(s) from air cleaner and remove air cleaner

- 9 Disconnect
- (1) Fuel hose at fuel pump
- 2) Accelerator linkage
- 10 Remove high tension cable from ignition coil
- 11 Disconnect wiring harnesses for starter, alternator, back-up lamp, oil pressure switch and thermal transmitter at two connector plugs of engine compartment main harness
- 12 Disconnect vacuum hose of Master-Vac at intake manifold, if so equipped
- 13 Disconnect heater inlet and outlet hoses, if so equipped See Figure ER-4

ER34

Fig ER-4 Removing heater inlet and outlet hoses

14 Remove clutch operating cylinder from clutch housing See Figure ER-5

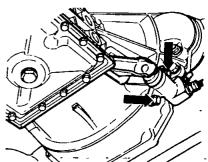


Fig ER-5 Removing clutch operating

- 15 Disconnect speedometer cable from rear extension housing
- 16 Disconnect parking brake cable at cable adjuster
- 17 Remove transmission control linkage
- (1) For cars equipped with manual transmission, remove gear shift control lever See Figure ER-6

Fig ER-6 Removing gear shift control lever

(2) For cars equipped with automatic transmission, disconnect selector range lever from manual shaft See Figure ER-7

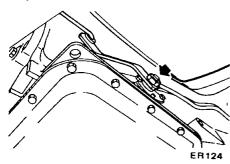


Fig ER-7 Disconnecting selector range lever

18 Disconnect exhaust front tube from exhaust manifold

Loosen rear tube connector, and remove front tube assembly

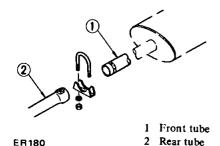


Fig ER-8 Disconnecting exhaust front tube from rear tube

19 Disconnect propeller shaft at companion flange of gear carrier

Note Put match marks on both the shaft and companion flange so that shaft can be reinstalled in the original position

20 For cars equipped with 3-joint propeller shaft, remove center bearing bracket attaching bolts and remove center bearing support from floor panel See Figure ER-9

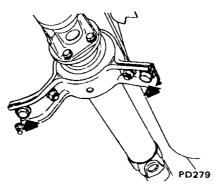
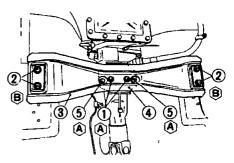
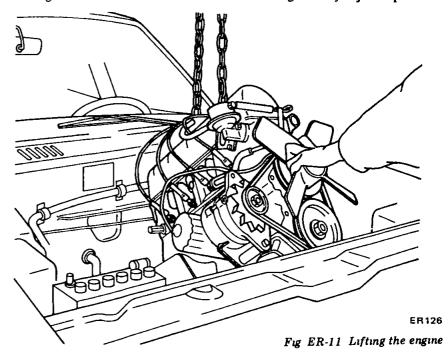



Fig ER-9 Remove center bearing support

- 21 Withdraw sleeve yoke from rear extension housing Plug up rear end of rear extension housing to prevent oil leakage
- 22 Support transmission with jack
- Remove two rear engine mounting nuts (1) as shown in Figure ER-10
- 24 Remove four rear engine mounting member securing bolts ② as shown in Figure ER-10 and detach mounting member

ER 125

- 1 Rear engine mounting nut
- 2 Rear engine mounting member securing bolt
- 3 Rear engine mounting meriber
- 4 Rear engine mounting insulator
- 5 Rear engine mounting insulator to transmission securing bolt


Tightening torque (T) of bolts or nuts kg-m (ft-lb)

- (A) T 09 to 12 (7 to 9)
- B T 19 to 26 (14 to 19)

Fig ER-10 Removing rear engine mounting member

- 25 Connect suitable wires to engine slingers and raise engine to take weight off front mounting insulators
- 26 Remove bolts securing engine support to front mounting insulators
- 27 Raise engine and transmission, and remove from car as a single unit See Figure ER-11

Note Be careful not to allow the unit to hit against any adjacent parts

INSTALLATION

Install in the reverse order of removal, observing the following instructions

- When installing, first secure rear 1 engine mounting member to body
- Refer to applicable section when installing and adjusting any parts
- When installing hood following engine installation, be sure that it is properly centered and that hood lock operates securely Refer to Section BF for Adjustment

Front mounting

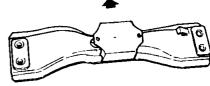
Rear mounting

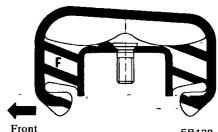
Unit mm (in)

ENGINE MOUNTING INSULATOR

Three insulators are used to mount the engine and transmission, two located at left and right front ends of cylinder block and one at transmission rear extension housing

Replace insulator if it shows signs of separation or deterioration


Be sure to keep insulator free from oil or grease See Figure ER-12


Front insulator can be adjusted sideways After mounting the engine on front insulators, make sure that the engine is properly aligned

Note When connecting front insulator to engine mounting bracket, align the projection on front insulator with the notch in engine mounting bracket

REAR INSULATOR

Front

Removal

- 1 Support the transmission with a 1ack
- 2 Remove nuts securing rear engine mounting insulator to mounting member
- Remove bolts connecting rear engine mounting insulator to transmission rear extension housing
- Raise transmission slightly, and remove insulator

Fig ER-14 Rear insulator

FRONT INSULATOR

Right and left front insulators are identical, and are interchangeable. See Figure ER-13

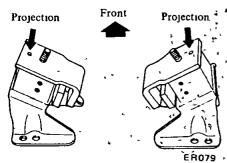


Fig ER-13 Front insulator

Installation

5 to 10 (0 197 to 0 394) 5 to 10 (0 197 to 0 394)

Install front insulator in the reverse order of removal, observing the following instructions

Remove nuts securing front engine mounting insulator to front suspension member

Tightening torque (T) of (A) T 19 to 26 (14 to 19)

Fig ER-12 Structure view of engine mounting-

bolts or nuts kg-m (ft-lb) (B) T 09 to 12 (7 to 9)

Inspection

place

Remove bolts securing engine mounting insulator to engine mounting bracket"

3 - Raise engine slightly and remove ınsulatòrs

If there is damage, deterioration or separation of bounded surface, re-

Inspection

If there is damage, deterioration or separation of bounded surface, re-

Installation

Install rear engine mounting insulator in the reverse order of removal, observing the following instructions

Install insulator in place with the direction of mounted insulator the same as that in Figure ER-14

Removal

1 Support engine with a jack

SERVICE DATA AND SPECIFICATIONS

Tightening torque	kg-m (ft-lb)
Rear mounting member to body	1 9 to 2 6 (14 to 19)
Rear insulator to rear mounting member	0 9 to 1 2 (7 to 9)
Transmission to rear insulator	0 9 to 1 2 (7 to 9)
Front insulator to front suspension member	0 9 to 1 2 (7 to 9)
Front insulator to engine support bracket	1 9 to 2 6 (14 to 19)
Engine to engine support bracket	1 9 to 2 6 (14 to 19)
Cylinder block gusset to automatic transmission	2 7 to 3 3 (20 to 24)

SERVICE MANUAL

DATSUN MODEL 610 SERIES

SECTION CL

CLUTCH

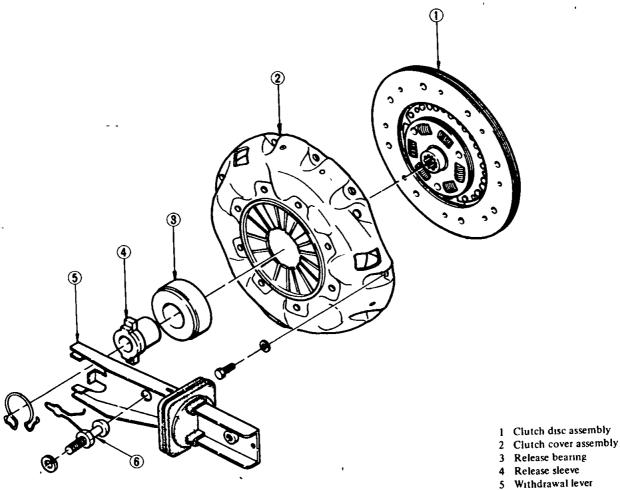
CI

CLUTCH	CL- 2
CLUTCH CONTROL	CL- 5
SERVICE DATA AND SPECIFICATION	CL- 9
TROUBLE DIAGNOSES AND CORRECTIONS	CL-10
SPECIAL SERVICE TOOLS	CL-12

NISSAN MOTOR CO., LTD.

CLUTCH

CONTENTS


DESCRIPTION REMOVAL	CL-2 CL-2	INSPECTION AND ADJUSTMENT ASSEMBLY	CL-3
DISASSEMBLY	CL-2	INSTALLATION	CL-4

DESCRIPTION

The clutch (C200S Type) is a single dry disc type using a diaphragm spring

It consists of the clutch disc, pressure plate, diaphragm spring, thrust

rings, clutch cover, and clutch release bearing

Withdrawal lever ball pin

CL149

Fig CL-1 Exploded view of clutch assembly

REMOVAL

- Remove transmission from engine Refer to Section TM for Removal Procedure
- Loosen bolts attaching clutch cover to flywheel, one turn at a time each, until spring pressure is released

Be sure to turn them out in a crisscross fashion

Remove clutch disc and cover 3 assembly

- a Be careful not to allow grease or oil to get on clutch linings
- b Be careful not to drop clutch disc or clutch cover assembly

DISASSEMBLY

Clutch cover assembly cannot be disassembled since diaphragm spring is securely riveted to clutch cover and clutch cover assembly is balanced

If necessary, replace clutch cover assembly as a complete unit

2 Remove clutch release mechanism as follows

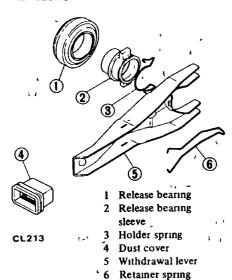


Fig CL-2 Exploded view of clutch release mechanism

- (1) Remove dust cover from clutch housing
- (2) Using a flat-head screwdriver, remove retaining spring from ball pin in front cover of transmission
- (3) Remove withdrawal lever together with clutch release bearing and holder spring
- (4) Remove holder spring from withdrawal lever; and detach clutch release bearing from withdrawal lever

At this time, remove retainer spring from withdrawal lever

3 Remove clutch release bearing from bearing sleeve, using a universal puller See Figure CL-3

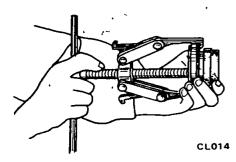


Fig CL-3 Disassembling release bearing

4 Remove pilot bushing in crankshaft, using a Pilot Bushing Puller ST16610001, if necessary See Figure CL-4

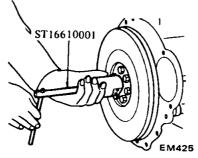


Fig CL-4 Pulling out pilot bushing

INSPECTION AND ADJUSTMENT

Wash all the disassembled parts except release bearing and disc assembly in suitable cleaning solvent to remove dirt and grease before making inspection and adjustment

Flywheel and pressure plate

Check friction surface of flywheel and pressure plate for scoring or roughness Slight roughness may be smoothed by using fine emery cloth If surface is deeply scored or grooved, the part should be replaced

Clutch disc assembly

Inspect clutch disc for worn or oily facings, loose rivets, and broken or loose torsion springs

- 1 If facings are oily, the disc should be replaced In this case, inspect transmission front cover oil seal, pilot bushing, engine rear oil seals and other points for oil leakage
- 2. The disc should also be replaced when facings are worn locally or worn down to less than 0.3 mm (0.012 in) at rivets

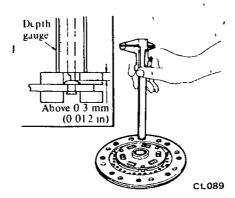


Fig CL-5 Measuring clutch lining

- 3 Check disc plate for runout whenever the old disc or a new one is installed
- 4 If runout exceeds 0.5 mm (0.020 m) at the outer circumference of facing 95 mm (3.74 in) from the center, replace or repair disc assembly

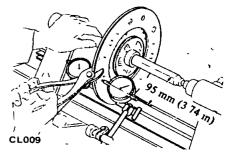
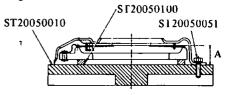



Fig CL-6 Measuring disc runout

5 Check the fit of disc hub on transmission main drive gear splines for smooth sliding If splines are worn, that is, backlash exceeds 0.4 mm (0.016 in) at the outer edge of clutch disc, clutch disc or main drive gear should be replaced

Clutch cover assembly

- 1 Check the end surface of diaphragm spring for wear If excessive wear is found, replace clutch cover as an assembly
- 2 Measure the height of diaphragm spring as outlined below
- (1) Place Distance Piece ST20050100 on Base Plate ST20500010, and then tighten clutch cover assembly on the base plate by using Set Bolts ST20050051 See Figure CL-7

CL151

Fig CL-7 Measuring the height of diaphragm spring

(2) Measure the height "A" at several points with a vernier caliper depth gauge See Figure CL-7

If the height "A" of spring end is beyond the specified value, adjust the spring height with Diaphragm Spring Adjusting Wrench ST20050240 See Figure CL-8 Height "A"
31 0 to 33 0 mm
(1 220 to 1 229 in)

If necessary, replace clutch cover as an assembly Also, unevenness of diaphragm spring toe height should be less than 0.5 mm (0.020 in) on 62 mm (2.44 in) diameter of diaphragm spring

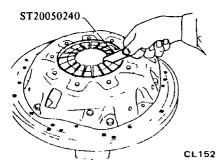


Fig CL-8 Adjusting spring height

3 Inspect thrust rings for wear or damage

As these parts are invisible from outside, shake cover assembly up and down to listen for clattering noise, or hammer lightly on rivets and listen for a slightly cracked noise. Any of these noises indicates necessity for replacement as a complete assembly

Release bearing and sleeve

1 Check for abnormal wear on contact surface of withdrawal lever, ball pin and bearing sleeve

Hold bearing inner race and rotate outer race while applying pressure to it

If the bearing rotation is rough or noisy, replace bearing

Pilot bushing

Check the fit of pilot bushing in the bore of crankshaft

Check pilot bushing in crankshaft for wear, roughness or bell-mouthed condition

If necessary, replace it When bushing is not suitable for further use, because to check transmission main drive gear at the same time

ASSEMBLY

Release bearing and sleeve

I When installing release bearing on sleeve, use a press and seat bearing securely on sleeve

Note Do not press outer race See Figure CL-9

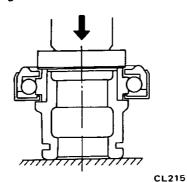


Fig CL-9 Installing release bearing

- 2 Before or during assembly; lubricate the following points with a light coat of multi-purpose grease
- (1) Inner groove of release bearing sleeve

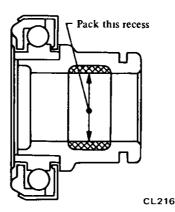


Fig CL-10 Lubricating recess of bearing sleeve

- (2) Contact surfaces of withdrawal lever, lever ball pin and bearing sleeve
- (3) Contact surfaces of transmission front cover See Figure CL-11

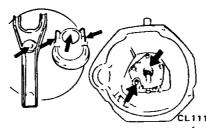


Fig CL-11 Lubricating points of withdrawal lever and front cover

(4) Contact surface of transmission main drive gear splines [grease (including Molybdenum Disulphide)]

Note A very small amount of grease should be applied to the above points If too much lubricant is applied, it will run out on the friction plates when hot, resulting in damage to clutch disc facings

3 After lubricating, connect withdrawal lever to holder spring and release bearing and bearing sleeve assembly to holder spring After installing them on clutch housing, install dust cover

Pilot bushing

Before installing a new bushing, thoroughly clean bushing hole Install bushing in crankshaft using a soft hammer

Bushing need not be oiled See Figure CL-12

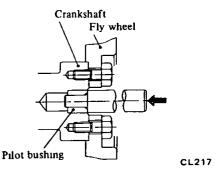


Fig CL-12 Installing pilot bushing

INSTALLATION

1 Apply a light coat of grease (including Molybdenum Disulphide) to transmission main drive gear splines

Slide clutch disc on main drive gear several times

Remove clutch disc and wipe off excess lubricant pushed off by disc hub

Note Take special care to prevent grease or oil from getting on clutch facing.

2 Reinstall clutch disc and clutch cover assembly

Support clutch disc and cover assembly with Clutch Aligning Bar ST20660000 See Figure CL-13

Note Be sure to keep disc facings,—
flywheel and pressure plate clean
and dry

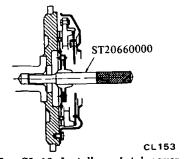
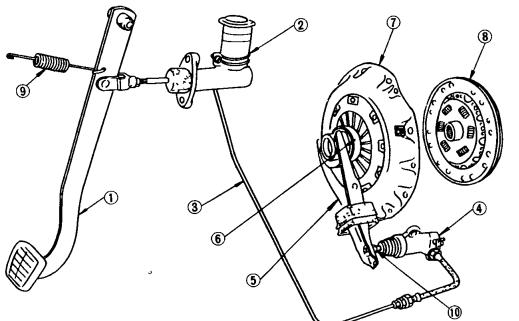


Fig CL-13 Installing clutch cover assembly

- 3 Install bolts to securely tighten clutch cover assembly to flywheel Each bolt should be tightened one turn at a time in a criss-cross fashion to the specified torque, 1 6 to 2 1 kg-m (12 to 15 ft-lb)
- Note Dowels are used to properly locate clutch cover on flywheel
- 4 Remove Clutch Aligning Bar
- 5 Install transmission in engine
- 6 Install clutch operating cylinder to clutch housing

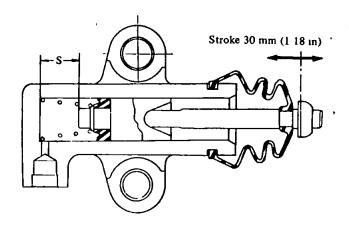
CLUTCH CONTROL


CONTENTS

DESCRIPTION	CL-5	ASSEMBLY	CL-7
CLUTCH PEDAL	CL-6	INSTALLATION	CL-7
REMOVAL	CL-6	OPERATING CYLINDER	CL-8
INSPECTION	CL-6	REMOVAL	CL-8
INSTALLATION	CL-6	DISASSEMBLY	CL-8
ADJUSTMENT	CL-6	INSPECTION	CL-8
CLUTCH MASTER CYLINDER	CL-7	ASSEMBLY	CL-8
REMOVAL	CL-7	INSTALLATION	CL-8
DISASSEMBLY	CL-7	BLEEDING CLUTCH SYSTEM	· CL-8
INSPECTION	CL-7		*

DESCRIPTION

The hydraulic clutch control consists of a pendent pedal, a master cylinder, an operating cylinder and a withdrawal lever


When the clutch pedal is depressed, the piston of the master cylinder forces clutch fluid to the operating cylinder via a pipe line The movement of the operating cylinder piston is transmitted to the withdrawal lever through the push rod, thus disengaging the clutch

- 1 Clutch pedal
- 2 Clutch master cylinder
- 3 Clutch piping
- 4 Operating cylinder
- 5 Withdrawal lever
- 6 Release bearing
- 7 Clutch cover
- 8 Clutch disc
- 9 Return spring
- 10 Push rod

CL097

Fig CL-14 Clutch operating system

CL098

- 1 Clevis pin
- 2 Cotter pin
- Return spring
- Pedal boss
- Pedal assembly
- Bush
- Sleeve
- Push rod
- Fulcrum pin

CL099

Fig CL-15 Non-adjustable operating cylinder

Fig CL-16 Exploded view of clutch pedal

The operating cylinder is a nonadjustable type that uses no return spring In this unit, the withdrawal-topush rod play adjustment is not necessary since the "S" as shown in Figure CL-15 serves to automatically compensate for clutch disc wear

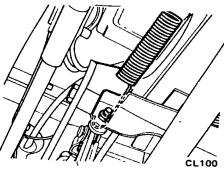
CLUTCH PEDAL

REMOVAL

- Pry off cotter pin and take out clevis pin, disconnect push rod from pedal assembly
- Unhook return spring Back off fulcrum pin and remove pedal assembly

Note Before removing clutch pedal. note toe board clearance at pedal pad.

INSPECTION


Clean the following parts in cleaning solvent and check for wear, damage or other abnormal condition. Replace faulty parts

- 1 Return spring
- 2 Pedal sleeve
- 3 Pedal boss, etc

INSTALLATION

To install, reverse the order of removal Apply multi-purpose grease to the friction surfaces of the disassembled parts as shown in Figure CL-19

Note Refer to Figure CL-17 for the correct direction of return spring.

Fig CL-17 Hooking return spring

ADJUSTMENT

- Adjust pedal height to 175 mm (689 in) by adjusting pedal stopper and tighten lock nut "A" to specified torque
- Turn in or out push rod adjusting screw until a play of 1 to 5 mm (0 04 to 0 20 in) at clevis pin is obtained Then tighten lock nut "B" to specified torque

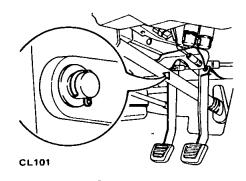


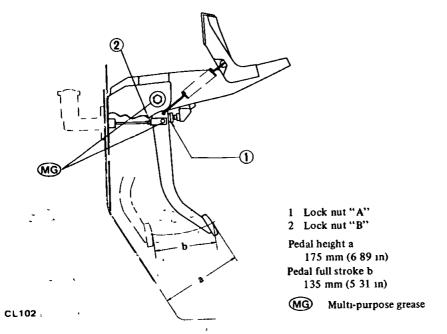
Fig CL-18 Bending clevis pin

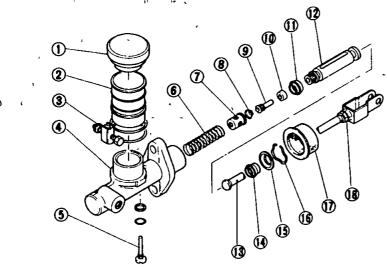
Notes

- a Exercise care in adjusting the play so as not to block the port on master cylinder A blocked port may result if there is too small a play at clevis pin
- b Bend clevis pin completely.

Tightening torque:

Pedal installation bolt (Fulcrum pin) 3 06 to 4.14 kg-m (22 to 30 ft-lb) Lock nut "A", "B" 0 79 to 1 07 kg-m (6 to 8 ft-lb)




Fig CL-19 Adjusting pedal height

Note. Depress and release clutch pedal over its entire stroke to ensure that the clutch linkage operates smoothly without squeaking noise, interference or binding

CLUTCH MASTER CYLINDER

REMOVAL

- 1 Pry off snap ring on clevis pin
- Remove clevis pin at push rod
- Disconnect clutch tube from master cylinder and drain brake fluid
- Remove nuts securing master cylinder to dash panel and disconnect master cylinder

- Reservoir cap
- Reservoir
- 3 Reservoir band
- Cylinder body

Supply valve stopper

- Return spring
- Primary cup
- Stopper ring

- Spring seat Valve spring
- 12 Piston
- Dust cover 17

- - 9 Supply valve rod 10 Supply valve
- Push rod 13 18 Lock nut 14 Secondary cup
- Stopper
 - **CL265**

Fig CL-20 Exploded view of clutch master cylinder

DISASSEMBLY

- Remove dust cover and take off stopper ring from body
- 2 Remove push rod and piston assembly
- Remove spring seat from piston and take off piston cup, if necessary See Figure CL-20

Note Discard piston cup if it is removed from piston assembly ...

INSPECTION

Note To clean or wash all parts of master cylinder, clean brake fluid must be used Never use mineral oils such as gasoline and kerosene It will ruin the rubber parts of the hydraulic system

- Check cylinder and piston for uneven wear or damage, and replace if necessary
- Renew piston cup when disassembled It must also be replaced when wear or deformation due to fatigue or damage is found
- Damaged dust cover, oil reservoir or cap, should be replaced Return spring and valve spring must also be replaced when they are broken or weak

ASSEMBLY

Assemble clutch master cylinder in the reverse procedures of disassembly, observing closely the following instructions

- Dip piston cup in brake fluid before installing Make sure that it is correctly faced in position
- Apply a coating of brake fluid to cylinder and piston when assembling

INSTALLATION

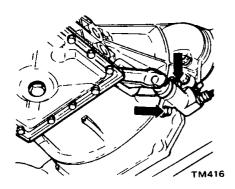
Install clutch master cylinder in the reverse procedures of removal, observing closely the following instructions

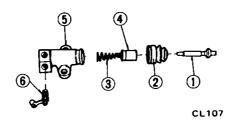
- Adjust the pedal height by changing the length of push rod, referring to Installation and Adjustment
- Bleed air out of hydraulic system, referring to Bleeding Clutch System

Tightening torque
Master cylinder to dash panel securing nut
0 79 to 1 07 kg-m
(6 to 8 ft-lb)
Clutch tube connector
1 5 to 1 8 kg-m
(11 to 13 ft-lb)

Note When installing clutch tube, use Flare Nut Torque Wrench GG94310000

OPERATING CYLINDER




Fig CL-21 Removing operating cylinder

REMOVAL

- 1 Detach clutch hose from operating cylinder
- 2 Remove two bolts securing operating cylinder to clutch housing

DISASSEMBLY

- 1 Remove push rod with dust cover
- 2 Remove piston assembly and piston spring
- 3 Remove bleeder screw

- 1 Push rod
- 4 Piston
- 2 Dust cover
- 5 Operating cylinder
- 3 Piston spring
- 6 Bleeder screw

Fig CL-22 Exploded view of operating cylinder

INSPECTION

Visually inspect all disassembled parts, replacing those worn or damaged beyond specifications

ASSEMBLY

Assemble in the reverse order of disassembly Closely observe the following instructions

1 Prior to assembly, dip piston cup in clean brake fluid

When installing cup, pay particular attention to its direction

2 Dip cylinder and piston in clean brake fluid before assembly

Note Be sure to install piston assembly with piston spring in place

INSTALLATION

Install in the reverse order of removal Closely observe the following instructions

Notes

a Bleed air thoroughly from clutch hydraulic system b Do not install return spring, or clutch will not disengage properly

Tightening torque
Operating cylinder
securing bolt
2 5 to 3 0 kg-m
(18 to 22 ft-lb)
Bleeder screw
0 7 to 0 9 kg-m
(5 to 7 ft-lb)

BLEEDING CLUTCH SYSTEM

To bleed clutch system, use the same procedure as described in Brake System

- 1 Fill oil reservoir of operating cylinder with brake fluid
- 2 Detach cap from bleeder screw on operating cylinder and, in its place, connect a vinyl tube
- 3 Pour a small amount of brake fluid into a clean container and insert the open end of the vinyl tube into it
- 4 Have a co-worker depress clutch pedal two or three times With clutch pedal depressed fully, loosen bleeder screw to bleed air out of clutch system
- 5. Tighten bleeder screw and release the pedal
- 6 Repeat above steps until no air bubbles appear in vinyl tube

Notes

- Always keep brake fluid in oil reservoir so that it flows continuously into the line
- b Use care not to allow brake fluid to come into contact with painted surfaces
- c Make sure that no leak occurs at connections
- d Pour brake fluid into oil reservoir up to the specified level

SERVICE DATA AND SPECIFICATIONS

Clutch cover 31 0 to 33 0 (1 220 to 1 229) Diaphragm spring-to-flywheel distance mm (in) Unevenness of diaphragm spring toe less than 0 5 (0 020) height mm (in) 450 (992) Full pressure kg (lb) Outer of flatness of pressure plate mm (in) 0 05 (0 0020) Allowable refacing limit mm (in) 10 (0 039) Clutch disc Facing size Outer dia x inside dia x thickness 'mm (ın) $200 \times 130 \times 35$ $(7.87 \times 5.12 \times 0.138)$ cm2 (sq in) Total friction area 362 (56 1) Thickness of disc assembly Free mm (ın) 8 5 to 9 2 (0 335 to 0 362) Compressed mm (ın) 7 6 to 8 0 (0 299 to 0 315) Number of torsion springs Allowable minimum depth of rivet head from surface mm (in) 03 (0012) Allowable facing runout mm (in) 0 5 (0 020) Allowable free play of spline (at the outer edge of disc) mm (in) 04 (0016) Clutch pedal Pedal height 175 (6 89) mm (in) 1 to 5 (0 04 to 0 20)

Pedal height mm (in) 175 (6 89)

Play at clevis pin mm (in) 1 to 5 (0 04 to 6 pull stroke mm (in) 135 (5 31)

Pressing strength at full stroke kg (lb) 10 4 (22 9)

Master cylinder-clutch

Diameter of master cylinder mm (in) 15 87 (%)

Allowable maximum clearance between cylinder and piston mm (in) 0 15 (0 0059)

Clutch operating cylinder

Diameter of operating cylinder mm (in) 19 05 (34)

Tightening torque
Clutch mounting bolt kg-m (ft-lb) 1 6 to 2 2 (12 to 16)

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause and testing	Corrective action		
Slipping clutch	Slipping of the clutch is obvious when any of operation	the following symptoms is encountered during		
	(1) Car will not respond to engine speed during acceleration			
	(2) Insufficient car speed	• *		
	(3) Lack of power during uphill driving			
	Some of the above conditions are also experienced when engine problem occurring F determine whether engine or clutch is causing the problem If slipping clutch is left unheeded, wear and/or overheating will occur on clutch facing until in no longer serviceable TO TEST THE CLUTCH FOR SLIPPING, proceed as follows During upgrade travelling, open throttle until engine is running at about 40 to 50 km/h (25 30 MPH) with gear shift lever in 3rd speed position. Now, shift into top gear and at the sa time rev up engine. If clutch is slipping, car will not respond soon to the operation accelerator pedal.			
	Clutch facing worn excessively	Replace ~		
-	Oil or grease on clutch facing	- Replace		
	Warped clutch cover or pressure plate	Repair or replace		
	TO TEST THE CLUTCH FOR DRAGGING OR GRABBING, proceed as follows (1) Start up engine Disengage clutch Shift into reverse gear, and then into Neutral Under this condition, gradually increase engine speed, and again shift into reverse gear If clutch is dragging, gear "grating" is heard when shifting from Neutral into Reverse			
	(2) Stop engine and shift gears (Conduct this test at each gear position)			
	(3) In step (2), gears are shifted smoothly except 1st speed position at idling			
	a If dragging is encountered at the end of shifting, check condition of transmission synchromechanism b If dragging is encountered at the beginning of shifting, proceed to step (4) below			
	(4) Push change lever toward Reverse side, depress pedal to check for free play			
	a If the pedal can be depressed further, check clutch condition b If the pedal cannot be depressed further, proceed to step (5) below			
	(5) Check clutch control (pedal height, free play, etc.) If no abnormal condition exists and if pedal cannot be depressed further, check clutch condition			
	Clutch disc runout or warped	Repair or replace		
•	Wear or rust on hub splines in clutch disc	Clean and lubricate with grease, or replace		
	Diaphragm spring toe height out of adjustment or toe tip worn	Adjust or replace		
+	Worn or improperly installed parts	Repair or replace		

Clutch

Condition -	. Probable cause and testing	Corrective action
Pulsating clutch	Pulsating clutch pedal is usually noticeable vengaged	when car just starts off and clutch is partially
	Weakened or broken clutch disc torsion spring	, Replace
	Oil or grease on clutch facing	Replace
	Clutch facing out of proper contact or clutch disc runout	Replace
•	Loose rivets	Replace
	Warped pressure plate or clutch cover surface	Repair or replace
	Unevenness of diaphragm spring toe height	Adjust or replace
1	Loose engine mounting or deteriorated rubber	Retighten or replace
Noisy clutch	A noise is heard after clutch is disengaged	-
	Damaged release bearing	Replace
* <u>-</u>	A noise is heard when clutch is disengaged	
ı	Insufficient grease on the sliding surface of bearing sleeve	Apply grease
	Clutch cover and bearing are not installed correctly	Adjust
ı	A noise is heard when the car is suddenly started	d off with clutch partially engaged
	Faulty pilot bushing	Replace
Rabbit-hopping clutch When "rabbit-hopping" of clutch occurs, car will not start off smoothly from clutch is engaged before clutch pedal is fully depressed		
•	Oil or grease on clutch facing	Replace
	Clutch facing worn or loose rivets	Replace
ن د	Wear or rust on splines in drive shaft and clutch disc	Clean or replace
	Warped flywheel or pressure plate	Repair or replace
	Loose mountings for engine or power train units	Retighten

SPECIAL SERVICE TOOLS

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
2	ST20050010 Base plate ST20050051 Set bolt ST20050100 Distance piece	SE002 7 8 (0 307)	710 610 510 C110 C130 230 C30	Fig CL-7
	7 8 mm (0 307 in)	SE003		
4	ST20050240 Diaphragm spring adjusting wrench	150 (5 91)————————————————————————————————————	710 610 510 C110 C130 230 C30	Fig CL-8
5	ST20660000 Clutch aligning bar	This tool is used to conduct disc centering by inserting the tool into pilot bushing in flywheel, when installing clutch assembly to flywheel SE001		Page CL-4 Fig CL-13
6	ST16610001 Pilot bushing puller	44 (1 73) SE 191	G20 G18 L24 L18 L16 L14	Fig CL-4
7	GG94310000 Flare nut torque wrench	This tool is used to tighten and loosen clutch tube flare nut	All models	Page CL-8
	-	233 (9 17) 228 (8 98) SE227		

DATSUN MODEL 610 SERIES

SECTION TM

TRANSMISSION

4-SPEED TRANSMISSION (Type: F4W63L)	TM- 2
5-SPEED TRANSMISSION (TYPE: FS5W63A)	TM-10
SERVICE DATA AND SPECIFICATIONS	TM-22
TROUBLE DIAGNOSES AND CORRECTIONS	TM-24
SPECIAL SERVICE TOOLS	TM-25

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

4-SPEED TRANSMISSION (TYPE: F4W63L)

CONTENTS

DESCRIPTION	TM-2	BAULK RINGS	TM-6
REMOVAL	TM-3	OIL SEAL	TM-6
DISASSEMBLY	TM-3	ASSEMBLY	TM-6
GEAR DISASSEMBLY	TM-4	FRONT COVER	TM-6
MAINSHAFT DISASSEMBLY	TM-4	REAR EXTENSION HOUSING	TM-7
MAIN DRIVE SHAFT DISASSEMBLY	TM-5	GEAR ASSEMBLY	TM-7
SYNCHROMESH DISASSEMBLY	TM-6	MAIN DRIVE GEAR ASSEMBLY	TM-8
INSPECTION	TM-6	REVERSE IDLER GEAR ASSEMBLY	TM-8
TRANSMISSION CASE AND		COUNTER GEAR ASSEMBLY	TM-8
REAR EXTENSION HOUSING	TM-6	TRANSMISSION ASSEMBLY	TM-9
BEARINGS	TM-6	INSTALLATION	TM-9
GEARS AND SHAFTS	TM-6		,,,,

DESCRIPTION

The transmission is a fully synchronized 4-speed type that uses helical gears. The reverse gear is a sliding mesh type using spur gears. In construction, the main drive gear is meshed with the counter drive gear. The forward speed gears provided on the countershaft are in constant mesh with the main gears. Each of the main gears rides on the mainshaft through the needle roller.

bearing, thus rotating freely on the mainshaft. When the transmission is shifted, the action causes the coupling sleeve to slide on the synchronizer hub. This engages its inner teeth with the outer teeth formed on the mainshaft gear.

The synchronizer hub is fitted to the mainshaft by spline so they turn together as a unit as the mainshaft is rotated. The transmission is of a Warner type On Warner type, the baulk rings synchronize the coupling sleeve with the mainshaft gear Placing the speed control lever in the reverse position throws the mainshaft reverse gear into engagement with the reverse idler gear, the transmission is reversed. The transmission consists of two major elements, a complete transmission case and a rear extension. The case contains all gears and gear shafts

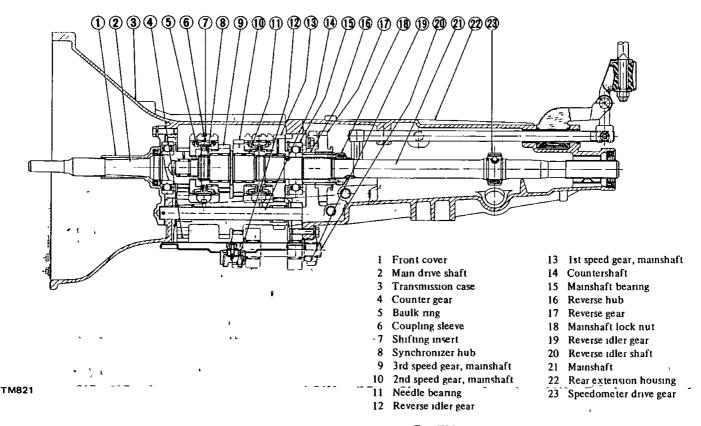
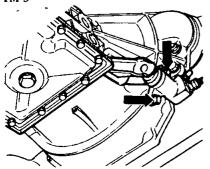


Fig TM-1 Sectional view of F4W63L transmission

REMOVAL


To dismount the transmission from the car, proceed as follows

- 1 Disconnect battery ground cable
- 2 Jack up the car and support its weight on safety stands Make sure that safety is insured
- 3 Loosen off control lever securing nut and remove lever See Figure TM-2

Fig TM-2 Removing control lever

- 4 Disconnect front exhaust tube
- 5 Disconnect wires from reverse lamp switch (back-up lamp switch) at connections
- 6 Remove clutch operating cylinder from transmission case See Figure TM-3

TM416
Fig TM-3 Removing clutch
operating cylinder

7 Disconnect speedometer cable from rear extension housing See Figure TM-4

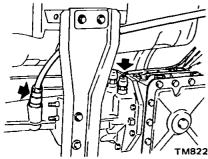


Fig TM-4 Disconnecting wires and cables

8 Disengage propeller shaft Refer to the section "Propeller Shaft"

Note Plug up the opening in rear extension housing to prevent oil from flowing out

- 9 Support the engine by locating a jack under oil pan with a wooden block used between oil pan and jack 10 Support the transmission by means of a jack
- 11 Remove two bolts securing transmission to rear engine mounting insulator, and remove four crossmember mounting bolts See Figure TM-5

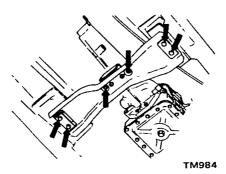
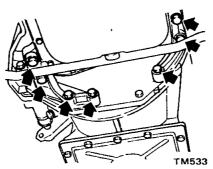
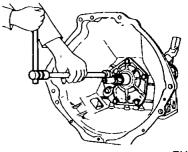


Fig TM-5 Removing crossmember

- 12 Lower jack so that transmission can be dismounted from the car easily
- 13 Remove starter motor from transmission case
- 14 Remove four bolts securing engine to gussets

Remove three bolts securing gussets to engine rear plate and transmission case, and separate gussets from engine block and transmission case See Figure TM-6




Fig TM-6 Removing gusset

Note These gussets are not used in the Station Wagon equipped with a 3-joint propeller shaft 15 Remove bolts securing transmission to engine, and move transmission backward and away from the car

Note Take care in dismounting the transmission not to strike any adjacent parts and main drive shaft

DISASSEMBLY

- 1 Thoroughly wipe clean dirt and grease from each component parts of transmission Drain out oil in transmission case Place the transmission on the suitable stand securely
- 2 Detach dust cover from transmission case Remove withdrawal leverand release bearing Remove five bolts securing front cover to transmission case, and detach front cover See Figure TM-7

TM241

Fig TM-7 Removing front cover

- 3 Detach bottom cover from transmission case
- 4 Remove reverse lamp switch and speedometer gear assembly from rear extension
- 5 Move gear to Neutral position
- 6 Pull out striking rod pin (1) See Figure TM-8

TM243

Fig TM-8 Disassembling rear extension

7 Remove six bolts securing rear extension to transmission case Detach rear extension housing by lightly tapping it with a soft hammer as shown in Figure TM-9

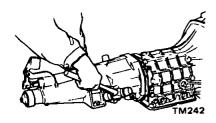


Fig TM-9 Removing rear extension housing

8 Draw out striking rod ② See Figure TM-8

GEAR DISASSEMBLY

1 Back off check ball plugs, and remove three locking springs and check balls Take care not to lose these parts See Figure TM-10

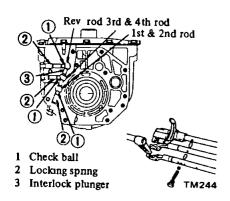


Fig TM-10 Layout of check balls and interlock plungers

2. Using Fork Rod Pin Punch ST23540000, drive out retaining pins from fork rod See Figure TM-11 Take care not to lose two plungers when drawing out fork rods

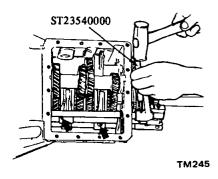


Fig TM-11 Removing retaining pins

3 Remove snap ring and speedometer drive gear Take care not to lose steel ball retaining speedometer drive gear

- 4 Mesh gear at two places Remove lock nut from mainshaft, and take out reverse gear and reverse gear hub
- 5 Using Countershaft Guide ST23100000, push out countershaft from the transmission case as shown in Figure TM-12 Take care not to drop needle bearings into case

Remove counter gear together with needle bearings and washers from transmission case

Note Make sure that washers used between counter gear and transmission case are removed

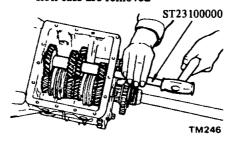


Fig TM-12 Pushing out countershaft

6 Pry off snap ring retaining reverse idler gear in place Withdraw idler gear shaft from the rear of transmission case See Figure TM-13

Note Do not remove needle bearing

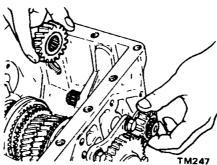


Fig TM-13 Removing reverse idler

7 Remove bolts securing mainshaft bearing retainer, and withdraw mainshaft assembly from the rear of transmission case See Figure TM-14

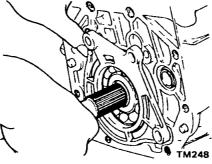
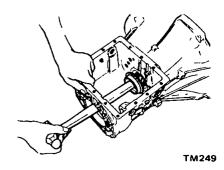
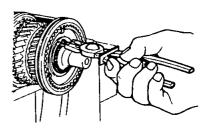



Fig TM-14 Removing mainshaft assembly


- 8 Take out pilot bearing located between mainshaft and main drive gear
- 9 Drive out main drive gear as shown using the wooden handle of a hammer See Figure TM-15

TM249
Fig TM-15 Removing main drive
gear assembly

MAINSHAFT DISASSEMBLY

1 Pry off snap ring on the front end of mainshaft, and remove 3rd & 4th synchromesh assembly and 3rd gear See Figure TM-16

TM418

Fig TM-16 Removing snap ring

- 2 Pry off snap rings, and remove speedometer drive gear
- 3 Remove lock nut from mainshaft, and take out reverse gear, reverse gear hub
- 4 Attach a suitable tool to the front side of 1st gear, and press out 1st gear together with ball bearing and retainer See Figure TM-17

Notes

- a Do not attach this tool to 2nd gear This may damage 1st gear mainshaft bushing
- b Be careful not to remove needle bearing together with 1st bearing, otherwise, needle bearing may interfere with steel ball, resulting in damaged bearing

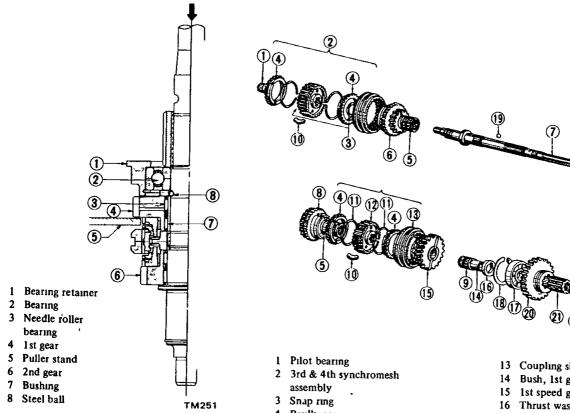
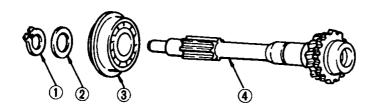


Fig TM-17 Drawing out mainshaft bearing

Then attach a proper puller stand to the front side of 2nd gear in the same manner as step 3, and press out 1st gear bushing together with 1st & 2nd synchromesh assembly and 2nd gear

Note Before conducting this opera-.tion, be sure to remove steel ball.

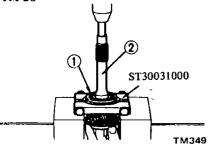
- 4 Baulk ring
- 5 Needle bearing
- 6 3rd speed gear, mainshaft
- Mainshaft
- 8 2nd speed gear, mainshaft
- 9 1st & 2nd synchromesh assembly
- 10 Shifting insert
- 11 Spread spring
- 12 Synchronizer hub


- 13 Coupling sleeve
- Bush, 1st gear
- 15 1st speed gear, mainshaft
- 16 Thrust washer, mainshaft
- 17 Mainshaft bearing
- 18 Snap ring, mainshaft bearing
- 19 Steel ball
- 20 Reverse gear
- 21 Reverse hub
- 22 Speedometer drive gear
- 23 Lock plate
- 24 Nut

TM829

Fig TM-18 Exploded view of mainshaft assembly (F4W63L transmission)

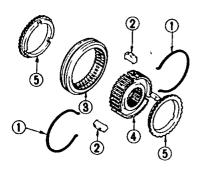
MAIN DRIVE SHAFT DISASSEMBLY


Pry off snap ring and remove spacer See Figure TM-19

- Snap ring
- Main drive bearing with snap ring
- Main drive gear

Fig TM-19 Exploded view of main drive shaft

Press out main drive shaft bearing with the use of an ordinary bearing puller and a suitable press See Figure TM-20



- 1 Main drive bearing
- 2 Main drive gear

Fig TM-20 Driving out main drive shaft bearing

SYNCHROMESH DISASSEMBLY

- Remove spread springs (1), and take out shifting inserts (2)
- Separate coupling sleeve (3) from synchro hub (4) See Figure TM-21

- Spread spring

 - Shifting insert Coupling sleeve
- Synchro hub
- Baulk ring

TM255

Fig TM-21 Exploded view of synchromesh assembly

INSPECTION

Wash clean all parts in an approved solvent, and check for wear or damage

TRANSMISSION CASE AND **REAR EXTENSION HOUSING**

Wash clean with an approved solvent and check for any crack which may be the cause of oil leak

If rear extension bush is worn or cracked, replace it as an assembly of bush and rear extension housing

BEARINGS

- - - - - - -

Wipe clean oil or grease on bear-

ings and dry these parts with compressed air

Check balls, outer race and inner race for wear, burr or damage Also check for smooth operation If necessary, replace See Figure TM-22

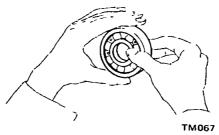


Fig TM-22 Checking ball bearing

GEARS AND SHAFTS

- Check gears for wear, crack or damage and, if necessary, replace
- Check shafts for wear, crack or bending If necessary, replace
- Check gears for end play See Figure TM-23

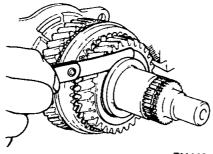
Standard end play

1st gear

0 32 to 0 42 mm

(0 0126 to 0 0165 in)

2nd gear


0 22 to 0 32 mm

(0 0087 to 0 0126 in)

3rd gear

-005-to0-15 mm (0 0020 to 0 0059 in)

Reverse idler gear 0 10 to 0 30 mm (0 0039 to 0 0118 in)

TM419

Fig TM-23 Measuring gear end play

Measure backlash in gears

Standard backlash 005 to 020 mm (0 0020 to 0 0079 m)

If the backlash exceeds the specified value, replace drive and driven gears as a set See Figure TM-24

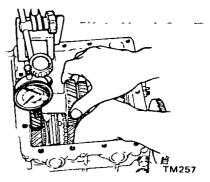


Fig TM-24 Measuring gear backlash

BAULK RINGS

- 1 Replace any baulk ring which is deformed or cracked
- Position baulk ring in place on 2 gear cone, and measure the baulk ring-to-gear clearance with baulk ring pushed toward gear See Figure TM-25

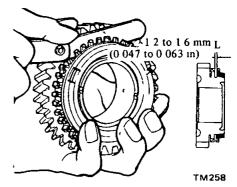


Fig TM-25 Baulk ring to cone gap

OIL SEAL

It is advisable not to reuse oil seals that have been removed Always install new oil seals

Replace oil seal if sealing lip is deformed or cracked Also discard oil seal if spring is out of position Check the oil seal lip contacting face on shaft, if necessary replace the seal and the shaft as a set

ASSEMBLY

To assemble, reverse the order of disassembly

FRONT COVER

Make sure that seal mating surface is clean

Using a press, drive new seal into place on front cover

2 Lubricate seal lip and main drive shaft with gear oil when installing oil seal See Figure TM-26

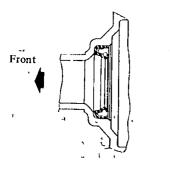


Fig TM-26 Location of front cover

TM354

REAR EXTENSION HOUSING

1 Clean rear extension housing and press oil seal into position Apply a coating of gear oil to sealing lip, when installing oil seal See Figure TM-27

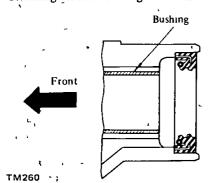


Fig TM-27 Location of rear extension housing oil seal

2 Install striking rod in place on rear extension housing

GEAR ASSEMBLY

- 1 Wash clean all parts and dry with compressed air
- 2 Assemble synchromesh assembly
- (1) Place synchro-hub into coupling sleeve
- (2) Fit shifting inserts in three grooves in synchronizer hub
- (3) Locate one spread spring on the lower side of shifting inserts to secure them to the inner side of coupling sleeve

Install the other spring on the opposite side of coupling sleeve properly Make sure that they are installed opposite to each other See Figure TM-28

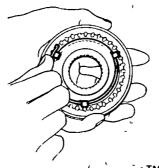


Fig TM-28 Installing spread spring

3 Install the following parts to mainshaft in the order listed 2nd gear needle roller bearing, 2nd gear, 2nd gear baulk ring, 1st & 2nd speed synchromesh assembly Then fit 1st gear bushing onto mainshaft by using a proper brass drift And install 1st gear baulk ring, needle bearing 1st gear, steel ball and thrust washer See Figures TM-29 and TM-30

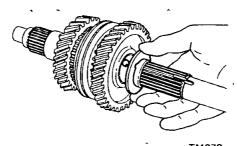
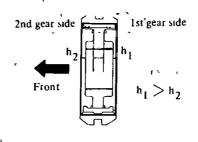
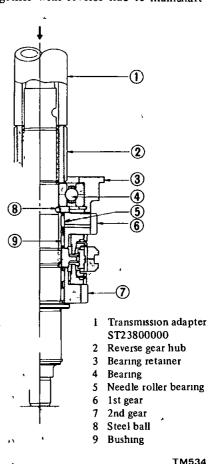
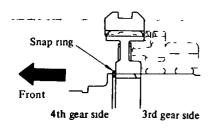




Fig TM-29 Installing thrust washer

TM262
Fig TM-30 Installing synchro hub

4 Using Transmission Adapter ST23800000 as shown in Figure TM-31, install mainshaft bearing together with reverse hub to mainshaft

1 W 534


Fig TM-31 Installing mainshaft bearing

- 5 Install 3rd gear needle roller bearing, 3rd baulk ring, 3rd & 4th speed synchromesh assembly to mainshaft
- 6 Fit a suitable snap ring in place so that there exists a minimum clearance between the end face of hub and ring groove See Figure TM-32

Refer to the following chart as a guide in selecting a suitable snap ring

Available synchro hub snap ring

+	
No	Thickness mm (in)
1	1 40 to 1 45 (0 0551 to 0 0571)
2	1 45 to 1 50 (0 0571 to 0 0591)
3	150 to 155 (0.0591 to 0.0610)
4	155 to 160 (00610 to 00630)
5	1 60 to 1 65 (0 0630 to 0 0650)

TM264 Fig TM-32 Installing synchro hub snap ring

Insert mainshaft assembly into position from the rear side of transmission case, and secure to transmission case with mainshaft bearing retainer mounting bolts

Tightening torque 08 to 10 kg-m (6 to 7 ft-lb)

MAIN DRIVE GEAR **ASSEMBLY**

- Using Mainshaft Bearing Drift ST22452000, press main drive bearing onto main drive shaft
- 2 Install a set of suitable spacer and snap ring into groove so that there exists a minimum clearance between the groove and end face of spacer See Figure TM-33 Be sure to install pilot bearing in place when istalling main drive gear assembly to transmission case

Mainshaft bearing retainer

Standard reverse idler gear end play 0 10 to 0 30 mm (0 0039 to 0 0118 m)

Available snap ring

No	Thickness mm (in)
1	1 15 to 1 25 (0 0453 to 0 0492)
2	1 35 to 1 45 (0 0531 to 0 0571)
3	1 25 to 1 35 (0 0492 to 0 0531)
4	1 45 to 1 55 (0 0571 to 0 0610)
5	1 05 to 1 15 (0 0413 to 0 0453)

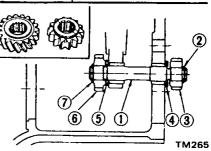
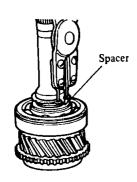


Fig TM-35 Assembling reverse idler gear assembly

Note Install thrust washers (4) and (5) so that grooved sides are facing toward gears

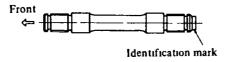
COUNTER GEAR ASSEMBLY


- To install needle roller bearing (3), washer (2) and Countershaft Guide ST23100000 into counter gear, proceed as follows (See Figure TM-36)
- (1) Apply grease to all needle roller bearings
- (2) Install washer 2 to counter gear, then assemble needle bearings coated with grease in counter gear

Notes

- a Be careful not to damage needle roller bearings
- b Use 42 needle roller bearings (21 on each side)
- c After attaching needle roller bearings in place, apply grease thickly so that bearings will not come off
- (3) Install washer 2

Chart-Snap ring thickness


No	Thick	Thickness mm (in)	
1	1 49 to 1 55	(0 0587 to 0 0610)	
2	156 to 162	(0 0614 to 0 0638)	
3	1 62 to 1 68	(0 0638 to 0 0661)	
4	1 68 to 1 74	(0 0661 to 0 0685)	
5	174 to 180	(0 0685 to 0 0709)	
6	180 to 186	(0 0709 to 0 0732)	
7	186 to 192	(0 0732 to 0 0756)	

TM085 Fig TM-33 Installing snap ring

REVERSE IDLER GEAR **ASSEMBLY**

Insert reverse idler shaft 1 into place in transmission case from rear with identification mark facing toward rear See Figure TM-34

TM249 Fig TM-34 Installing reverse idler shaft

- Referring to Figure TM-35, assemble thrust washer (5) and reverse idler gear (6) (herical gear) Seat snap ring (7) in groove in top of reverse idler shaft
- Insert a 0.1 mm (0.004 in) thickness gauge between herical gear 6 and thrust washer 5

With shaft (1) pushed fully toward rear, install thrust washer (4) and spur gear (3), then, fit snap ring (2) of proper thickness so that specified end play is obtained for reverse idler gear

(4) Insert Countershaft Guide ST23100000 into counter gear

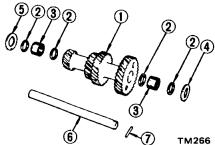


Fig TM-36 Exploded view of counter gear assembly

2 Install these parts together with washers (4) and (5) to transmission case, and insert countershaft (6) into counter gear through the hole of case, and retaining pin (7) into its hole on the front side of countershaft 3 Select and install rear thrust washer (5) of the suitable thickness until proper counter gear end play is obtained

Standard counter gear end play 0 05 to 0 15 mm (0 0020 to 0 0059 in)

Rear thrust washer

No	Thickness mm (in)
1	2 35 to 2 40
	(0 0925 to 0 0945)
2	2 40 to 2 45
	(0 0945 to 0 0965)
3	2 45 to 2 50
	(0 0965 to 0 0984)
4	2 50 to 2 55
	(0 0984 to 0 1004)
5	2 55 to 2 60
	(0 1004 to 0 1024)

TRANSMISSION ASSEMBLY

- 1 Install reverse gear hub, reverse gear and new mainshaft nut and tighten temporarily
- With gears meshed at two positions, tighten mainshaft nut to a torque of 8 0 to 11 0 kg-m (58 to 80 ft-lb) using Wrench ST22520000 See Figure TM-37
- 3 Stake mainshaft and countershaft nuts to groove of mainshaft with a punch See Figure TM-38
- 4 Install speedometer drive gear and snap rings

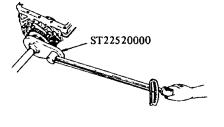


Fig TM-37 Tightening mainshaft nut

TM831

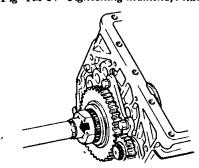


Fig TM-38 Staking mainshaft nut

5 Align 1st & 2nd shift fork ① and 3rd & 4th shift fork ② with the grooves on coupling sleeves respectively

Insert 1st & 2nd shift rod (3) and drive in pin (9) securely

With 1st & 2nd shift rod in Neutral position, install interlock plunger (4) and insert 3rd & 4th shift rod (5) into position, and drive in pin (9) securely

3 Place 3rd & 4th shift rod (5) into Neutral position, and install interlock plunger (6) Install reverse shift rod (8) through reverse shift fork (7), and secure with retaining pin (9) See Figure TM-39

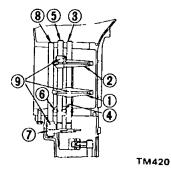


Fig TM-39 Installing shift rod & shift fork

6 Install check balls and locking springs at three places in the transmission case, and tighten with plugs Before tightening these plugs, apply sealant to plugs

Plug tightening torque 1 7 to 2 1 kg-m (12 to 15 ft-lb)

See Figure TM-40

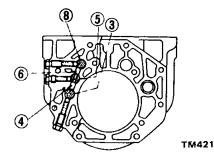


Fig TM-40 Interlock mechanism

- 7 Apply gear oil to all sliding parts, and make sure that gears are meshed smoothly in their positions
- 8 Make sure that gears are placed into Neutral positions, and install extension housing to transmission case by properly aligning striking lever with shift rod brackets
- 9 Install front cover on transmission case

Install release bearing, withdrawal lever and dust cover in their positions. Then apply grease (including molybdenum disulphide) as shown in Figure TM-41

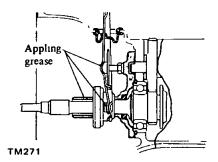


Fig TM-41 Applying grease

- 10 Install bottom cover to transmission case
- 11 Make sure that main drive shaft rotates smoothly at a force of 120 kg-cm (100 in-lb) with transmission in Neutral

INSTALLATION

To install, reverse the order of removal

Remove filler plug at the inspection hole, and fill the transmission case with gear oil to the level of the filler hole [Approximately 1 7 liters (3 % US pt, 3 Imp pt)]

5-SPEED TRANSMISSION (TYPE: FS5W63A)

CONTENTS

DESCRIPTION	TM-10	GEARS AND SHAFTS	TM-16
REMOVAL	TM-11	BAULK RINGS	TM-16
DISASSEMBLY	TM-11	OIL SEALS	TM-16
TRANSMISSION CASE DISASSEMBLY	TM-11	ASSEMBLY	TM-16
DISASSEMBLY OF GEAR ASSEMBLY	TM-12	FRONT COVER ASSEMBLY	TM-16
REAR EXTENSION DISASSEMBLY	TM-15	REAR EXTENSION ASSEMBLY	TM-17
ADAPTER PLATE DISASSEMBLY	TM-16	ADAPTER PLATE ASSEMBLY	TM-17
INSPECTION	TM-16	ASSEMBLY OF GEAR	
TRANSMISSION CASE AND		ASSEMBLY	TM-17
REAR EXTENSION HOUSING	TM-16	TRANSMISSION ASSEMBLY	TM-21
BEARING	TM-16	INSTALLATION	TM-22

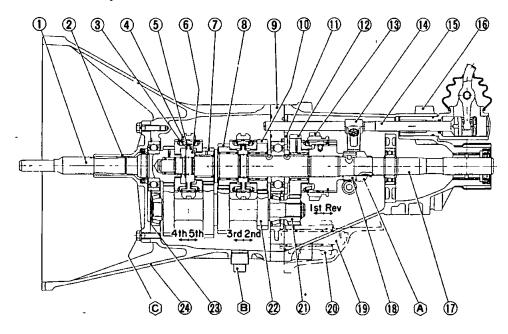
DESCRIPTION

The transmission is a 5-speed forward with overdrive (4 + OD - speed), fully synchronized constantmesh type that uses helical gears

The reverse gear is a sliding mesh type using spur gear provided on the outer side of 1st & Reverse coupling sleeve

In construction, the main drive gear is meshed with the counter drive gear. The forward speed gears provided on the countershaft are in constant mesh with the main gears which ride on the mainshaft freely through the needle

bearings


When the transmission is shifted, the action causes the coupling sleeve to slide on the synchronizer hub. This engages its inner teeth with the other teeth formed on the mainshaft gear. The synchronizer hub is fitted to the mainshaft by splines so they turn together as a unit as the mainshaft is rotated. The transmission is a Warner type. On Warner types, the baulk rings synchronize the coupling sleeve with the mainshaft gear. When the transmission is shifted into reverse position, the mainshaft reverse gear provided on the outer side of 1st & Reverse.

coupling sleeve, moves to mesh with the reverse idler gear, the transmission is reversed

The transmission assembly consists of three main parts, a transmission case with clutch housing, an adapter plate to which all gears and shafts are installed, and a rear extension

The cast-iron adapter plate supports the mainshaft, countershaft, reverse idler shaft and three fork rods, and is bolted at the front to the transmission case and, at the rear, to the rear extension by means of through-bolts

By removing these through-bolts all gears and shafts are stripped

- 1 Main drive gear
- 2 Front cover
- 3 Baulk ring
- 4 Coupling sleeve
- 5 Shifting insert
- 6 Synchronizer hub
- 7 5th gear, mainshaft8 3rd gear, mainshaft
- 9 Adapter plate
- 10 2nd gear, mainshaft
- 11 Bearing retainer
- 12 1st gear, mainshaft
- 13 Reverse gear, mainshaft
- 14 Striking lever
- 15 Striking rod
- 16 Rear extension
- 17 Mainshaft
- 18 Speedometer drive gear
- 19 Reverse idler shaft
- 20 Reverse idler gear
- 21 1st counter gear
- 22 Counter gear
- 23 Counter gear bearing shim
- 24 Transmission case

Tightening torque (T) of bolts and nut kg-m (ft-lb)

This nut should tightened by referring to page TM-27

- - - B T 25 to 35 (18 to 25)

© T 13 to 18 (9 to 13)

TM544

Fig TM-42 Sectional view of FS5W63A transmission

REMOVAL

To dismount transmission from the car, proceed as follows

- 1 Disconnect battery ground cable from terminal
- Disengage torsion shaft from ac-2 celerator linkage
- Place transmission control lever in neutral position
- Remove E-ring and control lever pin from transmission striking rod guide, and remove control lever See Figure TM-43

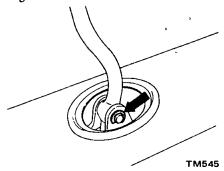


Fig TM-43 Removing control lever

Jack up the car and support its weight on safety stands Use a hydraulic hoist or open pit, if available

Confirm that safety is insured

- Disconnect front exhaust tube
- Disconnect wires from reverse lamp switch (1) See Figure TM-44
- Remove clutch operating cylinder (2) from transmission case See Figure TM-44
- Disconnect speedometer cable 3 from rear extension housing See Figure TM-44
- Remove propeller shaft Refer to Section PD (Page PD-3) for Removal

Note Plug up the opening in the rear extension housing to prevent oil from flowing out

- Support engine by locating a jack under oil pan with a wooden block placed between oil pan and jack
- Support transmission with a transmission jack
- Remove rear engine mount securing bolts (4) and crossmember mounting bolts 5 See Figure TM-44

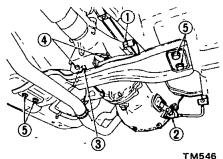


Fig TM-44 Bottom view of car

- 14 Remove starter motor
- Remove bolts securing transmis-15 sion to engine

After removing these bolts, support the engine and transmission with jacks, and then slide transmission rearward away from engine and remove from the car

Note Take care in dismounting transmission not to strike any adjacent parts or main drive shaft

DISASSEMBLY

TRANSMISSION CASE DISASSEMBLY

- Prior to disassembling transmission, thoroughly wipe off dirt and grease from it
- Drain oil thoroughly 2
- Remove dust cover from transmission case

Remove release bearing and withdrawal lever

- Remove reverse lamp switch
- Remove speedometer pinion and pinion sleeve by taking off lock plate
- Remove front cover securing bolts and remove front cover

Detach countershaft front bearing shim

Remove main drive bearing snap ring See Figure TM-45

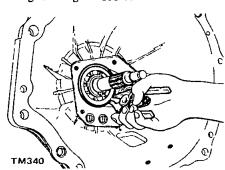


Fig TM-45 Removing main drive bearing snap ring

Remove reverse select return plug, reverse select return spring and plunger from rear extension See Figure TM-46

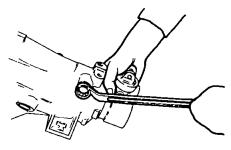
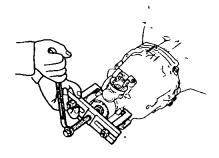



Fig TM-46 Removing reverse select return plug

Remove rear extension securing bolts Extract rear extension backward using a standard puller See Figure TM-47

TM548

Fig TM-47 Removing rear extension

Separate transmission case from adapter plate with a soft hammer See Figure TM-48

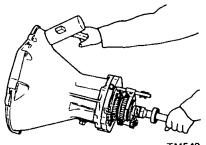


Fig TM-48 Removing transmission

Set up Setting Plate Adapter ST22490000 on adapter plate

With countershaft side up, place the above assembly in a vise See Figure TM-49

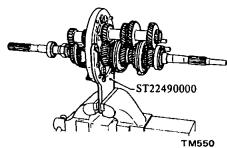
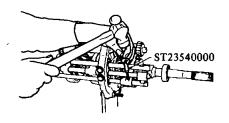



Fig TM-49 Attaching gear assembly to special tool

DISASSEMBLY OF GEAR ASSEMBLY

Shift forks and fork rods

1 Drive out retaining pins from each fork rod with Fork Rod Pin Punch ST23540000 See Figure TM-50

TM551

Fig TM-50 Drive out retaining pins

2 Remove three(3) check ball plugs, and drive out fork rods from adapter plate by lightly tapping on the front end

Be careful not to lose the three(3) check balls and two(2) interlock plungers See Figure TM-51

Note Each gear and shaft can be detached from adapter plate without removing each fork rod

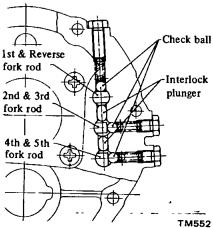


Fig TM-51 Layout of check ball and interlock plunger

Gear assembly

1 Remove reverse idler gear together with shaft See Figure TM-52

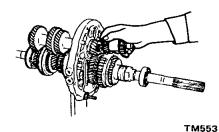
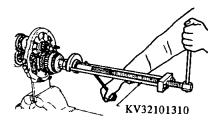



Fig TM-52 Removing reverse idler gear

2 Remove snap ring of mainshaft end bearing Draw out bearing using Bearing Puller KV32101310 Remove other snap ring of mainshaft end bearing See Figure TM-53

TM554
Fig TM-53 Removing mainshaft
end bearing

3 With 1st and 2nd gears doubly engaged, release caulking on mainshaft nut and loose it See Figure TM-54

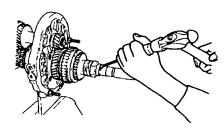
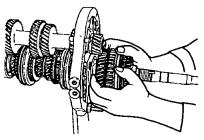
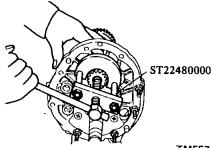



Fig TM-54 Releasing caulking on mainshaft nut

4 Remove mainshaft nut, and take out speedometer drive gear, synchro hub with reverse gear and 1st gear together with needle bearing Remove thrust washer Be careful not to lose steel ball retaining speedometer drive gear and thrust washer See Figure TM-55

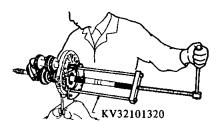


TM556

Fig TM-55 Removing reverse and lst gears

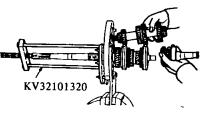
5 Remove snap ring and thrust washer from rear end of 1st counter gear

Draw out 1st counter gear using Gear Puller ST22480000 See Figure TM-56



TM557

Fig TM-56 Removing 1st counter gear
6 Draw out mainshaft gear as-


sembly using Mainshaft Puller KV32101320

Remove main drive gear and counter gear then draw out mainshaft about 10 mm (0 39 in) See Figures TM-57 and TM-58

TM558

Fig TM-57 Removing mainshaft gear

TMSSC

Fig TM-58 Removing main drive gear and counter gear

Note Be careful not to drop off gears

Mainshaft

- Remove thrust washer, steel ball, 2nd gear and needle bearing Be careful not to lose steel ball retaining thrust washer
- Press out 2nd gear mainshaft bushing together with 3rd gear and 2nd & 3rd speed synchronizer using Bearing Puller ST30031000 Figure TM-59

Note When pressing out bushing, hold mainshaft by hand so as not to drop it

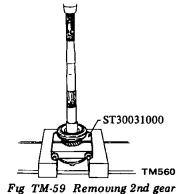


Fig TM-59 Removing 2nd gear mainshaft bushing

Pry off snap ring on the front end of mainshaft, and remove 4th & 5th speed synchronizer and 5th gear See Figure TM-60

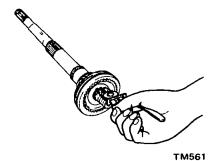


Fig TM-60 Removing snap ring

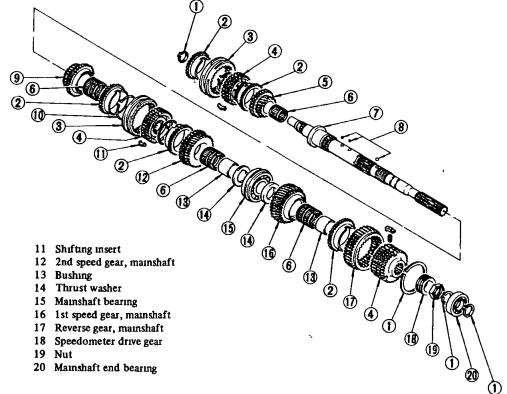


Fig TM-61 Exploded view of mainshaft assembly

TM562

2 Baulk ring

- 1 Snap ring
- 3 Coupling sleeve
- 4 Synchronizer hub
- 5 5th speed gear, mainshaft
- 6 Needle bearing
- Mainshaft
- 8 Steel ball
- 9 3rd speed gear, mainshaft
- 10 Spread spring

Main drive gear

- 1 Pry off snap ring and remove spacer
- Press out main drive bearing using Bearing Puller ST30031000 Figure TM-62

Note When pressing out bearing, hold gear by hand so as not to drop gear onto floor

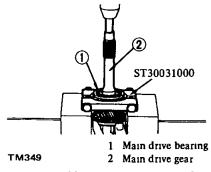
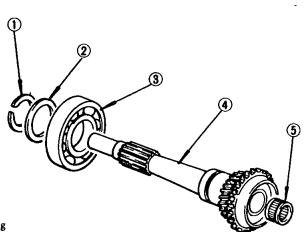



Fig TM-62 Removing main drive bearing

- 1 Snap ring
- 2 Spacer
- 3 Main drive bearing with snap ring
- 4 Main drive gear
- 5 Pilot bearing

TM563 Fig TM-63 Exploded view of main drive gear assembly

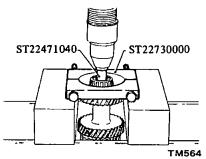
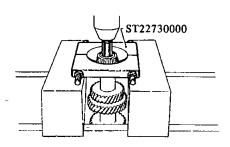
Counter gear

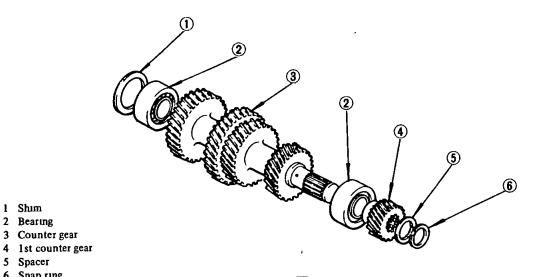
1 Shim 2 Bearing

5 Spacer 6 Snap ring

Press out counter gear front bearing using Bearing Puller ST22730000 and Adapter ST22471040 See Figure TM-64

Note When pressing out bearing, hold gear by hand so as not to drop gear onto floor

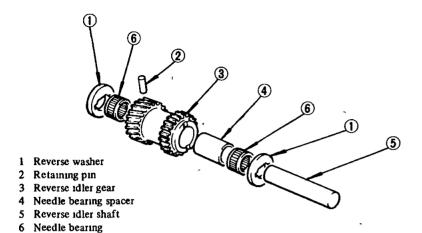




Fig TM-64 Removing counter gear front bearing

Press out counter gear rear bearing using Bearing Puller ST22730000 See Figure TM-65

Note Be careful not to drop off counter gear

TM565 Fig TM-65 Removing counter gear rear bearing



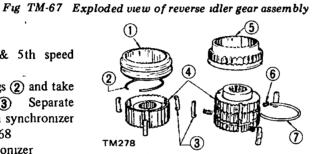
TM566

Fig TM-66 Exploded view of counter gear assembly

Reverse idler gear

Disassemble reverse idler gear assembly See Figure TM-67

TM567


Synchronizer

1 2nd & 3rd, 4th & 5th speed synchronizer

Remove spread springs ② and take out shifting inserts ③ Separate coupling sleeve ① from synchronizer hub ④ See Figure TM-68

2 1st & reverse synchronizer

Separate reverse main gear (5) from synchronizer hub (4) Take out shifting inserts (3) and synchro springs (6) Pry off stopper ring (7) See Figure TM-68

- 1 Coupling sleeve 5 Reverse gear
- 2 Spread spring ' 6 Synchro spring
- 3 Shifting insert 7 Stopper ring
- 4 Synchro hub

Fig TM-68 Exploded view of synchronizer assembly

REAR EXTENSION DISASSEMBLY

1 Remove screw and stopper pin from rear extension See Figure TM-69

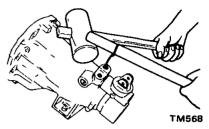


Fig TM-69 Removing stopper pin

2 Remove lock pin from striking lever, and remove striking rod See Figure TM-70

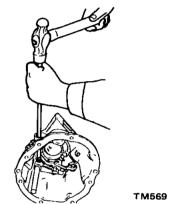
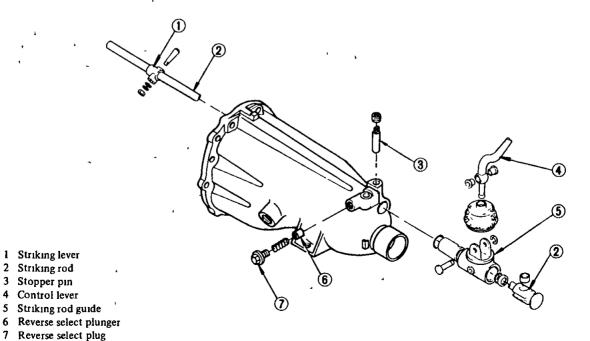



Fig TM-70 Removing lock pin

Note Do not disassemble rear extension bush from rear extension

TM570

Fig TM-71 Exploded view of shifting mechanism

ADAPTER PLATE DISASSEMBLY

1 Remove four bearing retainer attaching screws with an impact driver and remove bearing retainer from adapter plate See Figure TM-72

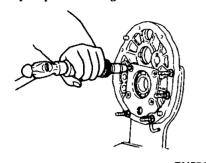


Fig TM-72 Removing screws

- 2 Remove mainshaft bearing from the rear extension side
- 3 To remove outer race of counter gear rear bearing, apply a brass drift to race side surface, and withdraw it by tapping the top of drift with a hammer

INSPECTION

Wash all parts in a suitable cleaning solvent and check for wear, damage or other faulty conditions

Notes

- a Be careful not to damage any parts with scraper
- b Do not clean, wash or soak oil seals in solvent

TRANSMISSION CASE AND REAR EXTENSION HOUSING

- 1 Clean thoroughly with solvent and check for cracks which might cause oil leak or other faulty conditions
- 2 Check mating surface of case to engine or adapter plate for small nicks, projection or sealant

Remove all nicks, projection or sealant with a fine stone

3 If rear extension bush is worm or cracked, replace it as an assembly of bush and rear extension housing

BEARING

- 1 Thoroughly clean bearing and dry with compressed air
- When race and ball surfaces are worn or rough, or when balls are out-of-round or rough, replace bearing with a new one See Figure TM-73

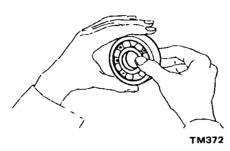


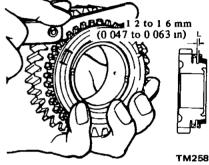
Fig TM-73 Inspecting ball bearing

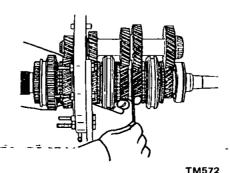
3 Replace needle bearing and taper roller bearing if worn or damaged

4 Check for stripped or damaged speedometer pinion gear If necessary, replace

BAULK RINGS

- 1 Replace any baulk ring which is deformed or cracked
- 2 Position baulk ring in place on gear cone, and measure the baulk ring-to-gear clearance with baulk ring pushed toward gear See Figure TM-75




Fig TM-75 Baulk ring to cone gap

GEARS AND SHAFTS

- 1 Check all gears for excessive wear, chips or cracks, replace as required
- 2 Check shaft for bending, cracks, wear, or worn spline, if necessary, replace
- 3 Measure gear end play See Figure TM-74

Standard end paly

1st gear 0.32 to 0 42 mm (0 0126 to 0 0165 m) 2nd gear 0 22 to 0 32 mm (0 0087 to 0 0126 m) 3rd and 5th gear 0 05 to 0 15 mm

(0 0020 to 0 0059 m)

Fig TM-74 Measuring end play

OIL SEALS

It is advisable not to reuse oil seals that have been removed. Always install new oil seals

Replace oil seal if sealing lip is deformed or cracked Also discard seal if spring is out of position Check the oil seal lip contacting face on shaft, if necessary replace seal and shaft as a set

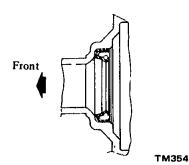
ASSEMBLY

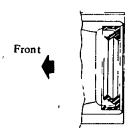
To assemble, reverse the order of disassembly Observe the following instructions

FRONT COVER ASSEMBLY

1 Wipe clean seal seat in front cover, then press fit oil seal in place

Coat oil seal with gear oil to provide initial lubrication See Figure TM-76




Fig TM-76 Front cover oil seal

2 Apply sealant to withdrawal lever ball pin screw Install withdrawal lever ball pin to front cover and tighten screw to 3 0 to 5 0 kg-m (22 to 36 ft-lb) torque

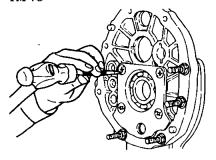
REAR EXTENSION ASSEMBLY

1 Wipe clean seal seat in rear extension housing, press fit oil seal in place

Coat oil seal and bushing with gear oil for initial lubrication See Figure TM-77

TM355 Fig TM-77 Rear extension oil seal

2 Apply multi-purpose grease to O-ring and plunger grooves in striking rod


Insert striking rod with striking rod guide through rear extension

3 Install striking lever on front end of striking rod Install lock pin and torque screw to 0 9 to 1 2 kg-m (7 to 9 ft-lb)

ADAPTER PLATE ASSEMBLY

- Install outer race of counter gear rear bearing by lightly tapping around it with a brass drift and a hammer
- 2 Install mainshaft bearing by lightly tapping around it with a soft hammer
- 3 Install bearing retainer in adapter plate

Torque screws to 0 8 to 1 3 kg-m (6 to 9 ft-lb) and stake each screw at two points with a punch See Figure TM-78

TM573
Fig TM-78 Staking screw

ASSEMBLY OF GEAR ASSEMBLY

Clean all parts in solvent and dry with compressed air

Synchronizers

- 1 2nd & 3rd, 4th & 5th speed synchronizers
- (1) Place synchro-hub into coupling sleeve

- (2) Fit shifting inserts in three grooves in synchronizer hub.
- (3) Locate one spread spring on the lower side of shifting inserts to secure them to the inner side of coupling sleeve Properly install the other spring on the opposite side of coupling sleeve Make sure that they are installed opposite to each other See Figure TM-79

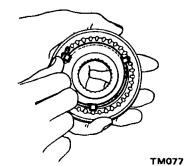


Fig TM-79 Installing spread spring

- 2 1st & reverse synchronizer
- (1) Position shifting insert springs and shifting inserts in three(3) slots in synchronizer hub
- (2) Put coupling sleeve on synchronizer hub

Mainshaft

- 1 Position 5th gear needle bearing, mainshaft 5th gear, baulk ring and 4th & 5th speed synchronizer on the front of mainshaft
- 2 Fit snap ring of proper thickness so that it will fit the groove in main-shaft See Figure TM-80

Available snap ring

No	Thickness mm (in)	
1	1 40 to 1 45 (0 0551 to 0 0571)	
2	1 45 to 1 50 (0 0571 to 0 0591)	
3	1 50 to 1 55 (0 0591 to 0 0610)	
4	1 55 to 1 60 (0 0610 to 0 0630)	
5	1 60 to 1 65 (0 0630 to 0 0650)	

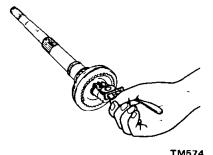


Fig TM-80 Installing snap ring

3 Install the following parts on mainshaft in the order listed 3rd gear needle roller bearing, 3rd gear, 3rd gear baulk ring, 2nd & 3rd speed synchronizer Then fit 2nd gear bushing onto mainshaft using Base ST30901000 and mainshaft bearing thrust washer See Figure TM-81 And install 2nd gear baulk ring, needle bearing, 2nd gear, steel ball and thin thrust washer

Note Assemble 2nd & 3rd speed Synchronizer, paying attention to its direction See Figure TM-82

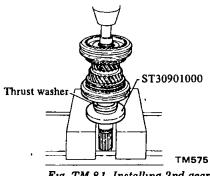


Fig TM-81 Installing 2nd gear bushing

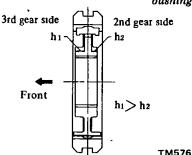


Fig TM-82 Installing 2nd & 3rd speed synchronizer

Main drive gear

1 Press main drive bearing onto the shaft of main drive gear using Base ST30901000 Make sure that snap ring groove on shaft clears bearing See Figure TM-83

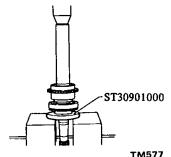
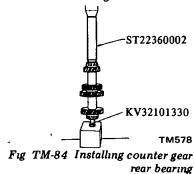


Fig TM-83 Installing main drive bearing


2 Place main drive bearing spacer on main drive bearing and secure main drive bearing with a new thicker snap ring that will eliminate end play

Available snap ring

No	Thickness mm (in)	
1	1 49 to 1 55 (0 0587 to 0 0610)	
2	1 56 to 1 62 (0 0614 to 0 0638)	
3	1 62 to 1 68 (0 0638 to 0 0661)	
4	1 68 to 1 74 (0 0661 to 0 0685)	
5	1 74 to 1 80 (0 0685 to 0 0709)	
6	1 80 to 1 86 (0 0709 to 0 0732)	
7	1 86 to 1 92 (0 0732 to 0 0756)	

Counter gear

- 1 Press counter gear front bearing onto counter gear using Drift ST22360002
- 2 Press counter gear rear bearing onto counter gear using Drift ST22360002 and Adapter KV32101330 See Figure TM-84

Reverse idler gear

Assemble reverse idler gear assembly

Note When positioning thrust washers on shaft, make sure that the brown surfaces are facing toward gears

Gear assembly

- 1 Attach Setting Plate Adapter ST22490000 to adapter plate and place it in a vise
- 2 Place mainshaft assembly into adapter plate assembly Place mainshaft nut onto mainshaft
- 3 Pull mainshaft assembly into adapter plate using Mainshaft Puller KV32101310, Bearing Puller KV32101320 and Adapter KV32101330 until the thrust washer-to-bearing clearance reaches approximately 10 mm (0 39 in) See Figures TM-85 and TM-86

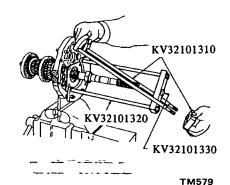
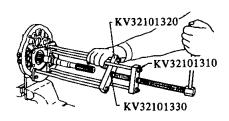
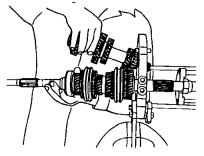



Fig TM-85 Setting special tools



TM580 Fig TM-86 Installing mainshaft assembly

4 Position baulk ring on cone surface of main drive gear Apply gear oil to mainshaft pilot bearing and install it on mainshaft

Assemble main drive gear assembly on the front end of mainshaft

Assemble counter gear assembly on mainshaft and main drive gear See Figure TM-87

TM581

Fig TM-87 Installing main drive gear

and counter gear

5 Pull mainshaft assembly into adapter plate together with main drive gear and counter gear

When installing mainshaft, hold gears carefully by hand and do not drop gears on floor See Figure TM-88

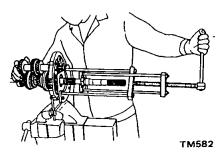


Fig TM-88 Installing mainshaft assembly

6 Press 1st counter gear onto counter shaft using Drift ST22360002 and Adapter KV32101330 See Figure TM-89

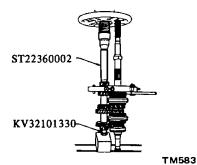
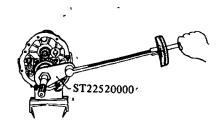



Fig TM-89 Installing 1st counter gear

- 7 Place spacer on the rear end of 1st counter gear and secure it with a new snap ring
- 8 Install the following parts to the rear of mainshaft in the order listed Steel ball, thick thrust washer, 1st gear bushing, needle bearing, 1st gear, 1st gear baulk ring, 1st synchronizer together with reverse main gear, steel ball, speedometer drive gear and mainshaft nut

Tighten mainshaft nut temporarily 9 With 1st and 2nd gears doubly engaged, tighten mainshaft nut to the converted torque "C" (See Figure TM-92) using Wrench ST22520000

Stake mainshaft nut to groove of mainshaft with a punch See Figures TM-90 and TM-91

TM584
Fig TM-90 Tightening mainshaft nut

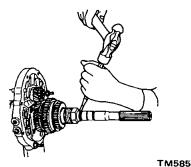
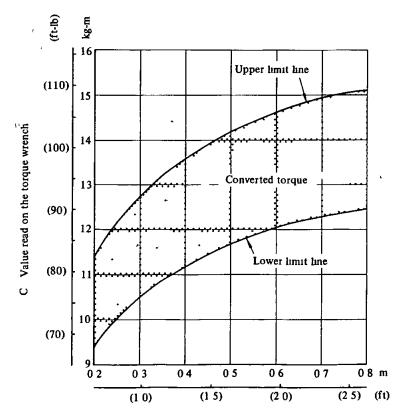



Fig TM-91 Staking mainshaft nut

L Effective length of torque wrench

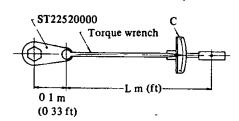
TM586

Fig TM-92 Converted torque

Explanation of converted torque

Mainshaft nut should be tightened to 14 to 17 kg-m (101 to 123 ft-lb) torque with the aid of Wrench ST22520000 When doing so, the amount of torque to be read on wrench needle should be modified according to the following formula

C kg·m =
$$14 \times \left(\frac{L}{L+0}\right)$$
 to
$$17 \times \left(\frac{L}{L+0}\right)$$


or

C (ft-lb) =
$$101 \times (\frac{L}{L + 0.33})$$
 to

$$123 \times (\frac{L}{L + 0.33})$$

Where,

- C Value read on the torque wrench kg-m (ft-lb)
- L Effective length of torque wrench m (ft)

TM587
Fig TM-93 Setting wrench

Example,

When a 0 4 m-long torque wrench is used, the "C" in Figure TM-92 will be 11 2 to 13 6 kg-m (81 to 98 ft-lb)

10 Measure gear end play

Make sure that they are held within the specified values

For details, refer to Page TM-24 for Inspection

- 11 Fit 1.1 mm (0.043 in) thick snap ring to the front side of main-shaft end bearing
- 12 Install mainshaft end bearing using Bearing Drift ST22350000 Fit thick snap ring to the rear side of bearing to eliminate end play

Available snap ring

No	Thickness mm (in)
1	1.1 (0 043)
2	1 2 (0 047)
3	1 3 (0 051)
4	1 4 (0 055)

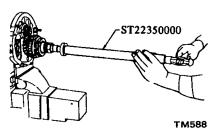


Fig TM-94 Installing mainshaft end bearing

13 Install reverse idler gear assembly

Shift forks and fork rods

- 1 Place three(3) shift forks in groove in each coupling sleeve Be careful not to drop off shift forks
- 2 Install 1st & reverse fork rod through 1st & reverse shift fork and adapter plate

Secure 1st & reverse fork rod to shift fork with new retaining pin

3 Install check ball, check ball spring, and check ball plug Prior to

tightening check ball plug, apply sealant to check ball plug

Align center notch in 1st & reverse fork rod with check ball

Note Ball plug for 1st & reverse fork rod is longer than those for 2nd & 3rd fork rod and 4th & 5th fork rod See Figure TM-51

- 4 Install interlock plunger on adapter plate See Figure TM-51
- 5 Install 2nd & 3rd fork rod through adapter plate, 2nd & 3rd shift fork and 4th & 5th shift fork, and secure with new retaining pin
- 6 Install check ball and check ball spring

Apply sealant to check ball plug and install it in place

Align center notch in 2nd & 3rd fork rod with check ball

- 7 Install interlock plunger on adapter plate
- 8 Install 4th & 5th fork rod through adapter plate and 4th & 5th shift fork, and secure with new retaining pin
- 9 Install check ball and check ball spring

Apply sealant to check ball plug and install it in place

- Torque each check ball plug to 1 6 to 2 2 kg-m (12 to 16 ft-lb)
- 11 Apply gear oil to all sliding surfaces and check to see that shift rods operate correctly and gears engage smoothly

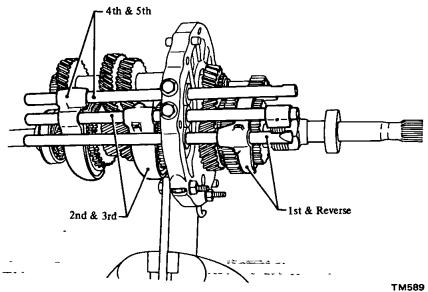


Fig TM-95 Installing shift forks and fork rods

TRANSMISSION ASSEMBLY

Rear extension assembly

1 Clean mating surfaces of adapter plate and rear extension

Apply sealant to mating surfaces of adapter plate and rear extension

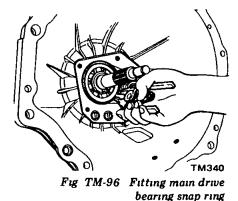
2 With fork rods in their 5th positions, gradually slide rear extension onto adapter plate

Notes

- a Use care when installing, not to come shift arm off striking lever pin
- b Install shift arm onto 4th & 5th fork rod, and then fit striking lever pin into other fork rods
- 3 Check to see that shift rods operate correctly

Transmission case assembly

1 Clean mating surfaces of adapter plate and transmission case


Apply sealant to mating surfaces of adapter plate and transmission case

2 Slide transmission case onto adapter plate by lightly tapping with a soft hammer until case presses against adapter plate

Carefully install main drive bearing and countershaft front bearing

Make certain that mainshaft rotates freely

- 3 Install washers and through-bolts and torque to 1 3 to 1 8 kg-m (9 to 13 ft-lb)
- 4 Fit main drive bearing snap ring to groove in main drive bearing See Figure TM-96

Front cover assembly

- 1 Select countershaft front bearing shim as follows
- (1) Support transmission assembly with its front side up
- (2) Place Counter Bearing Setting Gauge ST22500000 on countershaft front bearing, and turn main drive shaft until bearing is settled down
- (3) Measure the clearance (B) between the setting gauge and the front end of transmission case, using a thickness gauge See, Figures TM-97 and TM-98

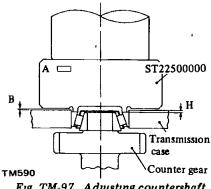


Fig TM-97 Adjusting countershaft front bearing shim

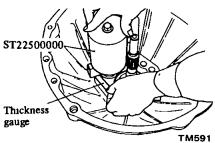


Fig TM-98 Measuring clearance

(4) The depth (H) can be obtained from the following formula

$$H = A - B$$

Where,

- H Depth from front, end of transmission case to countershaft front bearing
- A Figure marked on the setting gauge mm (in)

 B Measured value using thickness gauge mm (in)
- (5) Select a shim of thickness "H" measured

Available shim

No	"H" mm (ın)	Thickness of countershaft front bearing shim mm (in)
1	1 200 to 1 225 (0 0472 to 0 0482)	1 350 (0 0531)
2	1 225 to 1 250 (0 0482 to 0 0492)	1 375 (0 0541)
3	1 250 to 1 275 (0 0492 to 0 0502)	1 400 (0 0551)
4	1 275 to 1 300 (0 0502 to 0 0512)	1 425 (0 0561)
5	1 300 to 1 325 (0 0512 to 0 0522)	1 450 (0 0571)
6	1 325 to 1 350 (0 0522 to 0 0531)	1 475 (0 0581)
7	1 350 to 1 375 (0 0531 to 0 0541)	1 500 (0 0591)
8	1 375 to 1 400 (0 0541 to 0 0551)	1 525 (0 0600)
9	1 400 to 1 425 (0 0551 to 0 0561)	1 550 (0 0610)
10	1 425 to 1 450 (0 0561 to 0 0571)	1 575 (0 0620)
11	1 450 to 1 475 (0 0571 to 0 0581)	1 600 (0 0630)
12	1 475 to 1 500 (0 0581 to 0 0591)	1 625 (0 0640)
13	1 500 to 1 525 (0 0591 to 0 0600)	1 650 (0 0650)
14	1 525 to 1 550 (0 0600 to 0 0610)	1 675 (0 0659)
15	1 550 to 1 575 (0 0610 to 0 0620)	1 700 (0 0669)
16	1 575 to 1 600 (0 0620 to 0 0630)	1 725 (0 0679)
17	1 600 to 1 625 (0 0630 to 0 0640)	1 750 (0 0689)
18	1 625 to 1 650 (0 0640 to 0 0650)	1 775 (0 0699)

Example,

A = 175 mm, B = 022 mm

H = A - B

= 175 - 022

= 1 23 mm

The correct shim is 1-375 mm thick

2 Clean mating surfaces of front cover and transmission case

Apply grease to shim selected to retain it on countershaft front bearing, install front cover to transmission case Apply sealant to both surfaces of front cover and transmission case before installation

Install through-bolts with washers under them and tighten to 1 3 to 1 8 kg-m (9 to 13 ft-lb) torque

Apply sealant to threads of through-bolts before installation

3 Apply grease to reverse select

return plunger, install it in rear extension

Install reverse select return springs, and install reverse select return plug with sealant in place and torque to 0 8 to 1 0 kg·m (6 to 7 ft·lb)

- 4 Install speedometer pinion assembly on rear extension After making sure that lock plate is lined up with groove in speedometer pinion sleeve, install through-bolts and torque to 0 3 to 0 4 kg-m (2 to 3 ft-lb)
- 5 Install back-up lamp switch and torque to 20 to 30 kg-m (14 to 22 ft-lb)
- 6 Apply a light coat of multipurpose grease to withdrawal lever, release bearing and bearing sleeve, install them on clutch housing

After connecting them with holder spring, install dust cover on clutch housing

7 Install control lever temporarily, and shift control lever through all gears to make sure that gears operate smoothly

INSTALLATION

Install the transmission in the reverse order of removal paying attention to the following points

- 1 Before installing, clean mating surfaces of engine rear plate and transmission case
- 2 Before installing, lightly apply grease to spline parts of clutch disc and main drive gear
- 3 Remove filler plug and fill transmission with recommended gear oil to the level of the plug hole [Approximately 1 7 liters (3 % U S pt , 3 Imp pt)]

SERVICE DATA AND SPECIFICATIONS

GENERAL SPECIFICATIONS

	Car model	Hardtop	Sedan	Station Wagon
Item				Wagon
Transmission model		FS5W63A	F4V	/63L
No of speeds		5		1
Synchromesh type	}	Warner	Wa	rner
		Floor	Fle	oor
Shift type		R 2 4	1	3 4 R
	· 1st	3 382	3 3	82
	2nd	2 013	2 0	13
Gear ratio	3rd	1 312	1 3	12
Ovai latto	4th	1 000	1 0	00
	5th	0 854	_	
	Rev	3 570	3 3	64
Oil capacity	liter (US pt, Imp pt)	17(3 1/4, 3)	-

TIGHTENING TORQUE

Unit kg-m (ft-lb)

Transmission type	FS5W63A	F4W63L
Engine to transmission installation bolt	3 7 to 5 0 (27 to 36)	4 0 to 4 8 (29 to 35)
Clutch operating cylinder installation bolt	2 5 to 3 0 (18 to 22)	2 5 to 3 0 (18 to 22)
Propeller shaft to differential companion flange nut	2 4 to 3 3 (17 to 24)	2 4 to 3 3 (17 to 24)
Center bracket installation bolt	3 6 to 4 8 (26 to 35)	
Rear mounting insulator to transmission installation bolt	0 9 to 1 2 (7 to 9)	0 9 to 1 2 (7 to 9)
Crossmember mounting bolt	1 9 to 2 6 (14 to 19)	1 9 to 2 6 (14 to 19)
Mainshaft retainer to transmission case	0 8 to 1 3 (6 to 9)	0 8 to 1 0 (6 to 7)
Mainshaft nut	14 to 17 (101 to 123)	8 0 to 11 0 (58 to 80
Check ball plug	1 6 to 2 2 (12 to 16)	1 7 to 2 1 (12 to 15)
Rear extension installation bolt	1 3 to 1 8 (9 to 13)	1 4 to 1 8 (10 to 13)
Front cover installation bolt	1 3 to 1 8 (9 to 13)	0 8 to 1 0 (6 to 7)
Bottom cover installation bolt		0 8 to 1 0 (6 to 7)
Reverse select return plug	0 8 to 1 0 (6 to 7)	

SPECIFICATIONS

	Transmission type	FS5W63A	F4W63L	
Item		133 ((3)1	14005	
	1st	0 05 to 0 20 (0 0020 to 0 0079)	0 05 to 0 20 (0 0020 to 0 0079	
	2nd	0 05 to 0 20 (0 0020 to 0 0079)	0 05 to 0 20 (0 0020 to 0 0079	
Gear backlash	3rd	0 05 to 0 20 (0 0020 to 0 0079)	0 05 to 0 20 (0 0020 to 0 0079	
mm (ın)	5th	0 05 to 0 20 (0 0020 to 0 0079)		
	Rev	0 05 to 0 20 (0 0020 to 0 0079)	0 05 to 0 20 (0 0020 to 0 0079	
	Drive	0 05 to 0 20 (0 0020 to 0 0079)	0 05 to 0 20 (0 0020 to 0 0079	
	1st	0 32 to 0 42 (0 0126 to 0 0165)	0 32 to 0 42 (0 0126 to 0 0165	
	2nd	0 22 to 0 32 (0 0087 to 0 0126)	0 22 to 0 32 (0 0087 to 0 0126	
Gear end play	3rd	0 05 to 0 15 (0 0020 to 0 0059)	0 05 to 0 15 (0 0020 to 0 0059	
mm (in)	5th	0 05 to 0 15 (0 0020 to 0 0059)		
, ,	Rev Idler	0 15 to 0 40 (0 0059 to 0 0157)	0 10 to 0 30 (0 0039 to 0 0118	
	Counter gear		0 05 to 0 15 (0 0020 to 0 0059	
Clearance between	-standard	1 2 to 1 6 (0 047 to 0 063)	1 2 to 1 6 (0 047 to 0 063)	
baulk ring and gear mm (in)	-limit	0 5 (0 020)	0 5 (0 020)	
Counter bearing adjus	ting shim	1 350 to 1 775 (0 0531 to 0 0699) Every 0 025 (0 0010)		

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Difficult to intermesh gears Causes for difficult gear shifting are classified to troubles concerning control system and transmission. When gear shift lever is heavy and it is difficult to shift gears, clutch disengagement may also be unsmooth. First, make sure that clutch operates correctly, and inspect transmission.	Worn gears, shaft, and/or bearing Insufficient operating stroke due to worn or loose sliding part Worn or damaged synchronizer	Replace Repair or replace Replace
Gear slips out of mesh In most cases, this trouble occurs, when interlock ball, check ball, and/or spring is worn or weakened, or when control system is faulty. In this case, the trouble cannot be corrected by replacing gears, and therefore, trouble shooting must be carried out carefully. It should also be noted that gear slips out of mesh due to vibration generated by weakened front and rear engine mounts.	Worn interlock plunger Worn check ball and/or weakened or broken spring Worn fork rod ball groove Worn or damaged bearing Worn or damaged gear	Replace Replace Replace Replace Replace
Noise When noise occurs with engine idling and ceases when clutch is disengaged, or when noise occurs while shifting gears, it is an indication that the noise is from transmission Transmission may rattle during engine idling Check air-fuel mixture and ignition timing After above procedure, readjust engine idling	Insufficient or improper lubricant Oil leaking due to damaged oil seal or sealant, clogged breather, etc Worn bearing (High humming occurs at a high speed) Damaged bearing (Cyclic knocking sound occurs also at a low speed) Worn spline Worn bushing	Add oil or replace with designated oil Clean or replace Replace Replace Replace Replace Replace Replace Replace Reservation housing

SPECIAL SERVICE TOOLS

				_
No ·	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
1	ST23100000 Countershaft guide	For prevention of needle bearing from falling off when countershaft is removed from, or inserted into, the transmission case	63L, 65L & F60A T/M	Fig TM-12 Page TM-8 Page TM-9
		() 17 (0.67) dia		
2.	ST23540000 Fork rod pin punch	For removal and assembly of fork rod retaining pin.	63A, 63L & 71B, T/M	Fig TM-11 Fig TM-50
7 Aq 1		4 (0 16) dia 10 (0 39) dia	, 11	, 1 1 1
	, ,	, , , , SE082	,	
-3	ST30031000 Bearing puller	For replacing bearing outer dia 80 (3 15) inner dia. 50 (1 97)	63A, 65L, 63L & 71B T/M	Fig TM-20 Fig TM-59 Fig TM-62
	,	SE041		
4	ST22490000† Adapter setting plate	For setting adapter plate in a vise	63A T/M	Fig TM-49 Page TM-18
	<u></u>	SE311		

Transmission

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
5	KV321013S0 Puller set	For assembly of mainshaft assembly. (This set does not include screw shaft for ST22460001 Bearing Puller)	(63A T/M)	Fig. TM-85 Fig TM-86
	- KV32101310 Bearing puller	For removal of mainshaft end bearing, counter overdrive gear and bearing	63A & FS5W71B T/M	Fig TM-53 Fig. TM-85 Fig TM-86
		300 (11 81) SE308	-	
	– KV32101320 Mainshaft puller	For removal of mainshaft assembly 340 (13.39) 300 (11.81)	(63A T/M)	Fig TM-57 Fig TM-58 Fig TM-84 Fig TM-85 Fig TM-86 Fig TM-89
	KV32101330 Adapter	(Adapter ST22471040) SE309		
6	ST22480000 Gear puller	For removal of 1st counter gear.	(63A T/M)	Fig. TM-56
		120 (4 72)		
	· .	SE310		· · · · · · · · · · · · · · · · · · ·
7	ST22730000 Bearing puller	For removal of counter gear bearing.	63A T/M	Fig TM-64 Fig TM-65
		120 (4,72)		
	e e namer de e e siste	Outer dia 82 (3 23) Inner dia 30 (1 18) SE041		

				,	<u> </u>
No	Tool number & tool name	Description Uni	t mm (in)	For use on	Reference page or Figure No.
8	ST22360002 Bearing drift	For assembly of counter gear bearing and 1st counter gear	r. :	63A & 71B T/M	Fig TM-84 Fig TM-89
ļ	,	23 (0 91) dia. 29 (1.14) dia.			
			SE307		
9	ST30901000 Base	For assembly of main drive bearing and 2nd gear mainshal	ft bushing.	63A T/M	Fig TM-81 Fig. TM-83
	:	-45 (1 77) dia -35 5 (1 398) dia -80 (3 15) dia	,		
10	ST22520000 Wrench	For removal and assembly of mainshaft nut.	SE041	63L & 63A T/M	Fig TM-37 Fig TM-90 Fig. TM-93
	[38 mm (1 50 m)]	38 (1.50)			
			SE313		
11	ST22500000 Counter bearing setting tool	Thus tool is used to adjust counter bearing		63A T/M	Fig TM-97 Fig. TM-98
		35 5 (1 398) dia 80 (3 15) dia 45 (1 77) dia			
			SE312		

Transmission

	· & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
12	ST22350000 Mainshaft bearing drift	For assembly of mainshaft end bearing Outer dia 34 (1 34) Inner dia 28 (1 10) SE037	56A, 60 & 71B T/M	Fig TM-94
13	ST22452000 Mainshaft bearing drift	Outer dia 45 (1 77) Inner dia 36 (1 42)	63L	Page TM-8

SERVICE

DATSUN MODEL 610 SERIES

,

SECTION AT

AUTOMATIC TRANSMISSION

ΛТ

DESCRIPTION	AT- 2
CONSTRUCTION AND OPERATION	AT- 3
HYDRAULIC CONTROL SYSTEM	AT-10
REMOVAL AND INSTALLATION	AT-39
MAJOR REPAIR OPERATION	AT-44
TROUBLE DIAGNOSES AND ADJUSTMENT	AT-58
SERVICE DATA AND SPECIFICATIONS	AT-70
SPECIAL SERVICE TOOLS	AT-73

NISSAN MOTOR CO., LTD.

DESCRIPTION

The model 3N71B automatic transmission is a fully automatic unit consisting primarily of 3-element hydraulic torque converter and two planetary gear sets. Two multiple-disc clutches, a multiple-disc brake, a band brake and a one-way sprag clutch provide the friction elements required to obtain the desired function of the two planetary gear sets.

The two planetary gear sets give three forward ratios and one reverse Changing of the gear ratios is fully automatic in relation to vehicle speed and engine torque input Vehicle speed and engine manifold vacuum signals are constantly fed to the transmission to provide the proper gear ratio for maximum efficiency and performance at all throttle openings

The model 3N71B has six selector positions P, R, N, D, 2, 1

"P" - Park position positively locks the output shaft to the transmission case by means of a locking pawl to prevent the vehicle from rolling in either direction

This position should be selected whenever the driver leaves the vehicle

The engine may be started in Park position

"R" - Reverse range enables the vehicle to be operated in a reverse direction

"N" - Neutral position enables the engine to be started and run without driving the vehicle

"D" - Drive 'range is used for all normal driving conditions

Drive range has three gear ratios, from the starting ratio to direct drive

"2" - "2" range provides performance for driving on slippery surfaces "2" range can also be used for engine braking

"2" range can be selected at any vehicle speed, and prevents the transmission from shifting out of second gear

"1" — "1" range can be selected at any vehicle speed and the transmission will shift to second gear and remain in second until vehicle speed is reduced to approximately 40 to 50 km/h (25 to 31 MPH)

"1" range position prevents the transmission from shifting out of low gear This is particularly beneficial for maintaining maximum engine braking when continuous low gear operation is desirable

The torque converter assembly is of welded construction and can not be disassembled for service

Use automatic transmission fluid having "DEXRON" identifications only in the 3N71B automatic transmission

IDENTIFICATION NUMBER

Stamped position:

The plate is attached to the right hand side of transmission case as shown in Figure AT-1

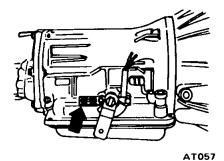
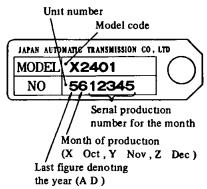



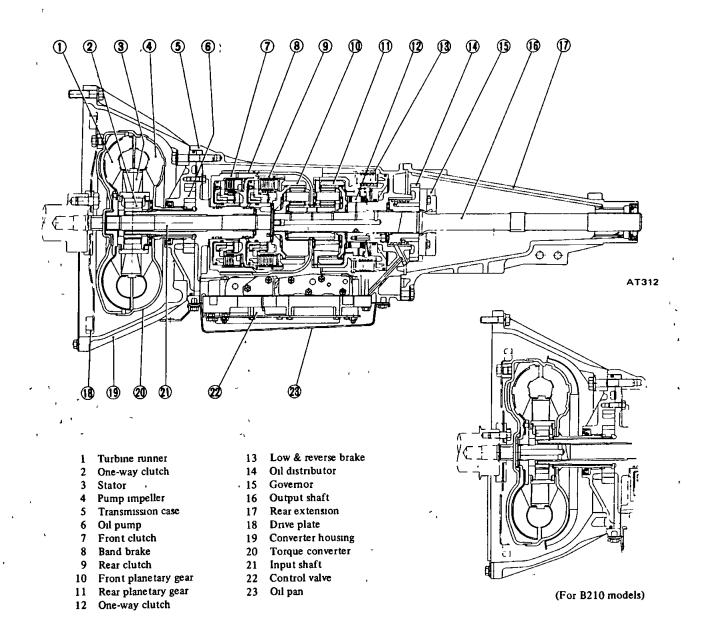
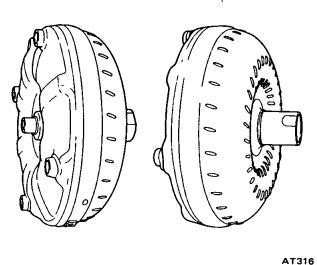
Fig AT-1 Identification number

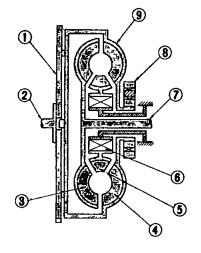
Identification of number arrangements:

CONSTRUCTION AND OPERATION

CONTENTS

TORQUE CONVERTER	AT-4	BAND BRAKE	AT-8
TRANSMISSION	AT-6	LOW AND REVERSE BRAKE	AT-9
OIL PUMP	AT-7	PLANETARY GEAR	AT-9
FRONT CLUTCH	AT- 7	ONE-WAY CLUTCH	AT-9
REAR CLUTCH	AT-8		


Fig AT-2 Cross-sectional view of 3N71B automatic transmission

TORQUE CONVERTER

The torque converter consists of

one impeller connected to the engine crankshaft through the drive plate, one turbine splined to the transmission input shaft, and one stator connected to the transmission case through a one-way clutch. The converter assembly is welded together and cannot be disassembled for service.

- Drive plate
- Crankshaft
- Turbine
- 4 Torque converter
- 5 Oil pump
- 6 Input shaft
- 7 One-way clutch
- 8 Stator
- Impeller

AT063

T316

Fig AT-3 Torque converter

The operation of a torque converter is characterized by the fact that besides merely rotating the turbine runner by the action of the pump impeller, it increases the engine torque and transmits it to the transmission This torque-multiplying function is the most outstanding feature of a torque converter, and for that reason, it is distinguished from an ordinary fluidcoupling mechanism The torquemultiplying action is effected by the presence of a stator located in the converter Figures AT-5 and AT-6 show the direction of the oil flow taking place in a torque converter

1 The oil which has been introduced at the center of pump impeller is thrown outward by the centrifugal force of the impeller as it rotates

The direction of oil flow is so regulated by the blades of pump impeller that it will properly strike the blades of turbine runner

The oil first strikes the surface of turbine runner, and then flows through the runner towards its back side

The blades of turbine runner are so shaped as to obstruct the flow of oil Therefore, the force of oil flow is

converted into the torque that tends to rotate the turbine runner itself

3 The direction of the flow of oil which has been discharged from the back side of the turbine runner is changed by the stator blades, and the oil again enters the pump impeller. The oil thus circulates through a closed circuit which is constituted by the pump impeller, turbine runner and stator. In this closed circuit, the sum of action and reaction becomes zero

Figure AT-7 analytically shows the action of oil and the direction of rotation of each blade, by parallely placing the blades It will be noted from the diagram that the flow of oil which has passed through the pump impeller and turbine runner will exert a force to rotate the stator But, by the action of a one-way clutch which is equipped in the stator, the stator is allowed only to rotate in the opposite direction, and will not rotate in the direction of force exerted by the oil The oil which has left the stator enters the pump impeller and flows through a circulating circuit, and during this circulation of oil, the torque T₁ exerted by the oil in the pump impeller and the torque T_3 exerted by the oil in the stator act in the same direction. Thus, there exists the following relation between these torques and the torque T_2 exerted by the oil in the turbine runner.

$$T_1 + T_3 = T_2$$

For this reason, the torque exerted on the turbine runner is increased by the amount of the torque which is exerted on the stator This is why torque is multiplied in a torque converter

When the revolution speed of the turbine runner increases and approaches near that of the pump impeller, the direction of oil which has left the pump impeller is changed and begins to strike the opposite side of the stator blade, giving the stator a free rotation in the direction which is not locked by the one-way clutch The waste of engine power is thus avoided This relation is shown in Figure AT-8, and the characteristic curve of the torque converter is shown in Figure AT-4

The torque ratio, speed ratio, and the efficiency are expressed as follows

Torque ratio = $\frac{\text{Output torque}}{\text{Input torque}}$

Speed ratio $= \frac{\text{Output speed}}{\text{Input speed}}$

Efficiency = $\frac{\text{Output horsepower}}{\text{Input horsepower}}$

The state of oil circulation in which the stator is locked by the flow of oil is called the "converter range", whereas the state in which the rotor is turned by the oil flow is called the "coupling range"

In the coupling range, the stator only makes idle rotation presenting a state similar to that of a fluid coupling, with no increase in torque. The point where the speed ratio becomes zero, that is, the state in which only the pump shaft (engine side) rotates and the turbine shaft is held stationary (The vehicle being stand-still) is called the "stall" Under this condition, the torque ratio between the turbine shaft and the pump shaft attains a maxi-

mum value, and this torque ratio is called the "stall torque ratio"

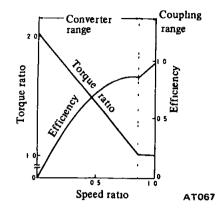
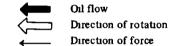



Fig AT-4 Characteristic curve of torque converter

T₁ = The force exerted by the oil of pump

 T_2 = The force exerted by the oil of turbine

 T_3 = The force exerted by the oil of stator

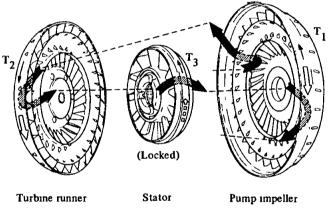
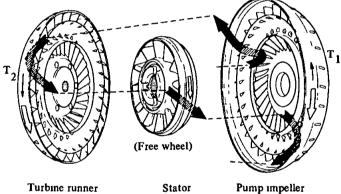
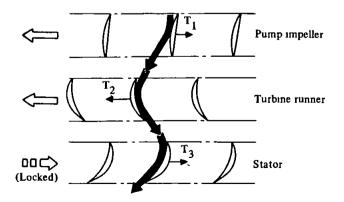
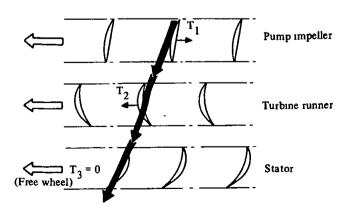




Fig AT-5 Torque converter oil flow (Converter range)


AT318
Fig AT-6 Torque converter oil flow
(Coupling range)

AT319

Fig AT-7 Oil flow between each

blade (Converter range)

AT320

Fig AT-8 Oil flow between each blade (Coupling range)

TRANSMISSION

The transmission is a mechanism which changes the speed of input shaft that is transmitted from the engine through the torque converter, and then transmits the power to the propeller shaft

In the transmission mechanism, a planetary gear is employed In the planetary gear, a wide range of speed changes is performed by rotating or locking its internal gear, pinion carrier, or sun gear In model 3N71B automatic transmission, automatic speed change is obtained by combining two simple-type planetary gears in the arrangement of the Sympson gear train The Sympson gear train is a kind of planetary gear arrangement invented by Howard Sympson, an American engineer

The transmission comprises the following parts as the principal elements for power transmission

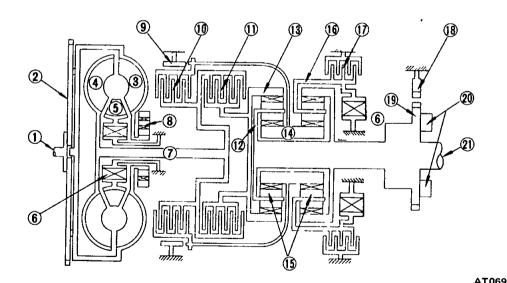
(A) Clutches and bands (front clutch, rear clutch, low and reverse

brakes, band brake, and one-way clutch)

(B) Planetary gear

The power is transmitted in the following manner

The torque of turbine which has been converted by the torque converter is first transmitted to the input shaft through the spline, clutch, and gear This torque is then transmitted to the rear clutch drum in the transmission


As the clutch plate of the front clutch is connected to the front side of the rear clutch drum by a spline, it rotates at the same speed as the rear clutch drum (See paragraph under "Clutch") When oil pressure is exerted on the front clutch piston, the clutch plates (drive plate and driven plate) are forced to couple together Therefore, the rotation of the input shaft is transmitted to the sun gear through both the rear clutch and the connecting shell which is coupled to

the front clutch drum by the clutch plates On the other hand, when the rear clutch is coupled together, the front internal gear is rotated which is connected to the rear clutch hub through a spline

When the servo piston of the band brake operates, the rotation of front clutch drum is stopped, and the sun gear which is connected to it by the connecting shell is held stationary This sun gear is always kept in mesh with the front and rear planetary gears

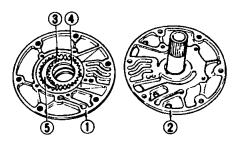
The rear planetary gear carrier is connected to the connecting drum on its periphery, and this periphery at the same time serves as the hub of the low and reverse brake

The engine power is thus transmitted from the output shaft to the propeller shaft after its speed has been changed by the planetary gear in the transmission, and this output shaft is splined to the planetary gear carrier at the front end, and to the internal drive flange at the rear end

- Engine crankshaft
- Drive plate
- 3 Pump impeller
- Turbine runner
- Stator
- One-way clutch

- Input shaft
- Oil pump
- Brake band 10 Front clutch
- Rear clutch
- 12 Front planetary carrier
- 13 Internal gear
- 14 Sun gear

- 15 Planetary pinion
- Rear planetary carrier 16
- Low and reverse brake 17
- 18 Parking pawl
- 19 Oil distributor
- Governors 20
- Output shaft


Fig AT-9 Schematic drawing showing concept of automatic transmission

In the 3N71B automatic transmission, each part operates as shown in the following table at each gear select position

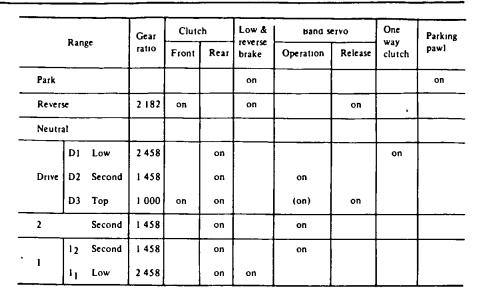
OIL PUMP

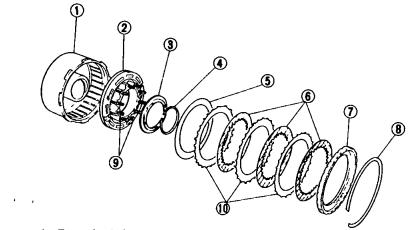
The oil pump is an internally meshed involute gear pump, and its inner gear is rotated at the same speed as the engine by the drive sleeve which forms a portion of the pump impeller of the torque converter

The oil pump serves to supply the oil for the operation of torque converter, to lubricate every mechanism, and to provide oil for the operation of all friction elements (clutches and bands) and the control system

- 1 Housing
- 2 Cover
- 3 Outer gear
- AT071 4 Inner gear
- 5 Crescent
- -

Fig AT-10 Oil pump


FRONT CLUTCH


Illustration "A" in Figure AT-11 shows the state when oil pressure is exerted on the piston Under this condition, clutch plates come into rigid contact with each other and the rotation of the hub is transmitted to the clutch drum

When the oil pressure is released as shown at "B", the return springs move the piston to the released position and the clutch plates are released

When oil pressure works on the front clutch piston and the clutch plates engage, the sun gear is rotated through the connecting shell which is connected to the front clutch drum

The front clutch is used only in "Reverse" and in "3rd forward gear" positions

- 1 Front clutch drum
- 2 Clutch piston
- 3 Spring retainer
- 4 Snap ring
- 5 Dished plate
- 6 Drive plate
- 7 Retaining plate
- 8 Snap ring
- 9 Return spring
- 10 Driven plate

AŢ321

Fig AT-11 Components of front clutch

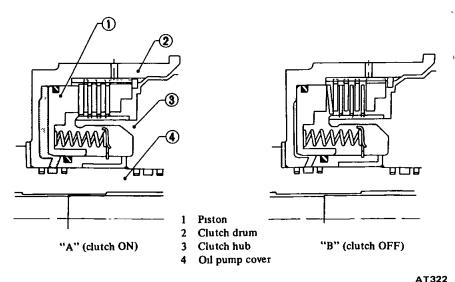


Fig AT-12 Operation of clutch

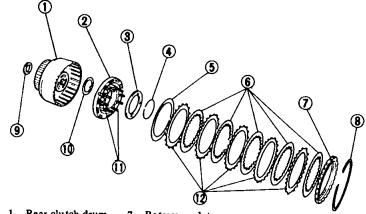
REAR CLUTCH

The rear clutch drum is driven by the input shaft through the spline connection The rotation of this rear clutch drum drives the steel drive plates in the real clutch and the lined drive plates in the front clutch

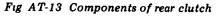
When the rear clutch piston is applied by oil pressure, the movement of the piston against the return springs locks the steel and lined clutch plates together to drive the rear clutch hub and the front internal gear

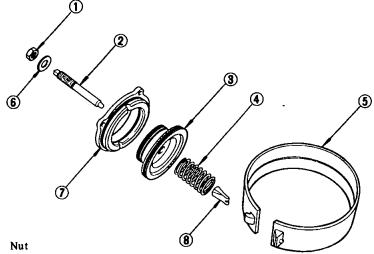
When the oil pressure is released, the return springs move the piston to the released position and the steel and lined clutch plates are released

This stops the rotation of the rear clutch hub and the front internal gear The rear clutch is applied in all forward drive gear ranges


BAND BRAKE

One end of the band brake is locked to the transmission case by the_ anchor end pin


When oil pressure is directed to the apply side of the servo piston, the piston moves against the return spring to tighten the brake band around the front clutch drum, connecting shell and sun gear


To release the servo piston, the oil pressure is directed to the release side of the servo piston. The release pressure is assisted by the compressed return spring to move the servo piston and brake band to the released posi-

The band brake is applied only in the 2nd forward speed range

- Rear clutch drum
- Clutch piston
- Spring retainer
- Snap ring
- Dished plate
- Drive plate
- Retaining plate
- Snap ring
- 9 Needle bearing
- 10 Bearing race
- Return spring 11
- 12 Drive plate

- 1
- Piston stem
- Band servo piston
- Return spring
- Brake band
- Washer
- Servo retainer
- Band strut

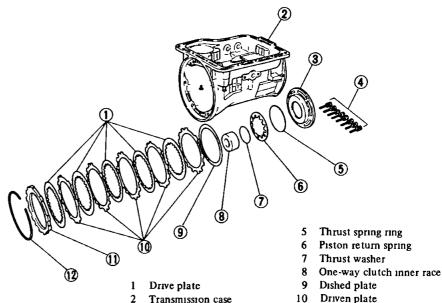
AT324

Fig AT-14 Components of band brake

LOW AND REVERSE BRAKE

The steel driven plates of low and reverse brake are locked to the transmission case through the spline connection

When oil pressure is directed to the low and reverse brake piston, the piston moves against the return spring (disc spring)


The piston movement locks the steel and lined plates together Then, the lined plates lock the connecting shell and sun gear

When the oil pressure is released, the return spring moves back the piston to the relased position The steel and lined plates are now released

The low and reverse brake is applied in the 1st forward speed of "1" range and "R" range

PLANETARY GEAR

The planetary gear is of nonassembly type and is combined three planet pinions

- Transmission case
- Low & reverse brake piston
- Hex-slotted bolt
- Retaining plate 11
 - Snap ring AT325

Fig AT-15 Components of low and reverse brake

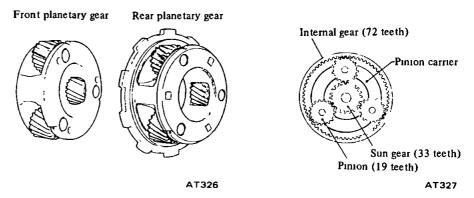
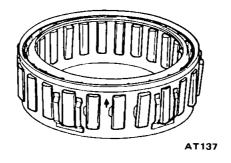



Fig AT-16 Components of planetary gear

ONE-WAY CLUTCH

The one-way clutch adopts the sprag type In this mechanism the rotation in one direction alone is allowed and that in the opposite direction is prohibited by the difference in the diagonal length of a roller as shown in Figure AT-17

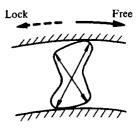
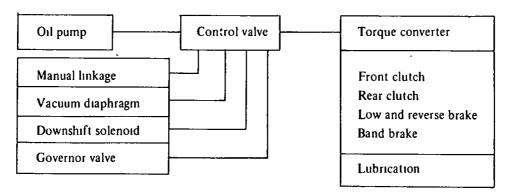


Fig AT-17 One-way clutch

HYDRAULIC CONTROL SYSTEM


CONTENTS

FUNCTIONS OF HYDRAULIC CONTROL		"P" RANGE (PARK)	AT-20
UNIT AND VALVES	AT-10	"R" RANGE (REVERSE)	AT-22
OIL PUMP	AT-10	"N" RANGE (NEUTRAL)	AT-24
MANUAL LINKAGE	AT-10	"D ₁ " RANGE (LOW GEAR)	AT-26
VACUUM DIAPHRAGM	AT-11	"D ₂ " RANGE (2ND GEAR)	AT-28
DOWNSHIFT SOLENOID	AT-11	"D3" RANGE (TOP GEAR)	AT-30
GOVERNOR VALVE	AT-11	"D" RANGE KICK-DOWN	AT-32
CONTROL VALVE ASSEMBLY	AT-12	"2" RANGE (2ND GEAR)	AT-34
HYDRAULIC SYSTEM AND		"1," RANGE (LOW GEAR)	AT-36
MECHANICAL OPERATION	AT-18	"1," RANGE (2ND GEAR)	AT-38

FUNCTIONS OF HYDRAULIC CONTROL UNIT AND VALVES

The hydraulic control system con-

tains an oil pump for packing up oil from the oil pan through the oil strainer A shift control is provided by two centrifugally operated hydraulic governors on the output shaft, vacuum control diaphragm and downshift solenoid These parts work in conjunction with valves in the valve body assembly located in the base of the transmission. The valves regulate oil pressure and direct it to appropriate transmission components.

OIL PUMP

The oil pump is the source of control medium (i.e., oil) for the control system

As shown in Figure AT-18, the oil enters at the suction side and collects in the space at "A", and then by the rotation of the inner and outer gears, is carried and discharged from the portion "B"

The oil flows through the following route

Oil pan — Oil strainer (bottom of the control valve) — Control valve lower body suction port — Transmission case suction port — Pump housing suction port — Pump gear space — Pump

housing delivery port – Transmission case delivery port – Lower body delivery port – Control valve line pressure circuit

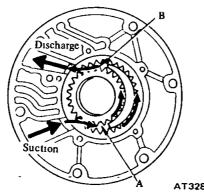


Fig AT-18 Operation of oil pump

MANUAL LINKAGE

The hand lever motion (the hand lever is located in the driver's compartment), mechanically transmitted from the remote control linkage, is further transmitted to the inner manual lever in the transmission case from the range selector lever in the right center portion of the transmission case through the manual shaft. The inner manual lever is thereby turned

A pin installed on the bottom of the inner manual lever slides the manual valve spool of the control valve thus positioning the spool opposite the appropriate select position

The parking rod pin is held in the

groove on the top of the inner manual plate The parking rod pin operates the rod at "P" range, and operates the mechanical lock system

The above described manual shaft is further equipped with an inhibitor switch A rotor inside the inhibitor switch rotates in response to each range When the range is selected at "P" or "N", the rotor closes the starter magnet circuit so that the engine can be started When the range is selected at "R", the rotor closes the back-up lamp circuit, and the back-up lamp lights

- 1 Manual plate2 Inhibitor switch
- 3 Parking rod 4 Manual shaft

Fig AT-19 Manual linkage

towards atmospheric pressure) and the vacuum reaction increases since the flow velocity of mixture inside the intake manifold is slow Contrarily, when the engine speed increases and the flow velocity of the mixture increases or when the carburetor is closed, the manifold negative pressure increases (i.e., tends towards vacuum) and the vacuum reaction is reduced

Thus, a signal to generate hydraulic pressure perfectly suited to the engine loading at the control valve is transmitted from the vacuum diaphragm, and the most suitable timing for speed change and line pressure is obtained so that the most proper torque capacity is obtained against the transmitting torque

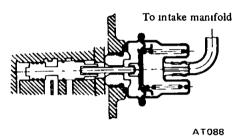


Fig AT-20 Vacuum diaphragm

DOWNSHIFT SOLENOID

The downshift solenoid is of a magnetic type installed on the left rear portion of the transmission ase When a driver requires accelerating power and depresses the accelerator pedal down to the stopper, a kickdown switch located in the middle of the accelerator link is depressed by a push rod, the kickdown switch closes current flows to the solenoid, the solenoid push rod is depressed, the downshift valve of the control valve inside the transmission case is depressed, and the speed is changed forcedly from "3rd" to "2nd" within a certain vehicle speed limit

Note Since the kickdown switch closes when the accelerator pedal is depressed from 7/8 to 15/16 of the whole stroke, the accelerator pedal should be correctly adjusted so as to attord a complete stroke. The arrangement of the switch varies according to model

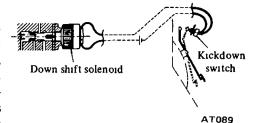


Fig AT-21 Downshift solenoid

GOVERNOR VALVE

The primary and secondary governor valves are installed separately on the back of the oil distributor on the transmission output shaft They operate at the same speed as that of the output shaft (That is, they operate at a speed in proportion to the vehicle speed) The line pressure is applied to those valves as the input from the control valve, through the transmission case, rear flange and oil distributor The governor pressure (in proportion to the output shaft speed (vehicle speed)] is led to the shift valve of the control valve through the opposite route of the output In this manner speed change and line pressure are controlled

Operation of secondary governor valve

The secondary valve is a control valve which receives line pressure (1) and controls the governor pressure

When the manual valve is selected at "D", "2" or "1" range, line pressure is applied to the ring-shaped area of this valve from circuit (1), and this valve is depressed toward the center Movement of this valve to a certain position closes the circuit from (1) to (15) while simultaneously making a space from (15) to the center drain port, and pressure in the circuit (15) is lowered

When the vehicle is stopped and the centrifugal force of this valve is zero, the valve is balanced At this point a governor pressure which is balanced with the spring force occurs on (15)

When the vehicle is started and the centrifugal force increases, this valve moves slightly to the outside, and as

VACUUM DIAPHRAGM

The vacuum diaphragm is installed on the left center portion of the transmission case The internal construction of the vacuum diaphragm is as follows

A rubber diaphragm forms a partition in the center. The engine intake manifold negative pressure is led through a vacuum tube and spring force is applied to the front surface of the rubber diaphragm while atmospheric pressure is applied to the back surface. The difference between pressure applied to the front and back surfaces causes a vacuum reaction, which activates the throttle valve of the control valve inside the transmission case.

When accelerator pedal is fully depressed and the carburetor is fully opened but the engine speed is not sufficiently increased, the manifold negative pressure lowers (i.e. tends

the space from (1) to (15) increases, space from (15) to the drain port simultaneously decreases. As a result, governor pressure of (15) increases, and the governor pressure is balanced with the sum of centrifugal force and spring force. The governor pressure thus changes in response to the vehicle speed change (centrifugal force)

Operation of primary governor valve

The valve is an ON-OFF valve which closes the governor pressure (15) regulated by the secondary governor valve when the vehicle reaches the minimum speed, and when the vehicle speed exceeds a certain level the governor opens and forwards the governor pressure (15) to the control valve

When the vehicle is stopped, the governor pressure is zero However, when the vehicle is running slowly, this valve is depressed to the center and the groove to (15) is closed since the governor pressure applied to the ring-shaped area is higher than the centrifugal force of this valve When the governor speed exceeds a certain revolution, the governor pressure in the circuit (15) also increases However, as the centrifugal force increases and exceeds the governor pressure, this valve moves toward the outside, and the governor pressure is transmitted to the circuit (15)

Two different valves are employed in the governor so that it will independently control the speed at high and low speeds. That is within the low speed range, the governor pressure is not generated because of the primary valve, whereas at the high speed range above the breaking point, governor pressure is regulated by the secondary valve.

* The breaking point is the point at which the function of one of the governor is transferred to the other as the speed changes from the low-speed to the high-speed range

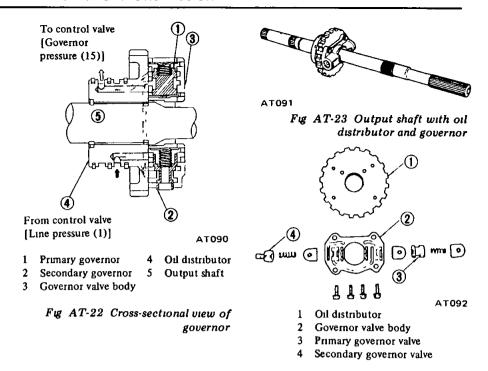
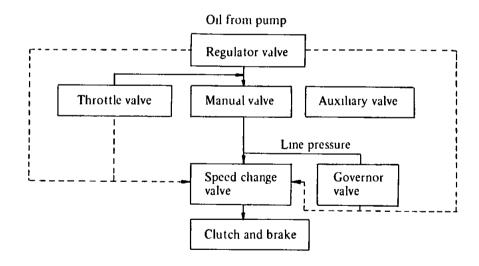



Fig AT-24 Exploded view of governor

CONTROL VALVE ASSEMBLY

Flow chart of control valve system

The control valve assembly receives oil from the pump and individual signals from the vacuum diaphragm, and transmits the individual line pressures to the transmission friction element, torque converter circuit, and lubricating system circuit as outputs More specifically, the oil from the oil pump is regulated by the regulator valve as line pressure builds up The line pressure is fed out from the control valve assembly through various

direction changeover valves (including ON-OFF valve) and regulator valves, is newly reformed to a throttle system oil pressure and operates other valves Finally, the line pressure is transmitted to the required clutch or brake servo piston unit in response to the individual running conditions after receiving signals from the vacuum diaphragm, downshift solenoid, governor valve, and/or manual linkage

The control valve assembly consists of the following valves (See Figure AT-35)

- 1 Pressure regulator valve (PRV)
- 2 Manual valve (MNV)
- 3 1st-2nd shift valve (FSV)
- 4 2nd-3rd shift valve (SSV)
- 5 Pressure modifier valve (PMV)
- 6 Vacuum throttle valve (VTV)
- 7 Throttle back-up valve (TBV)
- 8 Solenoid downshift valve (SDV)
- 9 Second lock valve (SLV)
- 10 2nd-3rd timing valve (TMV)

Pressure regulator valve (PRV)

The pressure regulator valve receives valve spring force, force from the plug created by the throttle pressure (16) and line pressure (7), and force of the throttle pressure (18) With the interaction of those forces, the PRV regulates the line pressure (7) to that most suitable for individual driving conditions

The oil from the oil pump is applied to the ring-shaped area through orifice (20) As a result, the PRV is depressed downward, and moves from port (7) up to such extent that the space to the next drain port (marked with "X" in Figure AT-25) opens slightly Thus, the line pressure (7) is balanced with the spring force, thereby balancing the PRV In this operation, the space from port (7) to the subsequent converter oil pressure (14) circuit has also been opened As a result, the converter is filled with pressurized oil in circuit (14), and this oil is further used for lubrication of the rear unit Moreover, part of the oil is branched and used for lubrication of the front unit for the front and rear clutches

When the accelerator pedal is depressed, the throttle pressure (16) increases as described in the preceding paragraph, oil pressure is applied to the plug through orifice (21), and this pressure is added to the spring force As a result, the PRV is contrarily forced upward, space to the drain port is reduced, and the line pressure (7) increases

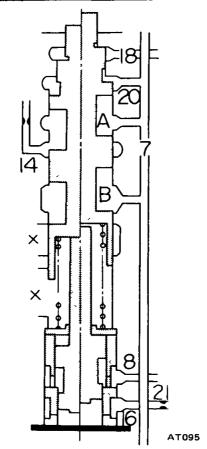


Fig AT-25 Pressure regulator valve

When the range is selected at "R" (Reverse), the line pressure (6) is applied to the plug in a manner identical to the throttle pressure (16) and is added to the spring force Consequently, the line pressure (7) further increases

When vehicle speed increases and the governor pressure rises, the throttle pressure (18) is applied to the port on the top of the PRV, and pressure is applied contrarily, against the spring force As a result, the line pressure (7) decreases Moreover, at individual conditions, the line pressure (7) is equal to

the line pressure (6) and the throttle pressure (16) is equal to (18)

Manual valve (MNV)

The manual lever turning motion is converted to reciprocating motion of the manual valve through a pin, and the MNV is positioned so that the line pressure (7) is distributed to the individual line pressure circuits at each "P", "R", "N", "D", "2" or "1" range as shown below

"P" range

"R" range

"N" range (7) - None

"D" range

"2" range

"1" range

$$(7) - \begin{cases} (1) - \text{Same as above} \\ (4) - \text{Same as above} \\ (5) - \text{FSV} \end{cases}$$

Moreover, (1), (2), (3), (4), (5), and (6) are always drained at a position where the line pressure is not distributed from (7)

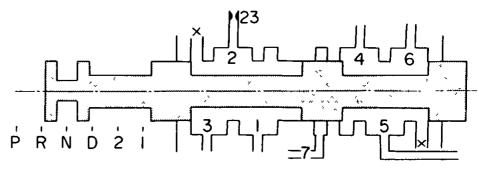


Fig AT-26 Manual valve

1st-2nd shift valve (FSV)

The FSV is a transfer valve which shifts gears from low to second When the vehicle is stopped, the FSV is depressed to the right side by force of a spring located on the left side, putting the FSV is in the "Low" position

When vehicle speed increases, the governor pressure (15) is applied to the right side of the FSV, and the FSV is forced toward the left Contrarily, the line pressure (1) together with the spring force forces the FSV toward the right opposing the governor pressure (15)

When the vehicle speed exceeds a certain level, the governor pressure (15) exceeds the sum of the throttle pressure and the spring force, and the FSV is forced toward the left

When the FSV is depressed to a certain position, the line pressure (1) is closed, and only the spring_depresses the FSV toward the right, and it is depressed to the end for a moment As a result, the line pressure (1) is forwarded to (8), the band servo is engaged through the SLV, and the speed is shifted to "2nd" With the accelerator pedal depressed, the FSV remains in the "Low" position unless the governor pressure (15) increases to a high level corresponding to the line pressure (1), since the line pressure (1) increases when the accelerator pedal is depressed

Contrarily, when vehicle speed decreases, the governor pressure (15) decreases However, the gear is not shifted to "Low" unless the governor pressure (15) becomes zero, since the force depressing the FSV toward the right is being delivered only by the spring

"Low" in range "1" is led to the low and reverse clutch from line pressure (5) through line pressure (12), and is simultaneously led to the left end spring unit Consequently, although the governor pressure increases, the valve is still forced toward the right, and the SFV is fixed in the "Low" position When kicked down to the "2nd" speed, the SDV operates, and the line pressure (13) forces the FSV toward the right Although the

governor pressure (15) is considerably high, the valve is forced completely toward the right, and the FSV is returned to the "Low" position (This operation is called "Kickdown shift")

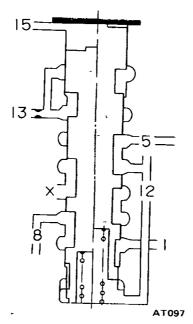


Fig AT-27 "1st-2nd" shift value

2nd-3rd shift valve (SSV)

The SSV is a transfer valve which shifts gears from "2nd" to "3rd" When the vehicle is stopped, the SSV is forced toward the right by the spring, and is in the "2nd" position It is so designed, however, that the FSV can decide to shift either to "Low" or "2nd"

When the vehicle is running, the governor pressure (15) is applied to the right end surface, and the SSV is forced toward the left Contrarily, the spring force, line pressure (3), and throttle pressure (19) force the SSV toward right

When vehicle speed exceeds a certain level, the governor pressure surpasses the sum of the spring force, line pressure, and throttle pressure, and the velave is forced toward the left. The line pressure (3) is then closed Consequently, the forces being rapidly unbalanced, the force depressing the SSV toward the right decreases, and thus the SSV is depressed to the left end for a moment. With the SSV depressed toward the left end, the line pressure (3) is connected with the line pressure (10), the band servo is

released, the front clutch is engaged, and speed is shifted to "3rd"

When the accelerator pedal is depressed, both the line pressure (3) and the throttle pressure (19) are high, and the SSV is thus retained in "2nd" unless the governor pressure (15) exceeds the line pressure (3) and the throttle pressure (19)

In the "3rd" position, force depressing the SSV toward the right is retained only by the throttle pressure (16), and the throttle pressure (16) is slightly lower than that toward the right which is applied while shifting from "2nd" to "3rd"

Consequently, the SSV is returned to the "2nd" position at a slightly lower speed (Shifting from "3rd" to "2nd" occurs at a speed slightly lower than that for "2nd" to "3rd" shifting)

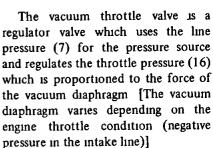
When kicked down at "3rd", line pressure (13) is led from the SDV, and the SSV is forced toward the right Although the governor pressure is considerably high, the valve is forced completely toward the right, and the SSV is thus returned to "2nd" position (This operation is called "Kickdown shift")

When the shift lever is shifted to "2" or "1" range at the "3rd" speed, the line pressure (3) is drained at the MNV Consequently, the front clutch and band servo releasing oils are drained. As a result, the transmission is shifted to "2nd" or "Low" speed although the SSV is in the "3rd" position.

When the speed is shifted to the "3rd", a one-way orifice (24) on the top of the SSV relieves oil transmitting velocity from the line pressure (3) to the line pressure (10), and reduces the shock generated from the shifting Contrarily, when the lever is shifted to "2" or "1" range and the speed is shifted from "3rd" to the "2nd", the orifice checking valve spring (24) is depressed, the throttle becomes ineffective, the line pressure (10) is drained quickly, and delay in shifting speeds is thus eliminated

The throttle of line pressure (6) transmits the oil transmitting velocity from line pressure (6) to line pressure (10) when the lever is shifted to the "R" range, and transmits drain veloci-

ty from line pressure (10) to line pressure (6) when shifting from "3rd" to "2nd" at "D" range Thus, the throttle of line pressure (6) reduces the shock generated from shifting


A plug in the SSV left end readjusts the throttle pressure (16) which varies depending on the engine throttle condition, to a throttle pressure (19) suited to the speed change control Moreover, the plug is a valve which applies line pressure (13), in lieu of the throttle pressure, to the SSV and the FSV when kickdown is performed

When the throttle pressure (16) is applied to the left side of this plug, and the plug is depressed toward the right, a slight space is formed from the throttle pressure (16) to (19) A throttle pressure (19) which is lower by the

pressure loss equivalent to this space is generated, the pressure loss is added to the spring force, and the plug is thus forced back from the right to the left When this pressure (19) increases excessively, the plug is further depressed toward the left, space from the throttle pressure (19) to the drain circuit (13) increases, and the throttle pressure (19) decreases Thus, the plug is balanced, and the throttle pressure (19) is reduced to a certain value against the throttle pressure (16)

When performing kickdown, the SDV moves, a high line pressure is led to the circuit (19) from the line pressure circuit (13) (which had been drained), the plug is forced toward the left, and circuit (19) becomes equal to the line pressure (13)

Fig AT-29 Pressure modifier valve Vacuum throttle valve (VTV)

AT099

Contrarily, when the vehicle speed

decreases and the governor pressure

(15) decreases, the force toward the

right exceeds the governor pressure,

the valve is forced back toward the

right, and the throttle pressure (18) is

throttle pressure and the governor

pressure are high or when they are

The valve is switched when the

drained to the spring unit

both low

When the line pressure (7) is applied to the bottom through the valve hole and the valve is forced upward, space from the line pressure (7) to the throttle pressure (16) is closed, and the space from the throttle pressure (16) to the drain circuit (17) is about to open In this operation, the throttle pressure (16) becomes lower than the line pressure (7) by the pressure equivalent of the loss of space, and the force depressing the rod of the vacuum diaphragm is balanced with the throttle pressure (16) applied upward to the

When the engine torque is high, the negative pressure in the intake line rises (tending toward atmospheric pressure), and the force of the rod to depress the valve increases As a result, the valve is depressed downward, the space from the throttle pressure (16) to the drain (17) decreases, and the

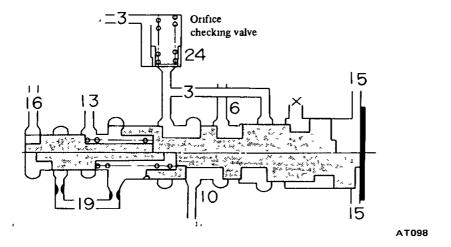


Fig AT-28 "2nd-3rd" shift value

Pressure modifier valve (PMV)

Compared to the operating pressure required in starting the vehicle, the power transmitting capacity of the clutch (that is, required operating pressure) may be lower when the vehicle is once started When the line pressure is retained at a high level up to a high vehicle speed, shock generated from the shifting increases, and the oil pump loss also increases. In order to prevent this, the throttle pressure must be changed over with the operation of the governor pressure (15) to reduce the line pressure The PMV is used for this purpose

When the governor pressure (15) which is applied to the right side of the PMV is low, the valve is forced toward the right by the throttle pressure (16) (applied to the area difference of the valve) and the spring force, and the circuit from circuit (16) to circuit (18) is closed However, when vehicle speed increases and the governor pressure (15) exceeds a certain level, the governor pressure toward the left (which is applied to the right side) exceeds the spring force and the throttle pressure (16) toward the right, the valve is depressed toward the left, and the throttle pressure is led from circuit (16) to circuit (18) This throttle pressure (18) is applied to the top of the PRV, and the force of the line pressure source (7) is reduced

AT-15

space from the line pressure (7) to the throttle pressure (16) increases

Consequently, the throttle pressure (16) increases, and the valve is balanced Contrarily, when the engine torque lowers and the negative pressure in the intake line lowers (tending toward vacuum), the force of the rod depressing the valve decreases, and the throttle pressure (16) also decreases When pressure regulated by the throttle back-up ralve (described in the subsequent paragraph) is led to circuit (17), a high pressure is applied through the space from the circuit (17) to the throttle pressure (16) Consequently, the VTV is unbalanced, the throttle pressure (16) becomes equal to the back-up pressure (17), and the valve is locked upward

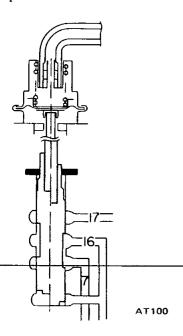


Fig AT-30 Vacuum throttle valve

Throttle back-up valve (TBV)

Usually, this valve is depressed downward by the spring force

As soon as the lever is shifted either to "2" or "1" range, line pressure is led from circuit (4), the line pressure is applied to the area difference of the valve, the valve is forced upward, the space from circuit (4) to circuit (17) is closed, and with the space from circuit (17) to the upper drain about to open, the back-up pressure (17) which is lower than the line pressure (4) by the

pressure loss due to the space from circuit (4) to circuit (17) is balanced with the spring force

Further, when gear is shifted from "2nd" to "Low" at the range "1", line pressure is led from circuit (12), and the line pressure is applied upward to the bottom of the valve through the valve hole Consequently, the valve is forced upward, and locked As a result, the space from the line pressure (4) to the back-up pressure (17) is closed completely, and the back-up pressure (17) is drained upward

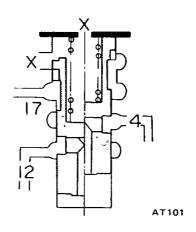


Fig AT-31 Throttle back-up valve

Solenoid downshift valve (SDV)

This valve is a transfer valve which leads the line pressure (7) to (13) and transmits the same to the FSV and SSV when a kickdown signal is received from the downshift solenoid Usually, the solenoid push rod and valve are locked upward by the spring in the lower end, and the circuit from line pressure (4) to line pressure (13) is opened

When kickdown is performed, the push rod operates, the valve is depressed downward, and the circuit from line pressure (7) to line pressure (13) opens Line pressure (13) opposes the governor pressure (15) at the SSV and FSV, thus accomplishing the downshift operation

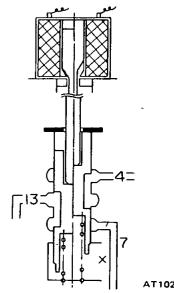


Fig AT-32 Solenoid downshift valve

Second lock valve (SLV)

This valve is a transfer valve which assists the shift valve in determining the fixed "2nd" speed at the "2" range

In the "D" range, the sum of the spring force and line pressure (3) applied upward exceeds the line pressure (2) which is applied to the valve area difference as a downward force As a result, the valve is locked upward, and the circuit from line pressure (8) to line pressure (9) is opened

Consequently, the FSV becomes the "2nd" speed condition, and line pressure is led to the band servo engaging circuit (9) only when line pressure (1) is released to line pressure (8)

In the "2" range, the upward force is retained only on the spring, and the downward line pressure (2) exceeds the upward force

As a result, the valve is locked downward, line pressure (2) is released to (9) regardless of the operating condition of the FSV, and the band servo is engaged

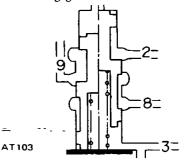


Fig AT-33 Second lock valve

2nd-3rd timing valve (TMV)

This valve is a transfer valve which switches the bypass circuit of the orifice (22) in the front clutch pressure circuit (11) in response to vehicle speed and throttle condition A force created when the governor pressure (15) is applied to the bottom of the TMV constitutes the upward force, and a force created when the spring force and the throttle pressure are applied to the top of the TMV constitutes the downward force

When the throttle pressure (16) is lower than the governor pressure (15),

the upward force exceeds the downward force, the valve is locked upward, and passage from circuit (10) ("2nd" from the "Top") to circuit (11) is closed Consequently, the line pressure (10) is led to the front clutch circuit (11) through the orifice (22), and the oil pressure is thus transmitted slowly However, under normal shifting, the throttle pressure (16) has a pressure exceeding a certain level, and the downward force exceeds the upward force As a result, the valve is locked downward, the passage from circuit (10) to circuit (11) is opened, and the orifice (22) is bypassed

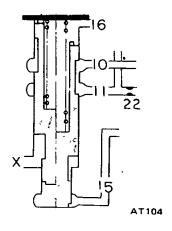
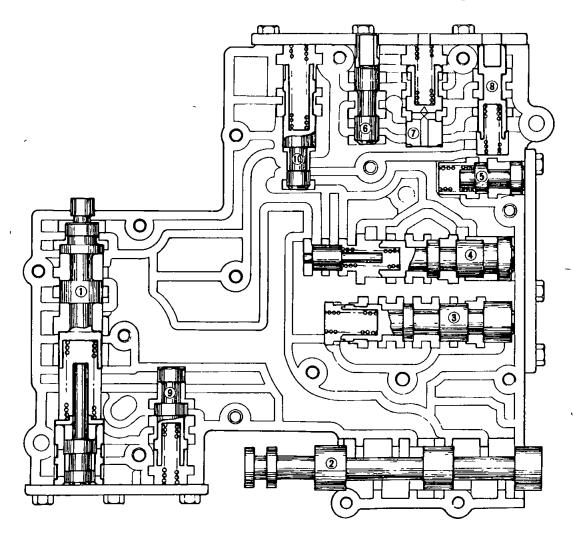



Fig AT-34 "2nd-3rd" timing valve

- 1 Pressure regulating valve (PRV)
- 2 Manual valve (MNV)
- 3 1st-2nd shift valve (FSV)
- 4 2nd-3rd shift valve (SSV)
- 5 Pressure modifier valve (PMV)
- Vacuum throttle valve (VTV)
- 7 Throttle back-up valve (TBV)
- 8 Solenoid down shift valve (SDV)
- 9 Second lock valve (SLV)
- 10 2 3 timing valve (TMV)

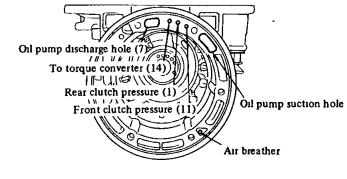
HYDRAULIC SYSTEM AND MECHANICAL OPERATION

The operating system of oil pressure in each range is described below

The oil pressure in each circuit shown in the illustration is classified as follows according to the function (The numerals show the circuit numbers)

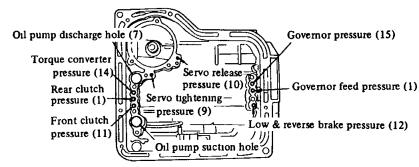
Pressure source of the line 7

Operating line pressure for friction elements


1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Auxiliary line pressure 13

Throttle system pressure


16, 17, 18, 19

Others 14, 15.

AT 106

Fig AT-37 Identification of oil channels in case front face

AT107

Fig AT-38 Identification of oil channels in case face

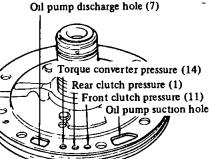


Fig AT-36 Identification of oil channels in oil pump

Hydraulic control system

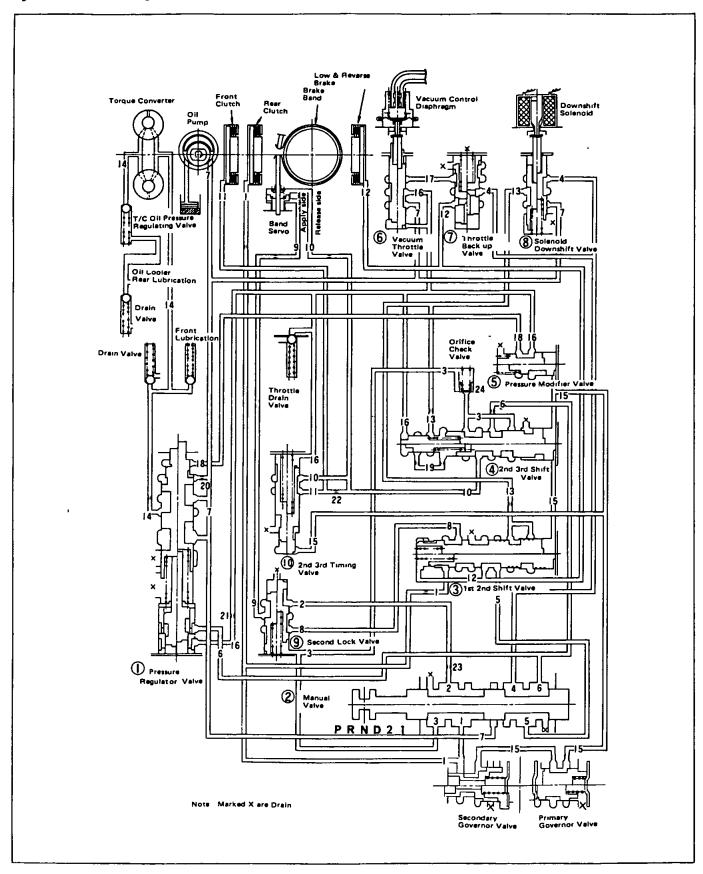


Fig AT-39 Hydraulic control system

"P" RANGE (PARK)

The operation of clutches and band are functionally the same as in "Neutral"

In parking, however, when the parking pawl meshes in a gear which is splined to the output shaft, the output shaft is mechanically locked from rotating

The oil discharged from the oil pump is fed to each part in a similar manner to that of the "N" range The oil having the line pressure (7) which has been introduced into the manual valve (2) reaches the "1st-2nd" shift valve (3) through the line pressure circuit (5) As the "1st-2nd" shift valve is forced to the right-hand side by the spring, the line pressure (5) and (12) actuates the low and reverse brake through the groove Also, the parking pawl engages with the outer teeth of the oil distributor by means of the manual lever, mechanically locking the output shaft

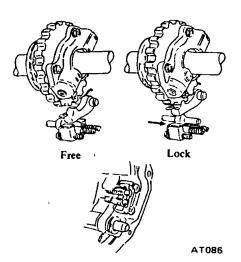


Fig AT-40 Parking mechanism

"P" range (Park)

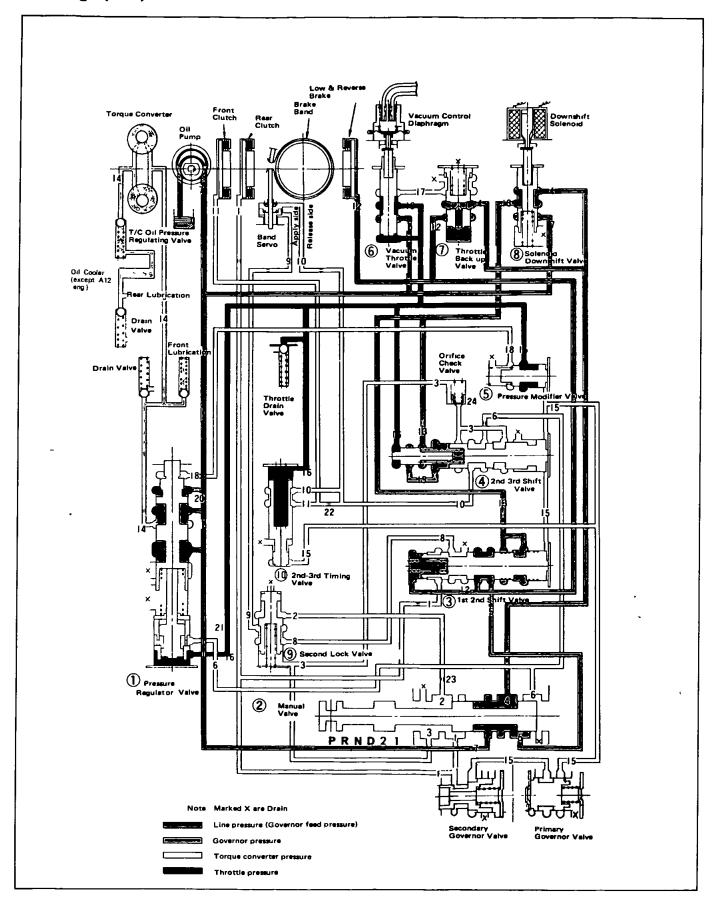
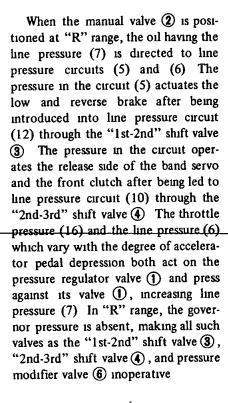



Fig AT-41 Oil pressure circuit diagram — "P" range (Park)

"R" RANGE (REVERSE)

In "R" range, the front clutch and the low and reverse brake are applied The power flow is through the input shaft, front clutch, and connecting shell to the sun gear Clockwise rotation of the sun gear causes counterclockwise rotation of the rear planetary gears With the connecting drum held stationary by the low and reverse brake, the rear planetary gears rotate the rear internal gear and drive the flange counterclockwise. The rear drive flange splined to the output shaft rotates the output shaft counterclockwise at a reduced speed with an increase in torque for reverse gear

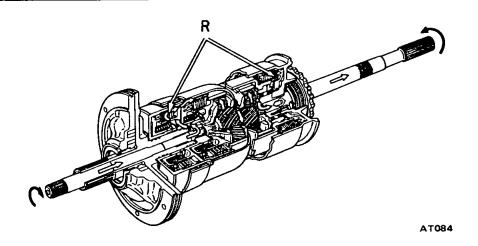


Fig AT-42 Power transmission during "R" range

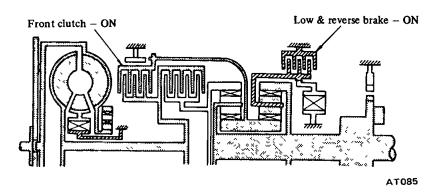
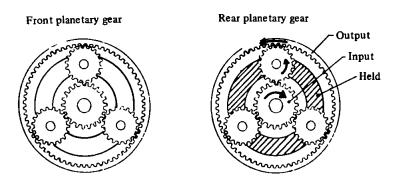



Fig AT-43 Operation of each mechanism during "R" range

A1329

Fig. AT-44 Operation of planetary gears during "R" range

"R" range (Reverse)

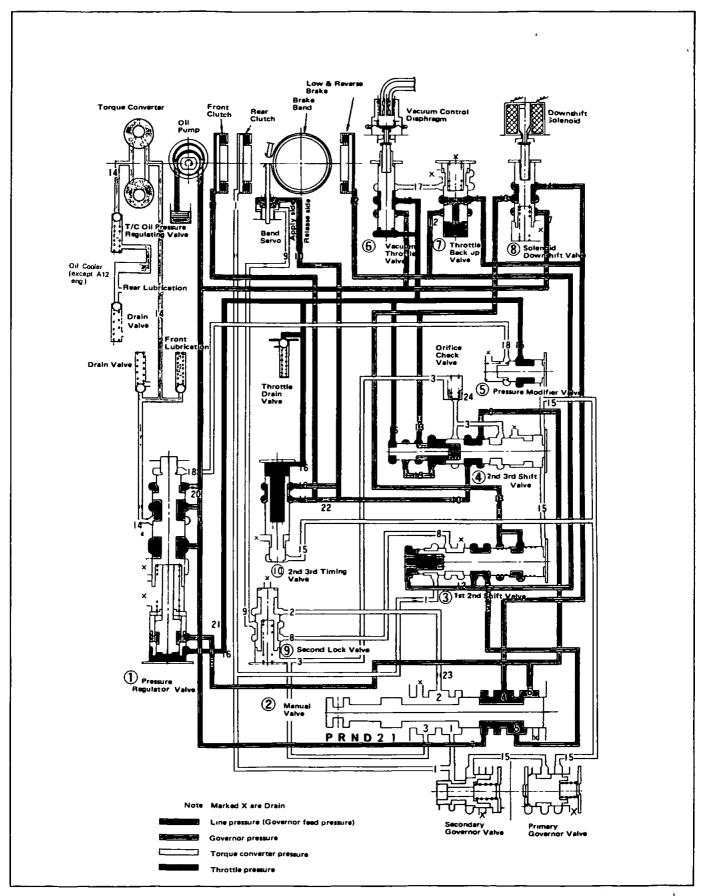


Fig AT-45 Oil pressure circuit diagram - "R" range (Reverse)

"N" RANGE (NEUTRAL)

In "N" range none of the clutches and band are applied, thus no power is transmitted to the output shaft

The pressure of oil discharged from the oil pump is regulated by the pressure regulator valve ① to maintain the line pressure (7), and the oil is led to the manual valve ②, vacuum throttle valve ⑥, and solenoid downshift valve ⑧ The oil is further introduced into the torque converter at its operating pressure (14), and a portion of this oil is distributed to each part as the front lubricant The oil which has been discharged from the torque converter is also distributed to each part as the rear lubricant

As the oil pump rotates at the same speed as the engine, the oil pump discharge increases with engine speed But the surplus oil is returned to the oil pan by the pressure regulator valve (1)

"N" range (Neutral)

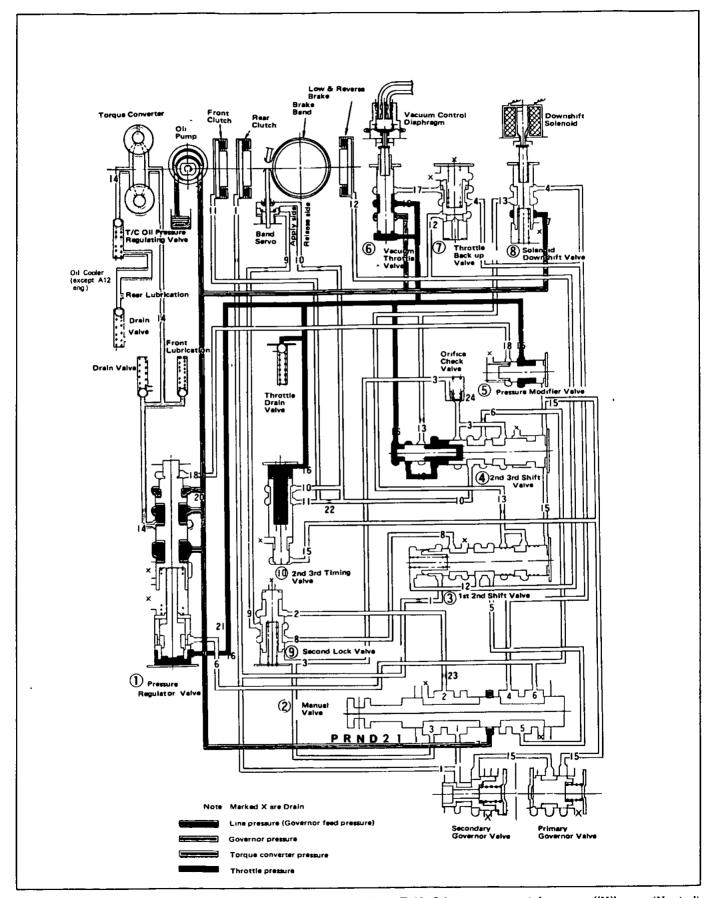


Fig AT-46 Oil pressure circuit diagram — "N" range (Neutral)

"D," RANGE (LOW GEAR)

The low gear in "D" range is somewhat different from that in "1₁" range

The rear clutch is applied as in "1₁" range, but the one-way clutch holds the connecting drum. The power flow is the same as in "1₁" range. That is, the power flow takes place through the input shaft and into the rear clutch. The input shaft is splined to the rear clutch drum and drives it. Rotation of the rear clutch drives the rear clutch hub and front internal gear.

The front internal gear rotates the front planetary gears clockwise to cause the sun gear to rotate counterclockwise Counterclockwise rotation of the sun gear turns the rear planetary gears clockwise With the rear planetary carrier held stationary by the one-way clutch, the clockwise rotation of the rear planetary gears rotates the rear internal gear and drives the flange clockwise The internal drive flange is splined to the output shaft and rotates the output shaft clockwise

When the manual valve is positioned at "D", the line pressure (7) introduced into the manual valve is led to the line pressure circuits (1), (2) and (3) The pressure in the circuit (1) actuates the rear clutch and the governor, and at the same time, operates the "1st-2nd" shift valve (3) to change the speed The circuit (2) leads to the second lock valve (9) The circuit (3) actuates the "2nd-3rd" shift valve (4) for the "2nd-3rd" speed change, and at the same time, locks the second lock valve (9)

The throttle pressure (16) which changes with the degree of accelerator pedal depression, presses the pressure regulator valve ① and increases the line pressure (7) When the speed of the vehicle has increased, the governor pressure (15) introduced from the line pressure circuit (1) actuates the "1st-2nd" shift valve ③, "2nd-3rd" shift valve ④, and pressure modifier valve ⑤ When the governor pressure is high, the pressure modifier valve ⑤ acts in such a direction as to compress

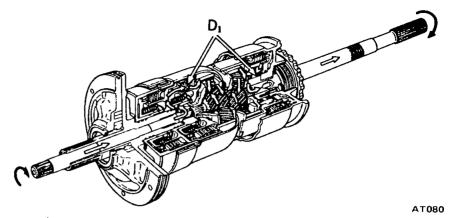


Fig AT-47 Power transmission during "D," range

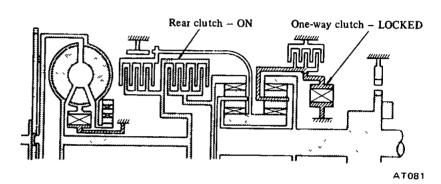
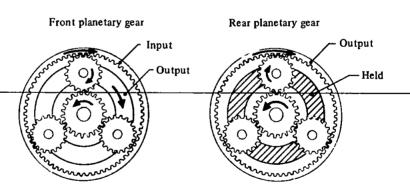



Fig AT-48 Operation of each mechanism during "D," range

AT330

Fig AT-49 Operation of planetary gears during "D," range

the spring, and the throttle pressure is led to the throttle pressure (18) This pressure acts against the force of the spring of the pressure regulator valve (1) and also against the throttle pressure (16), thus lowering the line pressure (7)

The governor pressure also increases with the speed of the vehicle, exerting a pressure on one side of the "1st-2nd" shift valve, and counteracts

the throttle pressure (19), line pressure (1), and the spring which are exerting against the governor pressure. Therefore, when the governor pressure exceeds this pressure, the speed is shifted from the "1st" gear to the "2nd" gear. The further the accelerator pedal is depressed, the higher becomes the throttle_pressure (19), increasing the governor pressure and shifting the speed change point to the higher side

"D₁" range (Low gear)

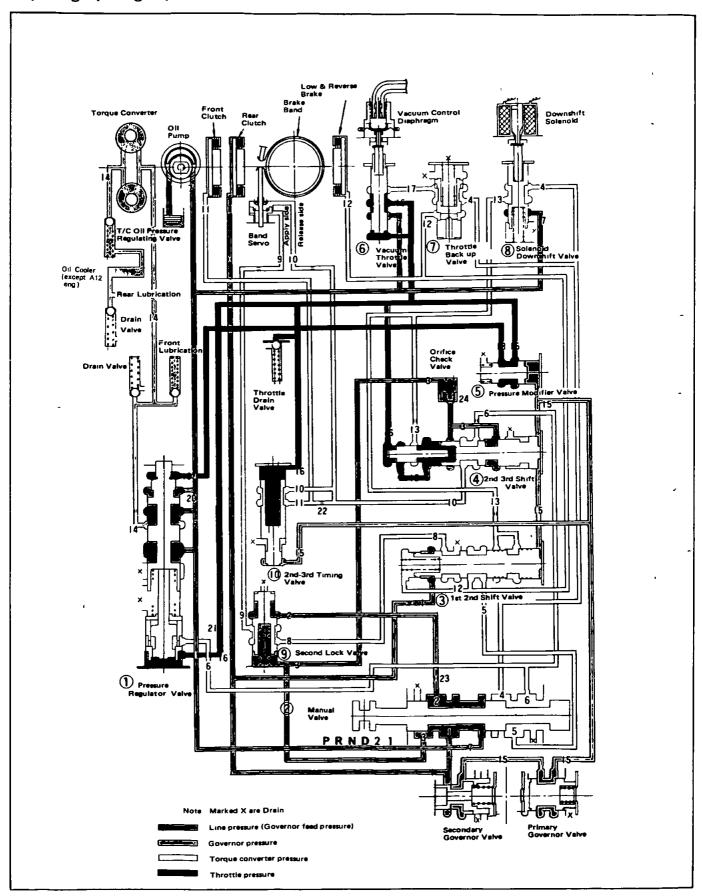


Fig AT-50 Oil pressure circuit diagram - "D1" range (Low gear)

"D2" RANGE (2ND GEAR)

In this case, the rear clutch is applied and the band brake holds the front clutch drum, the connecting shell and the sun gear from rotating

The power flow takes place through the input shaft into the rear clutch and the front internal gear With the sun gear held stationary, the front planetary gears rotate around the sun gear, carrying the front planet carrier with them The front planet carrier, being splined to the output shaft, causes clockwise rotation of the output shaft at a reduced speed compared with the speed of the input shaft, with an increase in torque As the low and reverse brake is not applied, the clockwise rotation of the output shaft causes clockwise rotation of rear internal gear and the rear planet carrier also rotates around the sun gear in a clockwise direction The one-way clutch will act to allow the clockwise rotation of connecting drum

When the car speed increases while running at "D₁" range (1st gear), the "1st-2nd" shift valve (3) moves allowing the line pressure (1) to be introduced into the line pressure (8) through itself The line pressure (8) is further led to the line pressure (9) through the second lock valve (9), and by locking the band servo, obtains the "2nd" gear condition

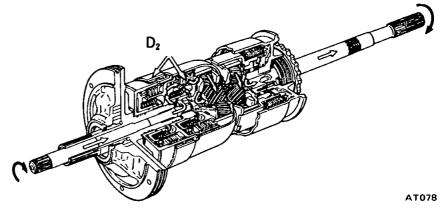


Fig AT-51 Power transmission during "D," range

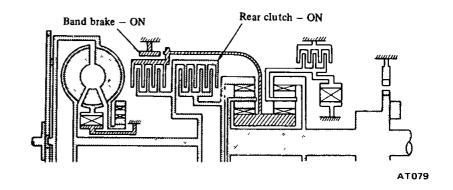


Fig AT-52 Operation of each mechanism during "D," range

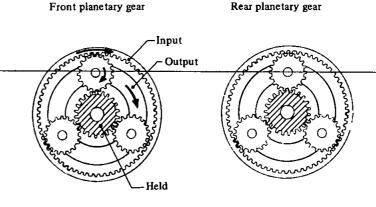


Fig AT-53 Operation of planetary gears during "D," range

"D₂" range (2nd gear)

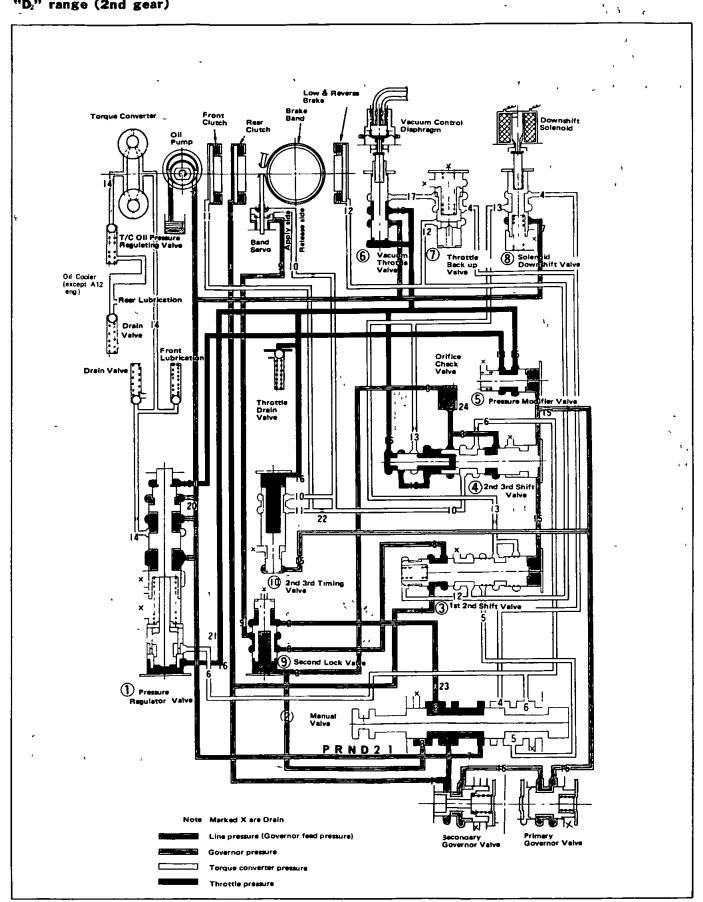


Fig AT-54 Oil pressure circuit diagram — "D," range (2nd gear)

"Da" RANGE (TOP GEAR)

In 3rd gear position, the front and rear clutches are engaged. The power flow takes place through the input shaft into rear clutch drum. The rear clutch drum rotates the steel drive plates of the rear clutch and the lined drive plates of the rear clutch and the lined drive plates of the front clutch. The rear clutch directs the power flow through the rear clutch hub and front internal gear to the front planet carnier.

The front clutch directs the power flow through the connecting shell to the sun gear With the sun gear and the rear clutch hub driven at the same speed, the front planet assembly is forced to rotate the output shaft at the same speed in the direction to provide the top gear

When the car speed further increases while running at "D₂" range (2nd gear) and the governor pressure (15) exceeds the combined force of the spring of the "2nd-3rd" shift valve (4) and the throttle pressure (19), the "2nd-3rd" shift valve (4) moves, and the line pressure (8) acts to release the front clutch and band servo through the line pressure (10)

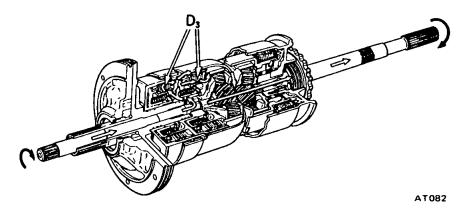


Fig AT-55 Power transmission during "D," range

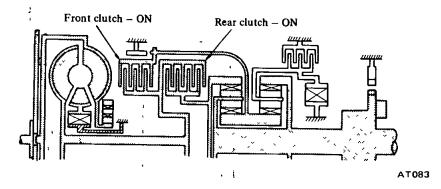
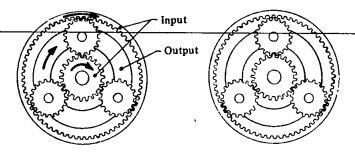



Fig AT-56 Operation of each mechanism "D." range

Front planetary gear

Rear planetary gear

AT332

Fig AT-57 Operation of planetary gears during "D," range

"D₃" range (Top gear)

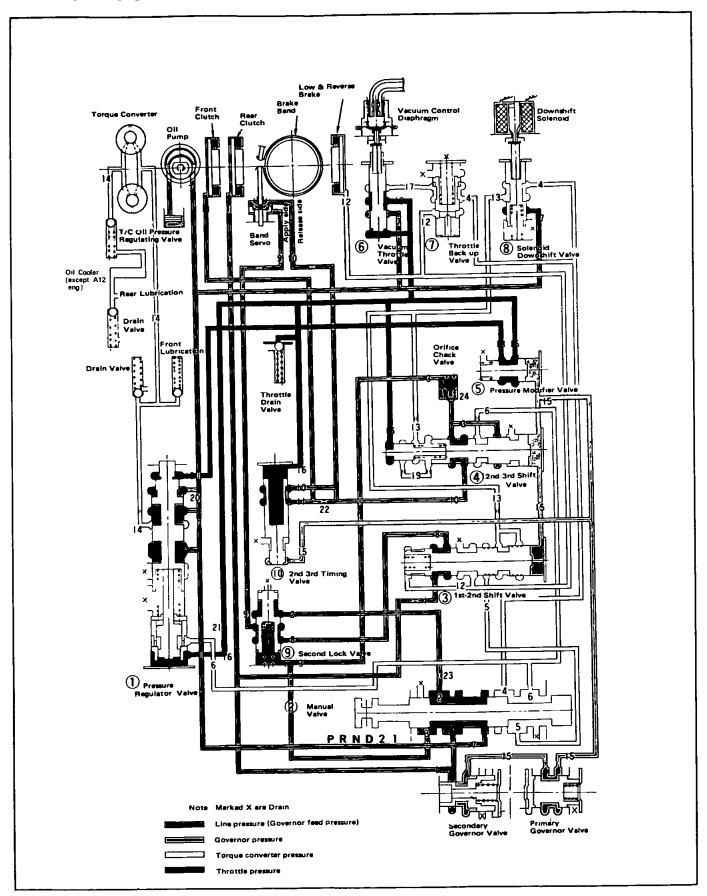
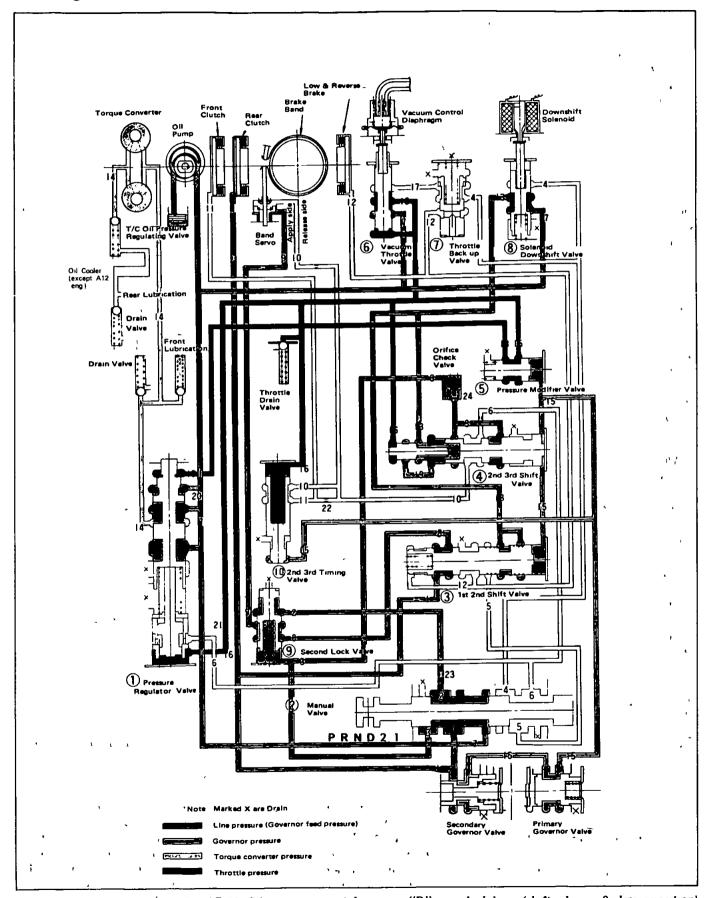


Fig AT-58 Oil pressure circuit diagram — "D." range (Top gear)

"D" RANGE KICK-DOWN


While operating at speeds below approximately 80 to 90 km/h (50 to 56 MPH), a kick "3rd-2nd" downshift can be accomplished by fully depressing the accelerator

A kick "3rd-1st" or "2nd-1st" downshift can also be accomplished below approximately 40 to 50 km/h (25 to 31 MPH)

When kickdown is performed, the push rod operates by the solenoid, the valve is depressed downward, and the circuit from the line pressure (7) to the line pressure (13) opens. The line pressure (13), (3) plus the force of the "2nd-3rd" shift valve spring oppose the governor pressure (15) at the "2nd-3rd" shift valve (4), and thus, perform "3rd-2nd" downshift operation

Moreover, the line pressure (13) plus the force of the "1st-2nd" shift valve spring oppose the governor pressure (15) at the "1st-2nd" shift valve (3), and thus, perform "3rd-2nd" or "2nd-1st" downshift operation

"D" range kickdown (Shift valves in 2nd gear position)

· Fig AT-59 Oil pressure circuit diagram — "D" range kickdown (shift valves in 2nd gear position)

"2" RANGE (2ND GEAR)

In "2" range the gear ratio is locked in the 2nd forward speed In this case, the rear clutch is engaged and the band brake holds the front clutch drum, the connecting shell and sun gear from rotating

The power flow takes place through the input shaft into the rear clutch and the front internal gear With the sun gear held stationary, the front planetary gears rotate around the sun gear, carrying the front planet carrier with them The front planet carrier, being splined to the output shaft, causes clockwise rotation of the output shaft at a reduced speed compared to the speed of the input shaft, with an increase in torque As the low and reverse brake is not engaged, the clockwise rotation of the output shaft causes clockwise rotation of rear internal gear and the rear planet carrier also rotates around the sun gear in a clockwise direction The one-way clutch will act to allow clockwise rotation of connecting drum

When the manual valve ② is positioned at "2", the line pressure (7) is introduced into the line pressure circuits (1), (2) and (4) The line pressure (1) is led to the governor, rear clutch and "1st-2nd" shift valve ③ as in the case of "D" range The line pressure (2) locks the second lock valve ⑨ and is led to the tightening side of the band servo

The "2nd" gear is therefore fixed regardless of vehicle speed When "D₃" (3rd gear) is shifted to "2" range, the line pressure (4) enters the throttle back-up valve ① and produces a high pressure in the circuit (17), increasing the throttle pressure (16) The line pressure (7) is, therefore, increased and quickly tightens the band

Note "D₃" range (3rd gear) to "2" range.

If "D₃" range (3rd gear) is shifted to "2" range during operation, the manual valve ② is also shifted to

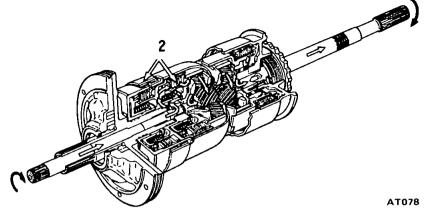


Fig AT-60 Power transmission during "2" range

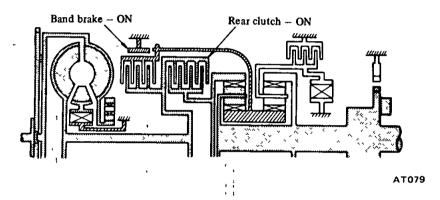
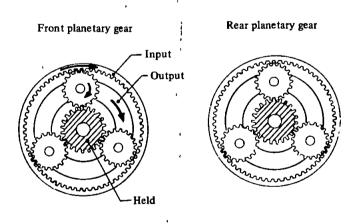



Fig AT-61 Operation of each mechanism during "2" range

AT331

Fig AT-62 Operation of planetary gears during "2" range

"2" position, causing the line pressure circuit (3) to be drained. Therefore, the line pressure circuit (10) which is situated at the release side of the front clutch and servo is also drained through the "2nd-3rd" shift valve (4), forcing the speed to

decrease from "3rd gear" to "2nd gear". In this case the speed change quickly takes place because the line pressure (7) and other pressure are heightened by the action of the line pressure (4), in the same manner as described under "2" range.

"2" range (2nd gear)

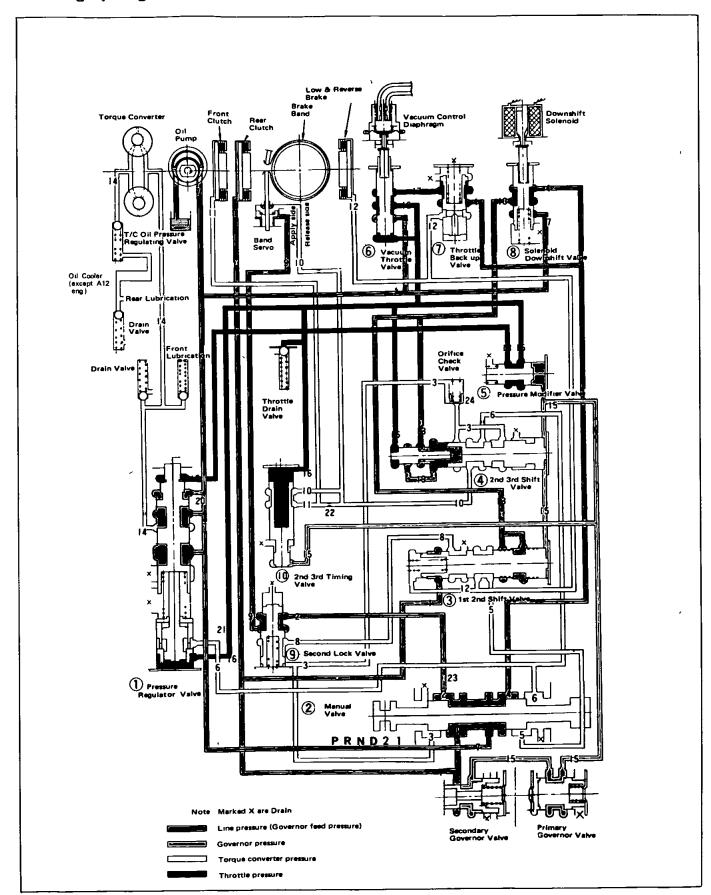


Fig AT-63 Oil pressure circuit diagram — "2" range (2nd gear)

"1," RANGE (LOW GEAR)

When starting in "1" range, the driving gear is locked to the low gear ratio

In "1" range, the rear clutch is engaged and the low and reverse brake holds the connecting drum and rear planet carner from rotating. The power flow takes place through the input shaft and into the rear clutch. Rotation of the rear clutch drives the rear clutch hub and front internal gear. The front internal gear rotates the front planetary gears clockwise to cause the sun gear to rotate counterclockwise.

Counterclockwise rotation of the sun gear turns the rear planetary gear clockwise

The rear planet carrier splined to the connecting drum is held from rotating by the low and reverse brake

The clockwise rotation of the rear planetary gears therefore rotates the rear internal gear and internal drive flange The internal drive flange is splined to the output shaft and rotates the output shaft clockwise However, the output shaft rotates at a lower speed compared to that of the input shaft This is caused by the fact that the front planet carrier rotates at the same speed as the output shaft in the same direction since the carrier is splined to the output shaft. The front internal gear and planetary gear assembly are rotating in the same direction, but the planet carrier is rotating at a speed slower than the ring gear So the gear ratio of this speed range is a combination of the ratios provided by the front and rear planetary gear assemblies.

When the manual valve ② is positioned at "1", the line pressure (7) is applied into the line pressure circuits (1), (4) and (5) The oil pressure in (5) actuates the low and reverse brake after being introduced into the circuit (12) through the "1st-2nd" shift valve ③, and the line pressure (1) acts on

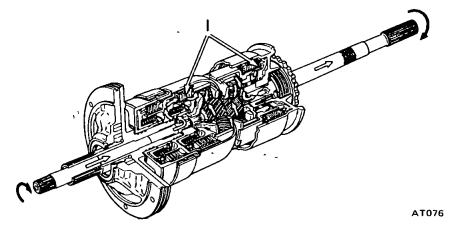


Fig AT-64 Power transmission during "1," range

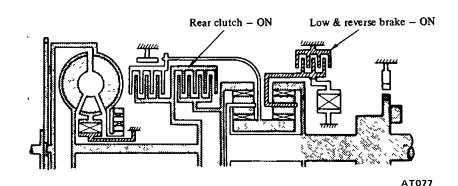


Fig AT-65 Operation of each mechanism during "1," range

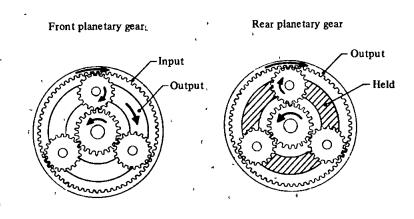


Fig AT-66 Operation of planetary gears during "1," range

the rear clutch and governor The line pressure (4) acts in the same manner as in "2" range

Similar to that of the "D" range, the line pressure increases with the degree of accelerator pedal depression, and the line pressure decreases with the increase of car speed The governor pressure (15) which acts on the "1st-2nd" shift valve does not increase until it overcomes the combined force of the line pressure (12) and the spring, causing no "1st-2nd" speed change

AT330

"1₁" range (Low gear)

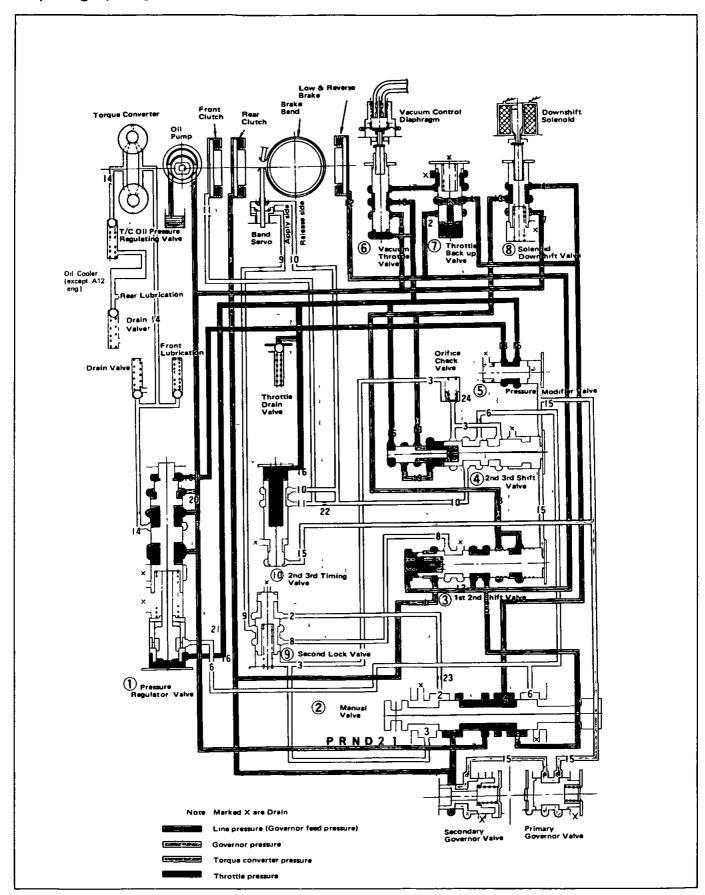


Fig AT-67 Oil pressure circuit diagram — "1 i" range (Low gear)

"12" range (2nd gear)

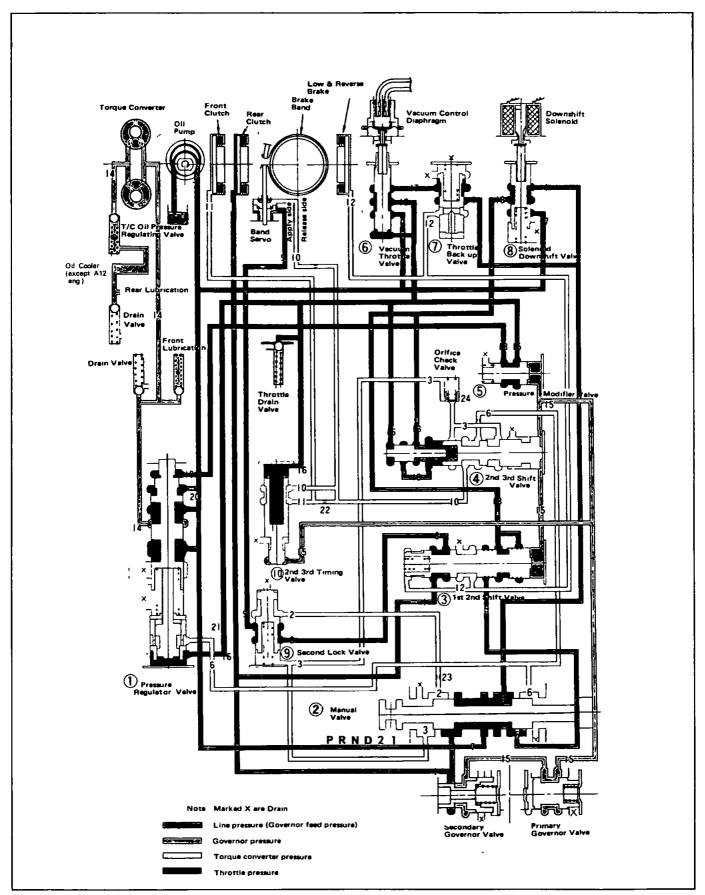


Fig. AT-68 Oil pressure circuit diagram — "12" range (2nd gear)

REMOVAL AND INSTALLATION

CONTENTS

TRANSMISSION	ASSEMBLY
REMOVAL	
INSTALLATIO	N

AT-39 TRANSMISSION CONTROL LINKAGE AT-41 AT-39 ADJUSTMENT AT-41 AT-39 OIL COOLER LINES AT-42

TRANSMISSION ASSEMBLY

When removing the automatic transmission from a vehicle, pay attention to the following points

- 1 Before removing the transmission, inspect it with the aid of the "Trouble Shooting Chart", and remove only when considered to be absolutely necessary
- 2 Remove the transmission with utmost care, and when mounting, observe the tightening torque tables Do not exert excessive force

REMOVAL

In removing automatic transmission from rehicle, proceed as follows

- 1 Disconnect battery ground cable from terminal
- 2 Disengage torsion shaft from accelerator linkage
- 3 Jack up vehicle and support its weight on safety stands A hydraulic hoist or an open pit should be utilized, if available

Ensure that safety precautions are observed

4 Remove propeller shaft

Note Plug up the opening in the rear extension to prevent oil from leaking out.

- 5 Disconnect front exhaust tube
- 6 Disconnect selector range lever from manual shaft
- 7 Disconnect wire connections at inhibitor switch
- 8 Disconnect vacuum tube from vacuum diaphragm, and wire connections at downshift solenoid
- 9 Disconnect speedometer cable from rear extension
- 10 Disconnect oil charging pipe

- 11 Disconnect oil cooler inlet and outlet tubes at transmission case
- 12 Support engine by placing a jack under oil pan, with a wooden block between oil pan and jack

Support transmission by means of a transmission jack

13 Detach engine rear plate rubber plug Remove bolts securing torque converter to drive plate See Figure AT-69

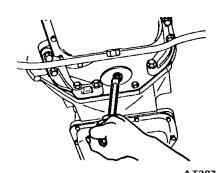


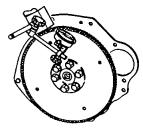
Fig AT-69 Removing torque converter attaching bolts

Note: Before removing torque converter, scribe match marks on two parts so that they may be replaced in their original positions

- 14 Remove rear engine mount securing bolts and crossmember mounting bolts
- 15 Remove starter motor
- 16 Remove bolts securing transmission to engine After removing these bolts, support engine and transmission with jack, and lower the jack gradually until transmission can be removed from under the car

Note Plug up any openings such as oil charging pipe, oil cooler tubes, etc.

INSTALLATION


For installation of automatic transmission, reverse the order of removal However, observe the following installation notes

I Drive plate runout

Turn crankshaft one full turn and measure drive plate runout with indicating finger of a dial gauge resting against plate See Figure AT-70

[Replace drive plate if in excess of 0 5 mm (0 020 in)]

Maximum allowable runout
 0 3 mm (0 012 in)
 Total indicator reading

AT288
Fig AT-70 Measuring drive plate
runout

2 Installation of torque converter
Line up notch in torque converter
with that in all pump Be extremely
careful not to cause undue stresses in
parts while installing torque converter
See Figure AT-71

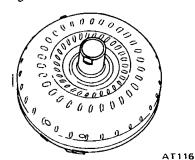


Fig AT-71 Torque converter aligning cut

Distance "A"

More than 21.5 mm (0 846 in)

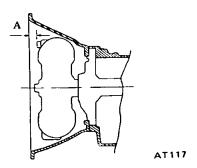


Fig AT-73 Installing torque converter

4 Bolt converter to drive plate

Note Align chalk marks painted across both parts during disassembly process

- 5 After converter is installed, rotate crankshaft several turns and check to be sure that transmission rotates freely without binding.
- 6 Pour recommended automatic transmission fluid up to correct level through oil charge pipe
- 7 Connect selector range lever to manual shaft Operation should be carried out with manual and selector levers in "N"
- 8 Connect inhibitor switch wires

Notes

- a Refer to page AT-59 for Checking and Adjusting Inhibitor Switch
- b. Inspect and adjust switch as detailed above whenever it has to be removed for service.
- 9 Check inhibitor switch for opera-

Starter should be brought into operation only when selector lever is in "P" and "N" positions (it should not be started when lever is in "D", "2", "1" and "R" positions)

Back-up lamp should also light when selector lever is placed in "R" position

- 10 Check level of oil in transmission For detailed procedure, see page AT-58 for Checking Oil Level
- 11 Move selector lever through all positions to be sure that transmission operates correctly

With hand brake engaged, rotate engine at idling speed Without disturbing the above setting, move selector lever through "N" to "D", to "2", to "1" and to "R" A slight shock should be felt each time transmission is shifted

Note See page AT-59 for Checking Engine Idling.

- 12 Check to ensure that line pressure is correct To do this, refer to page AT-63 for Testing Line Pressure
- Perform stall test as described in page AT-60 for Stall Test

3 When connecting torque converter to transmission, measure distance "A" to ensure that they are correctly assembled See Figure AT-73

TRANSMISSION CONTROL LINKAGE

ADJUSTMENT

The adjustment of linkage is as important as "Inspection of oil level" for the automatic transmission

Therefore, great care should be exercised because defective adjustment will result in the breakdown of the transmission

- 1 Prior to installing control knob, set the dimension "A" to 11 to 12 mm (0 433 to 0 472 in)
- 2 Install control knob on lever At the same time, check the dimension "B" and adjust it to 0.1 to 1.1 mm (0.0039 to 0.0433 in) by turning pusher (1)
- 3 Loosen adjust nuts (3) Set control lever and selector lever (5) at "N" position, moreover, set the clearance "C" to 1 mm (0 039 m) by turning in or out adjusting nuts at trunnion (2) which connects selector rod (4)

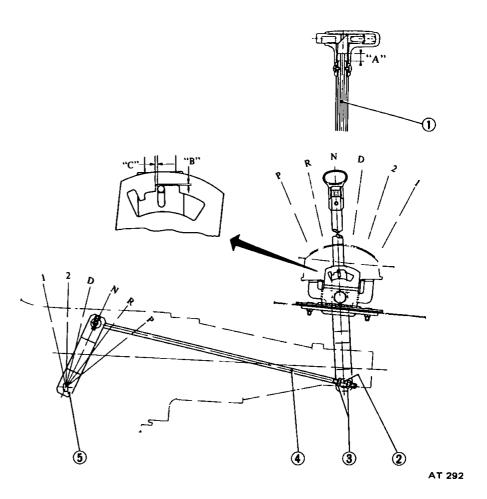


Fig AT-74 Control linkage

OIL COOLER LINES

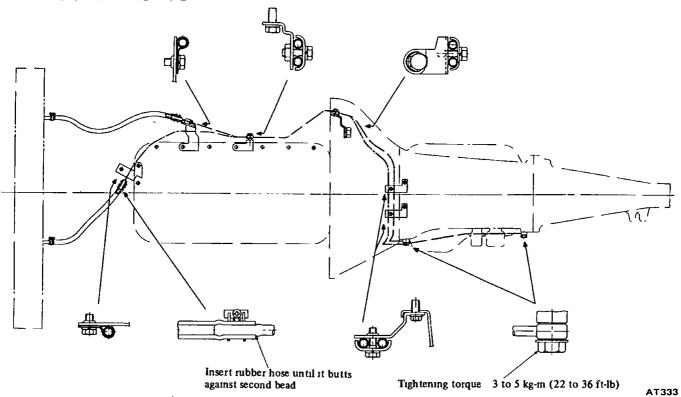
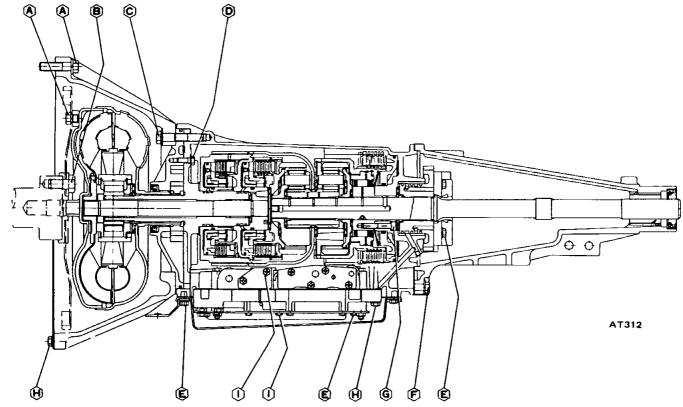
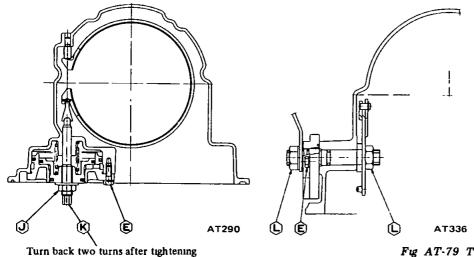
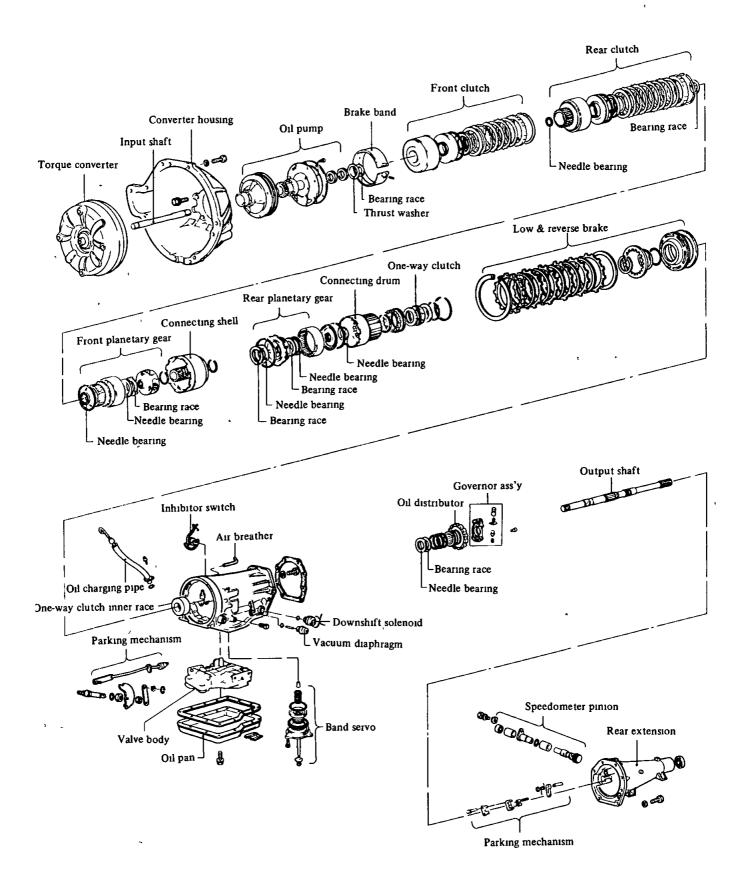



Fig AT-76 Oil cooler lines


MAJOR REPAIR OPERATION

CONTENTS

SERVICE NOTICE FOR DISASSEMBLY		FRONT CLUTCH		AT-50
AND ASSEMBLY	AT-46	REAR CLUTCH		AT-51
TORQUE CONVERTER	AT-46	LOW & REVERSE BRAKE		AT-52
INSPECTION	AT-46	SERVO PISTON		AT-52
TRANSMISSION	AT-46	GOVERNOR		AT-53
DISASSEMBLY	AT-46	OIL PUMP	•	AT-53
INSPECTION	AT-48	PLANETARY CARRIER		AT-54
ASSEMBLY	AT-48	CONTROL VALVE		AT-54
COMPONENT PARTS	ΔT-50			



Tightening torque (T) of bolts and nuts kg-m (ft-lb)

T	4 to 5 (29 to 36)
(a) T	14 to 16 (101 to 106)
-	6 5 to 7 5 (47 to 54)
	for A12 engine
© T	4 5 to 5 5 (33 to 40)
(Ô) T	0 6 to 0 8 (4 3 to 5 8)
ÉΣT	0 5 to 0 7 (3 6 to 5 1)
🕑 T	2 0 to 2 5 (14 to 18)
Ğ T	1 3 to 1 8 (9 4 to 13)
ĤΤ	0 55 to 0 75 (4 0 to 5 4)
① T	0 25 to 0 35 (1 8 to 2 5)
IJΤ	1 5 to 4 0 (11 to 29)
(k) T	1 2 to 1 5 (8 7 to 10 8)
ČΤ	3 to 4 (22 to 29)
•	

Fig AT-79 Tightening torque of bolts and nuts

AT337

Fig AT-80 Components of automatic transmission

SERVICE NOTICE FOR DISASSEMBLY AND ASSEMBLY

- 1 It is advisable that repair operations be carried out in a dust-proof
- 2 Due to the differences of the engine capacities, the specifications of component parts for each model's transmission may be different They do, however, have common adjustment and repair procedures as well as cleaning and inspection procedures, outlined hereinafter
- 3 During repair operations, refer to "Service Data and Specifications" section for the correct parts for each model
- 4 Before removing any of subassemblies, thoroughly clean the outside of the transmission to prevent dirt from entering the mechanical parts
- 5 Do not use a waste rag Use a nylon or paper cloth
- 6 After disassembling, wash all disassembled parts, and examine them to see if there are any worn, damaged or defective parts, and how they are affected Refer to "Service Data" for the extent of damage that justifies replacement
- 7 As a rule, packings, seals and similar parts once disassembled should be replaced with new ones

TORQUE CONVERTER

The torque converter is a welded construction and can not be disassembled

INSPECTION

- 1 Check torque converter for any sign of damage, bending, oil leak or deformation If necessary, replace
- 2 Remove rust from pilots and bosses completely

If torque converter oil is fouled or contaminated due to burnt clutch, flush the torque converter as follows

- (1) Drain oil in torque converter
- (2) Pour non-lead gasoline or kerosene into torque converter [approximately 0.5 liter (1½ US pt, ½Imp pt)]

- (3) Blow air into torque converter and flush and drain out gasoline
- (4) Fill torque converter with torque converter oil [approximately 0.5 liter (1 % U.S. pt., % Imp. pt.)]
- (5) Again blow air into torque converter, and drain torque converter oil

TRANSMISSION

DISASSEMBLY

1 Drain oil from the end of rear extension Mount transmission on Transmission Case Stand ST07870000 or ST07860000 Remove oil pan See Figure AT-82

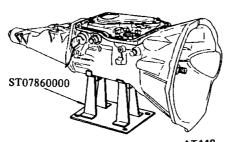


Fig AT-81 Removing oil pan

- 2 Remove bolts securing converter housing to transmission case Remove torque converter
- 3 Remove speedometer pinion sleeve bolt Withdraw pinion
- 4 Remove downshift solenoid and vacuum diaphragm Do not leave diaphragm rod at this stage of disassembly Rod is assembled in top of vacuum diaphragm See Figure AT-82

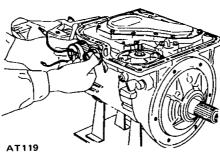


Fig AT-82 Downshift solenoid and vacuum diaphragm

5 Remove bolts which hold valve body to transmission case See Figure AT-83

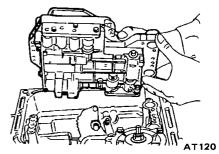


Fig AT-83 Removing value body

6 Loosen lock nut ② on piston stem ① as shown in Figure AT-84 Then tighten piston stem in order to prevent front clutch drum from falling when oil pump is withdrawn

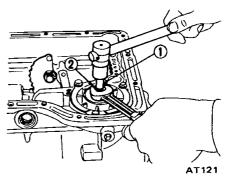


Fig AT-84 Loosening band servo

- 7 Pull out input shaft
- 8 Withdraw oil pump using Sliding Hammer ST25850000 Do not allow front clutch to come out of position and drop onto floor See Figure AT-85

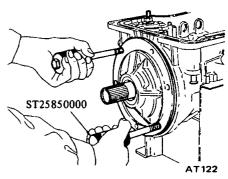


Fig AT-85 Removing oil pump

9 Remove band strut This can be done by loosening piston stem further See Figure AT-86

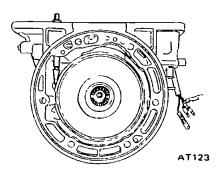


Fig AT-86 Removing band strut

- 10 Remove brake band, front clutch and rear clutch as an assembled unit
- 11 Remove connecting shell, rear clutch hub and front planetary carrier as a unit See Figure AT-87

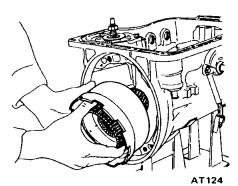


Fig AT-87 Removing connecting shell

12 With the aid of Snap Ring Remover HT69860000, pry snap ring off output shaft See Figure AT-88

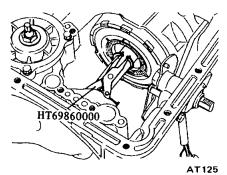


Fig AT-88 Removing snap ring

13 Remove connecting drum and inner gear of rear planetary carrier as an assembly See Figure AT-89

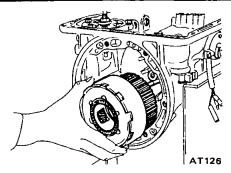


Fig AT-89 Removing connecting drum

- 14 Remove snap rings and then remove rear planetary carrier, internal gear, connecting drum, one-way clutch outer race and one-way clutch in that order
- 15 Remove rear extension by loosening securing bolts See Figure AT-90

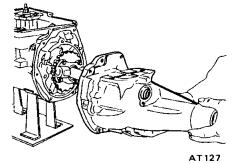


Fig AT-90 Removing rear extension

16 Pull out output shaft, remove oil distributor ② together with governor valve ① See Figure AT-91

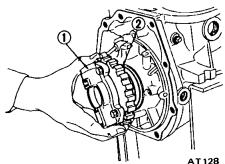


Fig AT-91 Removing governor and oil distributor

17 Pry off snap ring using a pair of pliers Remove retaining plate, drive plate, driven plate and dish plate in that order See Figure AT-92

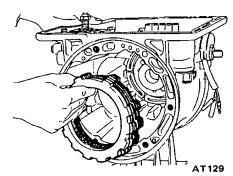


Fig AT-92 Removing drive and driven plates

18 Reaching through back side of transmission case, remove hex-head slotted bolts as shown in Figure AT-93 To do this, use Hex-head Extension ST25570001 (ST25570000) One-way cluch inner race, thrust washer, piston return spring and thrust spring ring can now be removed

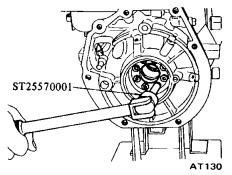


Fig AT-93 Removing hex-head slotted

19 Blow out low and reverse brake piston by directing a jet of air into hole in cylinder See Figure AT-94

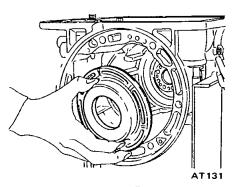


Fig AT-94 Removing piston

20 Remove band servo by loosening attaching bolts

Note If difficulty is encountered in removing retainer, direct a jet of air toward release side as shown in Figure AT-95.

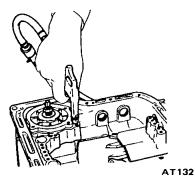


Fig AT-95 Removing band servo

21 Pry snap rings ① from both ends of parking brake lever ② and remove the lever Back off manual shaft lock nut ③ and remove manual plate ④ and parking rod ⑤ See Figure AT-96

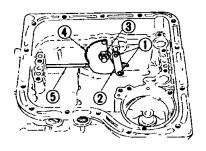


Fig AT-96 Removing manual plate

22 Remove inhibitor switch and manual shaft by loosening two securing bolts

Gaskets and O-ring

- 1 Always use new gaskets when the units are to be disassembled
- 2 Check O-rings for burrs or cracking If necessary, replace with new rings

Oil distributor

1 Check for signs of wear on seal ring and ring groove, replacing with new ones if found worn beyond use 2 Check that clearance between seal ring and ring groove is correct. If out of specification, replace whichever is worn beyond limits Correct clearance is from 0.04 to 0.16 mm (0.0016 to 0.0063 in). See Figure AT-97

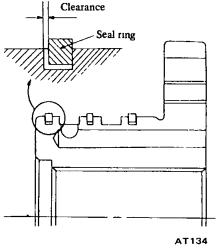


Fig AT-97 Measuring seal ring to ring groove clearance

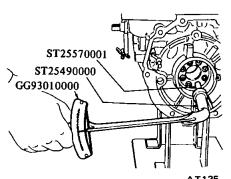


Fig AT-98 Installing one-way clutch

- 2 After low and reverse brake has been assembled, measure the clearance between snap ring ① and retaining plate ② Select proper thickness of retaining plate to give correct ring to plate clearance See Figure AT-99
- Low and reverse brake clearance
 0 8 to 1 05 mm
 (0 031 to 0 041 m)

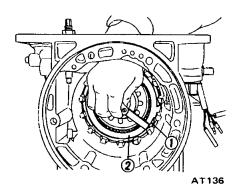


Fig AT-99 Measuring ring to plate clearance

INSPECTION

Torque converter housing, transmission case and rear extension

- 1 Check for damage or cracking, if necessary, replace
- 2 Check for dents or score marks on mating surfaces Repair as necessary
- 3 Check for score marks or signs of burning on extension bushing, if necessary, replace

ASSEMBLY

Assembly is in reverse order of disassembly However, observe the following assembly notes

1 After installing piston of low and reverse brake, assemble thrust spring ring, return spring, thrust washer and one-way clutch inner race Torque hex-head slotted bolt to 13 to 18 kg-m (9 4 to 13 ft-lb), using Hex-head Extension ST25570000), Torque Wrench GG93010000 and Socket Extension ST25490000 (ST25512001) See Figure AT-98

Available retaining plate

See page AT-71 for Specifications and Adjustment

For inspection procedure for low and reverse brake, see page AT-52 for Assembly

3 Install one-way clutch so that the arrow mark "→" is toward front of vehicle It should be free to rotate only in clockwise direction See Figure AT-100

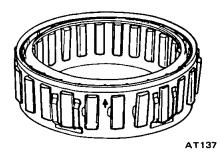
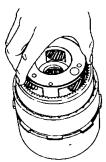
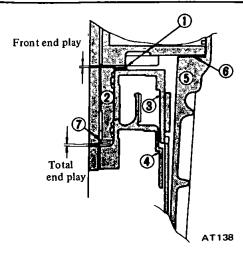




Fig AT-100 One-way clutch

- After installing rear extension, torque attaching bolts to 20 to 25 kg-m (14 to 18 ft-lb) Place manual lever in "P" range and check to be sure that rear output shaft is securely blocked
- 5 Tighten servo retainer temporarily at this stage of assembly
- Place rear clutch assembly with needle bearing on front assembly
- Install rear clutch hub and front planetary carrier as shown in Figure AT-101


AT142 Fig AT-101 Installing planetary

Assemble connecting shell and other parts up to front clutch in reverse order of disassembly

AT143 Fig AT-102 Installing connecting

Adjust total end play and front end play as follows

- Front clutch thrust washer
- Oil pump cover
- Front clutch
- Rear clutch
- Transmission case Oil pump gasket
- Oil pump cover
- - bearing race

Fig AT-103 End play

(1) Measure the distances "A" and "C" by vernier calipers as shown in Figure AT-104

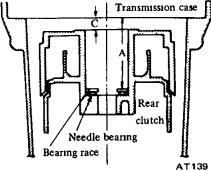


Fig AT-104 Measuring the distances "A" and "C"

(2) Measure the distances "B" and "D" of oil pump cover as shown in Figure AT-105

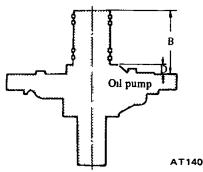


Fig AT-105 Measuring the distances "B" and "D"

Adjustment of total end play

Select oil pump cover bearing race by calculating the following formula

$$T_T = A - B + W$$

where.

- Required thickness of oil pump cover bearing race mm (in)
- A Measured distance A mm (in)
- В Measured distance B mm (in)
- W Thickness of bearing race temporarily inserted mm (in)

Available oil pump cover bearing

Thickness mm (in)
1 2 (0 047)
1 4 (0 055)
1 6 (0 063)
18 (0 071)
2 0 (0 079)
2 2 (0 087)

Specified total end play 0 25 to 0 50 mm (0 010 to 0 020 in)

Adjustment of front end play

Select front clutch thrust washer by calculating the following formula

$$T_F = C - D - 0.2 \text{ (mm)}$$

where,

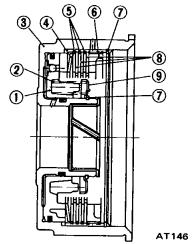
- T_{F} Required thickness of front clutch thrust washer mm (in)
- C Measured distance C mm (in)
- Measured distance D mm (in)

Available front clutch thrust washer

Thick	cne	ess	mm (ın)	_
1	5	(0	059)	
1	7	(0	067)	
1	9	(0	075)	
2	1	(0	083)	
2	3	(0	091)	
2	5	(0	098)	
2	7	(0	106)	

Specified front end play 0 5 to 0 8 mm (0 020 to 0 031 in)

Notes:


- a. Correct thickness of bearing race and thrust washer is always the one which is nearest the calculated one
- b. Installed thickness of oil pump gasket is 0.4 mm (0.016 in).
- 10 Check to be sure that brake servo piston moves freely For detailed procedure, refer to page AT-52 for Servo Piston Use care to prevent piston from coming out of place during testing since servo retainer is not tightened at this point of assembly
- 11 Make sure that brake band strut is correctly installed Torque piston stem to 1 2 to 1 5 kg-m (8 7 to 11 ft-lb), back off two full turns and secure with lock nut Lock nut tightening torque is 1 5 to 4 0 kg-m (11 to 29 ft-lb)
- 12. After inhibitor switch is installed, check to be sure that it operates properly in each range For detailed procedure, refer to page AT-59 for Checking and Adjusting Inhibitor Switch.
- 13 Check the length "L" between case end to rod end of vacuum throttle valve fully pushed in Then select adequate diaphragm rod of corresponding measured length See Figure AT-106

Available diaphragm rod

Distance measured "L" mm (in)	Diaphragm rod length mm (in)
Under 25 55 (1 006)	29 0 (1 142)
25 65 to 26 05 (1 010 to 1 026)	29 5 (1 161)
26 15 to 26 55 (1 030 to 1 045)	30 0 (1 181)
26 65 to 27 05 (1 049 to 1 065)	30 5 (1 201)
Over 27 15 (1 069)	31 0 (1 220)

FRONT CLUTCH

Disassembly

- 1 Piston
- 6 Retaining plate
- 2 Coil spring
- 7 Snap ring
- 3 Front clutch drum
- 8 Drive plate9 Spring retainer
- 4 Dished plate5 Driven plate
 - Fig AT-108 Sectional view of front clutch

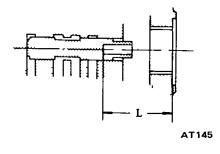


Fig AT-106 Measuring the disdance

COMPONENT PARTS

The transmission consists of many small parts that are quite alike in construction yet machined to very close tolerances. When disassembling parts, be sure to place them in order in part rack so they can be restored in the unit in their proper positions. It is also very important to perform functional test whenever it is designated.

- 1 Pry off snap ring ① with a suitable screwdriver or a pair of pliers Remove a retaining plate ②, drive plate ③, driven plate ④ and dished plate ⑤ in the order listed, as shown in Figure AT-108
- 2 Compress clutch springs, using Clutch Spring Compressor ST25420001 (or ST25420000) Remove snap ring 6 from spring retainer, using Snap Ring Remover ST25320001 See Figure AT-109

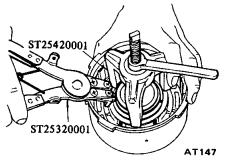


Fig AT-109 Removing snap ring

- 3 Take out spring retainer 7 and spring 8 See Figure AT-108
- 4. Blow out piston by directing a jet of air into hole in clutch drum See Figure AT-110

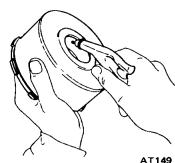


Fig AT-110 Blowing out piston

Inspection

1 Check for signs of wear or damage to clutch drive plate facing If found worn or damaged excessively, discard See "Service Data" for limits 2 Check for wear on snap ring and for weakened or broken coil spring

If necessary, replace with new ones Spring retainer should also be inspected for warpage

Assembly

- 1 Assembly is in reverse the order of disassembly Dip all parts in clean automatic transmission fluid before installing
- 2 Line up driven plates so that stripped arcs are properly aligned, paying particular attention to the location of oil holes in clutch drum See Figure AT-111
- Note The number of drive and driven plates varies with the type of vehicle For detailed information, see "Service Data & Specifications".

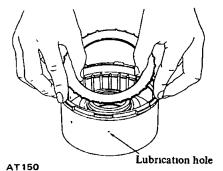


Fig AT-111 Inserting clutch plate

3 After clutch is assembled, make sure that clearance between snap ring (1) and retaining plate (2) is held within specified limits. If necessary, try with other plates having different thickness until correct clearance is obtained. See Figure AT-112

Specified clearance 1 6 to 1 8 mm (0 063 to 0 071 m)

Available retaining plate

rinckness inin (in)	
10 6 (0 417)	
108 (0 425)	
11 0 (0 433)	
11 2 (0 441)	
11 4 (0 449)	

116 (0 457)

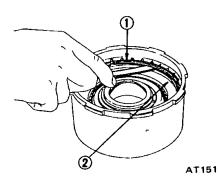


Fig AT-112 Measuring ring to plate clearance

4 Testing front clutch

With front clutch assembled on oil pump cover, direct a jet of air into hole in clutch drum See Figure AT-113

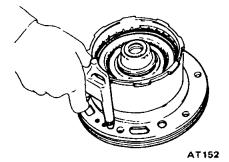
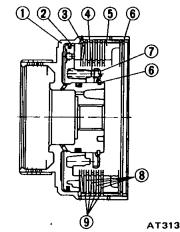



Fig AT-113 Testing front clutch

REAR CLUTCH

Disassembly

- l Rear clutch drum
- 6 Snap ring
- 2 Piston
- 7 Spring retainer
- 3 Dished plate
- 8 Drive plate
- 4 Coil spring
 5 Retaining plate
- 9 Driven plate
- Fig AT-114 Sectional view of rear clutch

1 Take out snap ring (6), retaining plate (5), drive plate (8), driven plate (9) and dished plate (3) Same technique can be applied as in disassembling front clutch See Figure AT-114
2 Remove snap ring from coil spring retainer See Figure AT-115

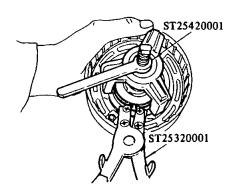


Fig AT-115 Removing snap ring

3 Blow out piston by directing a jet of air into hole in clutch drum See Figure AT-116

Fig AT-116 Blowing out piston

Inspection

Refer to page AT-51 for Inspection of Front Clutch

Assembly

Assemble in reverse the order of disassembly Dip all parts in clean automatic transmission fluid before assembling. Note that the number of drive and driven plates varies with type of vehicle. For details, refer to "Service Data & Specifications"

1 After rear clutch is assembled, check to be sure that clearance between snap ring ① and retaining plate ② is held within prescribed tolerances See Figure AT-117

Specified clearance 1 0 to 1 5 mm (0 039 to 0 059 in)

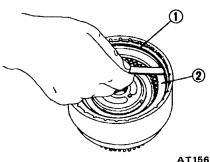
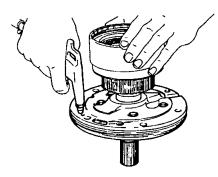



Fig AT-117 Measuring ring to plate clearance

2 Testing rear clutch
Install rear clutch on oil pump
cover

Blow compressed air into oil hole to test for definite clutch operation as shown in Figure AT-118

AT157
Fig AT-118 Testing rear clutch

LOW & REVERSE BRAKE

Disassembly

1 Follow steps as described in page AT-46 for Transmission Disassembly 2 Blow out piston by directing a jet of air into oil hole in clutch piston

Inspection

- 1 Check drive plate facing for wear or damage, if necessary, replace Refer to "Service Data & Specifications" for tolerances
- 2 Test piston return spring for weakness Discard if weakened beyond use
- 3 Replace faulty parts with new ones

Assembly

- 1 After low & reverse piston is installed, assemble thrust spring ring, return spring, thrust washer and one-way clutch inner race Using Hex-head Extension ST25570001 (ST25570000), torque hex-head slotted bolt to 13 to 18 kg-m (9 4 to 13 ft-lb)
- 2 Insert dished plate, driven plate, drive plate and retaining plate into transmission case in that order Install snap ring to secure the installation

Note The number of drive and driven plates varies with type of vehicle For detailed information, refer to "Service Data & Specifications"

3 Without disturbing the above setting, check to be sure that clearance between snap ring and retaining plate is within specified limits. If necessary, use other plates of different thickness until correct clearance is obtained

Specified clearance 0 80 to 1 05 mm (0 031 to 0 041 in)

4 Blow compressed air into oil hole in low & reverse brake to test for definite brake operation as shown in Figure AT-119

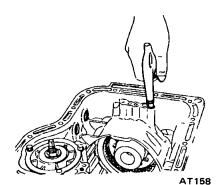


Fig AT-119 Testing low & reverse brake

SERVO PISTON

Disassembly

- 1 Blow out piston by directing a jet of air into hole in release-side of piston
- 2 Remove servo piston return spring

Inspection

Check piston for wear, damage or other faults which might interfere with proper brake operation

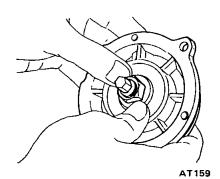
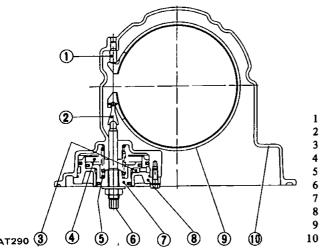



Fig AT-120 Removing piston

- 1 Anchor end pin
- 2 Band strut
- Apply
- 4 Release
- 5 Return spring
- 6 Band servo piston stem
- 7 Band servo piston
- 8 Servo retainer
- 9 Brake band assembly
- 10 Transmission case

Fig AT-121 Sectional view of servo piston

Assembly

1 Prior to assembly, dip all parts in clean automatic transmission fluid

Reverse disassembly procedure to assemble brake

- 2 Use extreme care to avoid damaging rubber ring when installing seal lace
- 3 Blow compressed air from applyside of piston to test for definite piston operation as shown in Figure AT-122

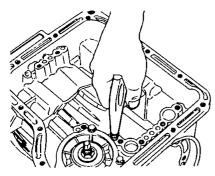
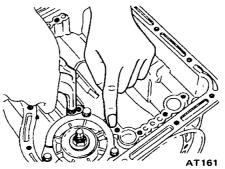
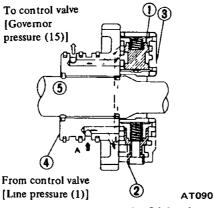


Fig AT-122 Testing piston
(Apply side)

4 With apply-side of piston plugged with thumb, blow compressed air into cylinder from release-side as shown in Figure AT-123 If retainer is raised a little, it is an indication that attaching bolts are loose, calling for retightening




Fig AT-123 Testing piston (Release side)

GOVERNOR

Disassembly

1 Separate governor from oil distributor by unscrewing attaching bolts

2 To disassemble secondary governor, remove spring seat, spring and secondary governor valve from valve body in that order as shown in Figure AT-124

- 1 Primary governor
- 4 Oil distributor
- 2 Secondary governor
- 5 Output shaft
- 3 Governor valve body

Fig AT-124 Testing secondary governor

3 If primary governor is to be disassembled for any purpose, remove spring seat, primary governor valve, spring and spring seat

Inspection

- 1 Check valve for faulty condition Replace spring if found weakened beyond use Faulty piston should also be replaced with a new one
- 2 Examine to see if primary governor slides freely without binding
- 3 To determine if secondary governor is in good condition, blow air under light pressure into hole at "A" and listen for noise like that of a model plane

Assembly

Reverse disassembly procedure to assemble governor

Note Do not confuse primary governor with secondary governor After installation, check that spring is not deflected.

OIL PUMP

Disassembly

1 Free pump cover from pump housing by removing attaching bolts

2 Take out inner and outer gears from pump housing

Inspection

- 1 Inspect for wear or damage to gear teeth Replace rubber, ring if fround damaged beyond use
- 2 Using a straight edge and feelers, measure pump and gear clearances as follows
- Clearance between inner (or outer) gear and pump cover See Figure AT-125

Standard clearance 0 02 to 0 04 mm (0 0008 to 0 0016 m)

[Replace if over 0.08 mm (0.0031 in)]

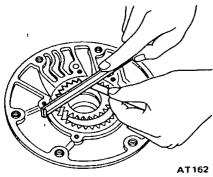


Fig AT-125 Measuring clearance

 Clearance between seal ring and ring groove See Figure AT-126
 Standard clearance

 0 04 to 0 16 mm
 (0 0016 to 0 0063 in)

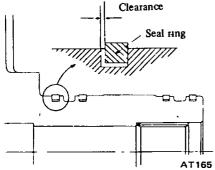


Fig AT-126 Measuring clearance

Assembly

- 1 Set up pump housing with inner and outer pump gears on it
- 2 Using Oil Pump Assembling Gauge ST25580000, install pump cover to pump housing as shown in Figure AT-127

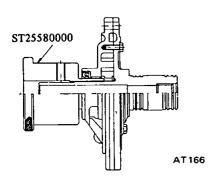


Fig AT-127 Centering oil pump

- 3 Temporarily tighten pump securing bolts
- 4 Set the runout of oil pump cover within 0 07 mm (0 0028 in) total indicator reading See Figure AT-128

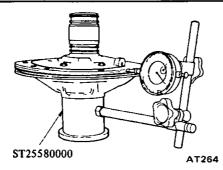


Fig AT-128 Measuring runout

5 Tighten pump securing bolts to specified torque 0 6 to 0 8 kg-m (4 3 to 5 8 ft-lb)

Note Be sure to align converter housing securing bolt holes

6 Again, check the runout of oil pump cover

Note When former Oil Pump Assembling Gauge is to be used, make a screw hole in side of it

PLANETARY CARRIER

The planetary carrier cannot be divided into its individual components

If any part of component is faulty, replace the carrier as a unit

Inspection

Check clearance between pinion washer and planetary carrier with a feeler See Figure AT-129

• Standard clearance 0 20 to 0 70 mm (0 008 to 0 028 in)

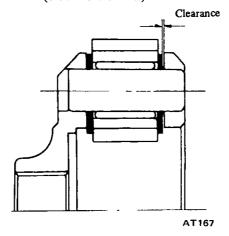


Fig AT-129 Measuring pinion washer to carrier clearance

[Replace if over 0 80 mm (0 031 in)]

CONTROL VALVE

The control valve assembly consists of many precision parts and requires extreme care when it has to be removed and serviced. It is good practice to place parts in a part rack so that they can be reassembled in valve body in their proper positions. Added care should also be exercised to prevent springs and other small parts from being scattered and lost.

Before assembly, dip all parts in clean automatic transmission fluid and check to be certain that they are free of lint and other minute particles. If clutch or band is burnt or if oil becomes fouled, the control valve assembly should be disassembled and flushed

Disassembly

1 Remove bolts and nuts which retain oil strainer Bolts may be removed with a screwdriver, but it is recommended that Hexagon Wrench HT61000800 and Spinner Handle HT62350000 be used See Figure AT-130

Fig AT-130 Disassembling value body

2 Remove attaching bolts With bolts removed, lower valve body, separate plate, and upper valve body are free for removal See Figure AT-131

Note Do not allow orifice check valve and valve spring in lower valve body to be scattered and lost when removing separate plate

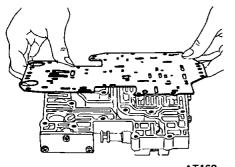
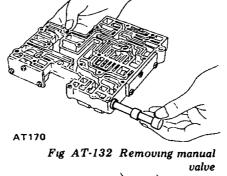


Fig AT-131 Removing separate plate

Pull out manual valve as shown in


Remove side plate Take out

"1st-2nd" shift valve, "2nd-3rd" shift

valve, pressure modifier valve and

three valve springs See Figure AT-133

Figure AT-132

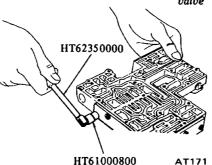


Fig AT-133 Removing side plate

Note Do not work it off with screwdrivers To avoid damaging machine screws, do not work it off with screwdriver

- 5 Remove side plate, pull out pressure regulator valve, second lock valve, pressure regulator plug and two valve springs
- 6 Remove side-plate With side plate removed, solenoid downshift valve, throttle back-up valve, vacuum throttle valve, "2nd-3rd" timing valve and three valve springs are free for removal

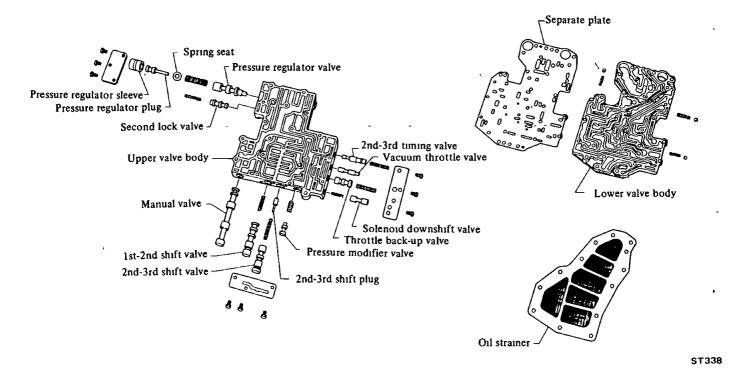


Fig AT-134 Component parts of control value

Inspection

- 1 Check valves for sign of burning and, if necessary, replace
- 2 Check to be certain that oil strainer is in good condition. If found damaged in any manner, discard
- 3 Test valve springs for weakened

tension, if necessary replace

- 4 Examine for any sign of damage or score marks on separate plate If left unheeded, oil will bypass correct oil passages causing many types of abnormalities in the system
- 5 Check oil passages in valve body for sign of damage and other conditions which might interfere with proper valve operation
- 6 Check bolts for stripped threads Replace as required

Valve spring chart

	W 1	Mean coil	NIE	P - 1 d	Installed						
Valve spring	Wire dia mm (in)	dıa mm (ın)	No of active coil	Free length mm (in)	Length mm (in)	Load kg (lb)					
Manual detent	1 3 (0 0512)	6 0 (0 2362)	15 0	32 4 (1 276)	26 5 (1 043)	5 5 (12)					
Pressure regulator	1 2 (0 0472)	10 5 (0 4134)	13 0	43 0 (1 693)	23 5 (0 925)	2 8 (6 2)					
Pressure modifier	0 4 (0 0157)	8 0 (0 3150)	5 0	18 5 (0 728)	9 0 (0 3543)	01(02)					
1st-2nd shift	0 6 (0 0236)	6 0 (0 2362)	160	32 0 (1 260)	16 0 (0 630)	0 625 (1 4)					
2nd-3rd shift	0 7 (0 0276)	6 2 (0 2441)	180	41 0 (1 614)	17 0 (0 669)	1 40 (3 1)					
2nd-3rd timing	0 7 (0 0276)	5 5 (0 2165)	150	32 5 (1 280)	27 0 (1 063)	0 55 (1 2)					
Throttle back-up	0 8 (0 0315)	6 5 (0 2559)	14 0	36 0 (1 417)	18 8 (0 740)	1 92 (4 2)					
Solenoid downshift	0 55 (0 0217)	5 0 (0 1969)	120	22 0 (0 866)	12 5 (0 492)	0 60 (1 3)					
Second lock	0 55 (0 0217)	5 0 (0 1969)	160	33 5 (1 319)	21 0 (0 827)	0 60 (1 3)					
Throttle relief	0 9 (0 0354)	5 6 (0 2205)	14 0	26 8 (1 055)	19 0 (0 748)	2 19 (4 8)					
Orifice check	0 2 (0 0079)	4 8 (0 1890)	15 0	21 5 (0 846)	11 5 (0 453)	0 01 (0 02)					
Primary governor	0 45 (0 0177)	8 3 (0 3268)	5 0	21 8 (0 858)	7 5 (0 2953)	0 215 (0 5)					
Secondary governor	0 7 (0 0276)	8 5 (0 3346)	5 5	25 1 (0 988)	10 5 (0 413)	1 10 (2 4)					

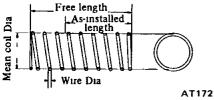


Fig AT-135 Value spring

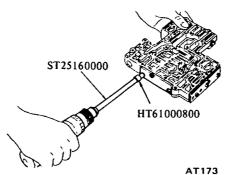
2 Install side plates using Torque Driver ST25160000 and Hexagon Wrench HT61000800 See Figure AT-136

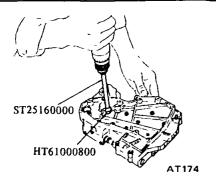
Tightening torque 0 25 to 0 35 kg-m (1 9 to 2 5 ft-lb)

Assembly

Assemble in reverse order of disassembly However, observe the following assembly notes Refer to "Valve Spring Chart" and illustration in assembling valve springs Dip all parts in clean automatic transmission fluid before assembly Tighten parts to specifications when designated

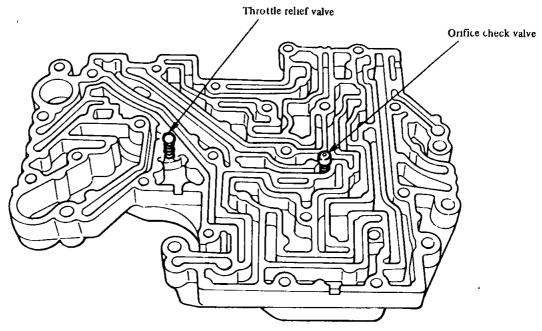
1 Slide valve into valve body and be particularly careful that they are not forced in any way




Fig AT-136 Installing side plate

3 Install orifice check valve, valve spring, throttle relief valve spring and steel ball in valve body

Note Install check valve and spring so that they are properly positioned in valve body See Figure AT-138


4 Install upper and lower valves See Figure AT-137

Tightening torque
0 25 to 0 35 kg-m
(1 8 to 2 5 ft-lb)
Reamer bolt tightening torque
0 5 to 0 7 kg-m
(3 6 to 5 1 ft-lb)

5 Install oil strainer
Tightening torque
0 25 to 0 35 kg-m
(1 8 to 2 5 ft-lb)

Fig AT-137 Installing valve body

AT342

Fig AT-138 Position of check value and spring

TROUBLE DIAGNOSIS AND ADJUSTMENT

CONTENTS

INSPECTION AND ADJUSTMENT		ROAD TEST	AT-61
BEFORE TROUBLE DIAGNOSIS	AT-58	CHECKING SPEED CHANGING	,,,,
TESTING INSTRUMENT FOR		CONDITION	AT-61
INSPECTION	AT-58	CAR SPEED AT GEAR SHIFT	AT-61
CHECKING OIL LEVEL	AT-58	CHECKING ITEMS DURING SPEED	
INSPECTION AND REPAIR OF		CHANGE	AT-62
OIL LEAKAGE	AT-59	SHIFT SCHEDULE	AT-62
CHECKING ENGINE IDLING		LINE PRESSURE TEST	AT-63
REVOLUTION	AT-59	LINE PRESSURE (governor feed pressure)	AT-64
CHECKING AND ADJUSTING KICKDOWN		JUDGEMENT IN MEASURING LINE	
SWITCH AND DOWNSHIFT SOLENOID	AT-59	PRESSURE	AT-64
INSPECTION AND ADJUSTMENT OF		TROUBLE SHOOTING CHART	AT-64
MANUAL LINKAGE	AT-59	INSPECTING ITEMS	AT-64
CHECKING AND ADJUSTING INHIBITOR		TROUBLE SHOOTING CHART FOR 3N71B	
SWITCH	AT-59	AUTOMATIC TRANSMISSION	AT-65
STALL TEST	AT-60	TROUBLE SHOOTING GUIDE FOR 3N71B	
STALL TEST PROCEDURES	AT-60	AUTOMATIC TRANSMISSION	AT-68
JUDGEMENT	ΔT-60		

Since most automatic transmission troubles can be repaired by simple adjustment, do not disassemble immediately

Firstly inspect and adjust the automatic transmission in place utilizing the "Trouble Shooting Chart"

If the trouble can not be solved by this procedure, remove and disassemble the automatic transmission. It is advisable to check, overhaul and repair each part in the order listed in the "Trouble Shooting Chart"

- In the "Trouble Shooting Chart" the diagnosis items are arranged according to difficulty from easy to difficult, therefore please follow these items. The transmission should not be removed, unless necessary
- 2 Tests and adjustments should be made on the basis of standard values and the data should be recorded

INSPECTION AND ADJUSTMENT BEFORE TROUBLE DIAGNOSIS

TESTING INSTRUMENT FOR INSPECTION

- 1 Engine tachometer
- 2 Vacuum gauge

3 Oil pressure gauge

It is convenient to install these instruments in a way that allows measurements to be made from the driver's seat

CHECKING OIL LEVEL

In checking the automatic transmission the oil level and the condition of oil around the oil level gauge should be examined every 5,000 km (3,000 miles) This is an easy and effective trouble shooting procedure since some changes in oil condition are often linked with developed troubles

For instance

Lack of oil causes faulty operation by making the clutches and brakes slip, resulting in severe wear

This is because the oil pump sucks air causing oil foaming, thus rapidly deteriorating the oil quality and producing sludge and varnish

Excessive oil is also bad because of oil foaming caused by the gears stirring up the oil During high speed driving excessive oil in the transmission often blows out from the breather

Measuring oil level

To check the fluid level, start the

engine and run it until normal operating temperatures [oil temperature 50 to 80°C (122 to 176°F) Approximately ten-minute of operation will raise the temperature to this range] and engine idling conditions are stabilized. Then, apply the brakes and move the transmission shift lever through all drive positions and place it in park "P" position. In this inspection, the car must be placed on a level surface

The amount of the oil varies with the temperature As a rule the oil level must be measured after its temperature becomes sufficiently high

- 1 Fill the oil to the line "H" The difference of capacities between both "H" and "L" is approximately 04 liter (%US pt, %Imp pt) and, therefore, do not fill beyond the line "H"
- 2 When topping-up and changing oil, care should be taken to prevent mixing the oil with dust and water

Inspection oil condition

The condition of oil sticking to the level gauge indicates whether to overhaul and repair the transmission or look for the faulty part

If the oil has deteriorated to a varnish-like quality, it causes the con-

trol valve to stick Blackened oil indicates a burned clutch, brake band, etc In these cases, the transmission must be replaced

Notes

- a In checking oil level, use special paper cloth to handle the level gauge and be careful not to let the scraps of paper and cloth stick to the gauge
- b. Insert the gauge fully and take it out quickly before splashing oil adheres to the gauge Then observe the level
- c Use automatic transmission fluid having "DEXRON" identifications only in the 3N71B automatic transmission.
- d. Pay attention because the oil to be used differs from that used in the Nissan Full Automatic Transmission 3N71A Never mix the oils

INSPECTION AND REPAIR OF OIL LEAKAGE

When oil leakage takes place, the portion near the leakage is covered with oil, presenting difficulty in detecting the spot Therefore, the places where oil seals and gaskets are equipped are enumerated below

- Converter housing
- Rubber ring of oil pump housing
- Oil seal of oil pump housing
- Oil seal of engine crankshaft
- Bolts of converter housing to case
- Transmission and rear extension
- Junction of transmission and rear extension
- Oil cooler tube or oil tube connectors
- Oil pan
- Oil-pressure inspection holes (Refer to Figure AT-144)
- · Mounting portion of vacuum diaphragm and downshift solenoid
- Breather and oil charging pipe
- Speedometer pinion sleeve
- Oil seal of rear extension

To exactly locate the place of oil leakage, proceed as follows

• Place the vehicle in a pit, and by sampling the leaked oil, determine if it is the torque converter oil The torque converter oil has a color like

- red wine, so it is easily distinguished from engine oil or gear oil
- Wipe off the leaking oil and dust and detect the spot of oil leakage Use nonflammable organic solvent such as carbon tetrachloride for wiping
- Raise the oil temperature by operating the engine and shift the lever to "D" to increase the oil pressure The spot of oil leakage will then be found more easily

Note As oil leakage from the breather does not take place except when running at high speed, it is impossible to locate this leakage with vehicle stationary

CHECKING ENGINE IDLING REVOLUTION

The engine idling revolution should be properly adjusted

If the engine revolution is too low, the engine does not operate smoothly, and if too high, a strong shock or creep develops when changing over from "N" to "D" or "R"

CHECKING AND ADJUSTING KICKDOWN SWITCH AND DOWNSHIFT SOLENOID

When the kickdown operation is not made properly or the speed changing point is too high, check the kickdown switch, downshift solenoid, and wiring between them When the ignition key is positioned at the 1st stage and the accelerator pedal is depressed deeply, the switch contact should be closed and the solenoid should click If it does not click, it indicates a fault Then check each part with the testing instruments See Figure AT-139

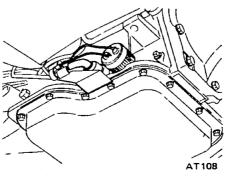


Fig AT-139 Downshift solenoid

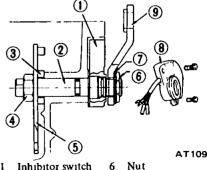
Note Watch for oil leakage from transmission case

INSPECTION AND ADJUSTMENT OF MANUAL LINKAGE

The adjustment of manual linkage is equally important as "Inspection of Oil Level" for the automatic transmission Therefore, great care should be exercised because incorrect adjustment will result in the breakdown of the transmission

Inspection

Pull the selector lever toward you and turn it as far as "P" to "1" range, where clicks will be felt by hand This is the detent of manual valve in the valve body, and indicates the correctposition of the lever


Inspect whether the pointer of selector dial corresponds to this point, and also whether the lever comes in alignment with the stepping of position plate when it is released

Adjustment '

This procedure can be accomplished by referring to page AT-40 for Removal and Installation

CHECKING AND ADJUSTING **INHIBITOR SWITCH**

The inhibitor switch lights the reverse lamp in the range "R" of the transmission operation and also rotates the starter motor in the ranges "N" and "P"

- Inhibitor switch
- Manual shaft
- Washer
- 3 Washer
- Inhibitor switch
- 4 Nut
- Range select lever
- Manual plate

Fig AT-140 Construction of inhibitor switch

Check whether the reverse lamp and the starter motor operate normally in these ranges If there is any problem, first check the linkage If no fault is found in the linkage, check the inhibitor switch

Separate the manual lever from the remote control selector rod and turn the range select lever to "N"

Note In the position "N" the slot of the manual shaft is vertical

Using a tester, check the two black-yellow (BY) wires from the inhibitor switch in the ranges "N" and "P" and the two red-black (RB) wires in the range "R" for continuity Turn range select lever in both directions from each lever set position and check each continuity range. It is normal if the electricity is on while the lever is within an angle of about 3° on both sides from each lever set line. However, if its continuity range is obviously unequal on both sides, adjustment is required.

If any malfunction is found, unscrew the fastening nut of the range selector lever and two fastening bolts of the switch body and then remove the machine screw under the switch body Adjust the manual shaft correctly to the position "N" by means of the selector lever (When the slot of the shaft becomes vertical, the detent works to position the shaft correctly with a clicking sound)

Move the switch slightly aside so that the screw hole will be aligned with the pin hole of the internal rotor combined with the manual shaft and check their alignment by inserting a 1.5 mm (0.0591 in) diameter pin into the holes. If the alignment is correct, fasten-the switch body with the bolts, pull out the pin, tighten up the screw in the hole, and fasten the selector lever as before. Check the continuity again with the tester. If the malfunction still remains, replace the inhibitor switch.

STALL TEST

The purpose of this test is to check the transmission and engine for trouble by measuring the maximum numbers of revolutions of the engine while vehicle is held in a stalled condition. The carburetor is in full throttle operation with the selector lever in ranges "D", "2" and "1" respectively. Compare the measured results with the standard values.

Components to be tested and test items

- 1 Clutches, brake and band in transmission for slipping
- 2 Torque converter for proper functioning
- 3 Engine for overall properly

STALL TEST PROCEDURES

Before testing, check the engine oil and torque converter oil, warm up the engine cooling water to suitable temperature by running at 1,200 rpm with the selector lever in the range "P" for several minutes Warm up the torque converter oil to suitable temperature [60 to 100°C (140 to 212°F)]

l Mount the engine tachometer at a location that allows good visibility from the driver's seat and put a mark on specified revolutions on the meter

- 2 Secure the front and rear wheels with chocks and apply the hand brake Be sure to depress the brake pedal firmly with the left foot before depressing the accelerator pedal
- 3 Throw the selector lever into the range "D"
- 4 Slowly depress the accelerator pedal until the throttle valve is fully opened Quickly read and record the engine revolution when the engine begins to rotate steadily and then release the accelerator pedal
- 5 Shift the selector lever to "N" and operate the engine at approximately 1,200 rpm for more than one minute to cool down the torque converter oil and coolant
- 6 Make similar stall tests in ranges "2", "1" and "R"

Note The stall test operation as specified in item (4) should be made within five seconds. If it takes too long, the oil deteriorates and the clutches, brake and band are adversely affected. Sufficient cooling time should be given between each test for the four ranges "D", "2", "1" and "R".

JUDGEMENT

1 High stall revolution more than standard revolution

If the engine revolution in stall condition is higher than the standard values, it indicates that one or more clutches in the transmission are slipping and, therefore, no further test is required

For the following abnormalities, the respective causes are presumed

- High rpm in all ranges Low line pressure
- High rpm in "D", "2" and "1" and normal rpm in "R" Rear clutch shipping
- High rpm in "D" and "2" and normal rpm in "1" One-way clutch slipping
- High rpm in "R" only Front clutch or low and reverse brake slipping

To determine which is slipping, front clutch or low and reverse brake, a road test is needed

If, while coasting, after starting with the lever in "1" range, engine braking does not work properly, the low and reverse brake is slipping Otherwise, the front clutch is slipping

Slipping of the band brake is difficult to ascertain However, if it occurs with the lever in "2" range, engine revolution increases up to the same level as in "1st" range It is impossible to check it in the stall test

2 Standard stall revolution

If the engine revolution in stall condition is within the standard values, the control elements are normally operating in the ranges "D", "2", "1" and "R"

Also, the engine and one-way clutch of the torque converter are normal in performance and operation

The one-way clutch of the torque converter, however, sometimes sticks This is determined in the road test

3 Lower stall revolution than standard revolution

If the engine revolution in stall condition is lower than the standard values, it indicates that the engine is in abnormal condition or the torque converter's one-way clutch is slipping

4 Others

- (1) If the accelerating performance is poor until vehicle speed of approximately 50 km/h (30 MPH) is attained and then normal beyond that speed, it can be judged that the torque converter's one-way clutch is slipping
- (2) If the torque converter's oneway clutch sticks, vehicle speed can not exceed approximately 80 km/h (50 MPH) in the road test. In such a case, the torque converter oil temperature rises abnormally and so special care is required.
- (3) If the transmission does not operate properly at all vehicle speeds, it indicates poor engine performance

ROAD TEST

An accurate knowledge of the automatic transmission is required for an exact diagnosis

It is recommended that a diagnosis guide chart with the standard vehicle speeds for each stage of the up- and downshiftings be prepared Measured vehicle speeds are to be filled in the adjoining column after each testing

Also it is advisable to mount a stopper for positioning the throttle opening

CHECKING SPEED CHANGING CONDITION

The driver's feeling during gear changes should also be checked attentively

- 1 A sharp shock or unsmoothness is felt during a gear change
- 2 A gear change is made with a long and dragging feeling

These indicate that the throttle pressure is too low or some valve connected to the throttle is faulty

CAR SPEED AT GEAR SHIFT

Throttle opening (-mmHg)	Gear shift	Propeller shaft revolution rpm
Kickdown (0)	$\begin{array}{c} \mathbf{D_1} \rightarrow \mathbf{D_2} \\ \mathbf{D_2} \rightarrow \mathbf{D_3} \\ \mathbf{D_3} \rightarrow \mathbf{D_2} \\ \mathbf{D_2} \rightarrow \mathbf{D_1} \end{array}$	1,840 to 2,340 3,340 to 3,840 3,460 to 2,960 1,790 to 1 290
Half throttle (200)	$\begin{array}{c} D_1 \rightarrow D_2 \\ D_2 \rightarrow D_3 \\ D_3 \rightarrow D_2 \text{ or } \\ D_3 \rightarrow D_1 \\ D_2 \rightarrow D_1 \end{array}$	330 to 830 1,720 to 2,220 1,350 to 850 700 Max
Full throttle (0)	1 ₂ -> 1 ₁ *	1,860 to 1 360
Minimum throttle (450)	1 ₂ → 1 ₁ *	1,860 to 1,360

^{*} Reduce the speed by shifting to "1 range from "D" range (output shaft 2,000 rpm)

Note Car speed can be calculated by the following formula,

$$V = \frac{2 \times \pi \times r \times N_p \times 60}{R_E \times 1,000}$$

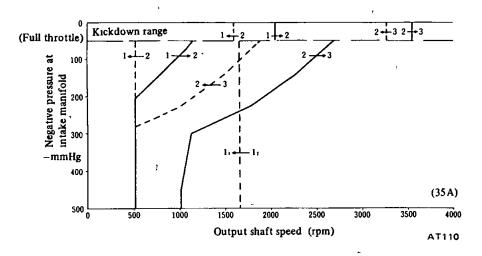
where,

V = Car speed (km/h)

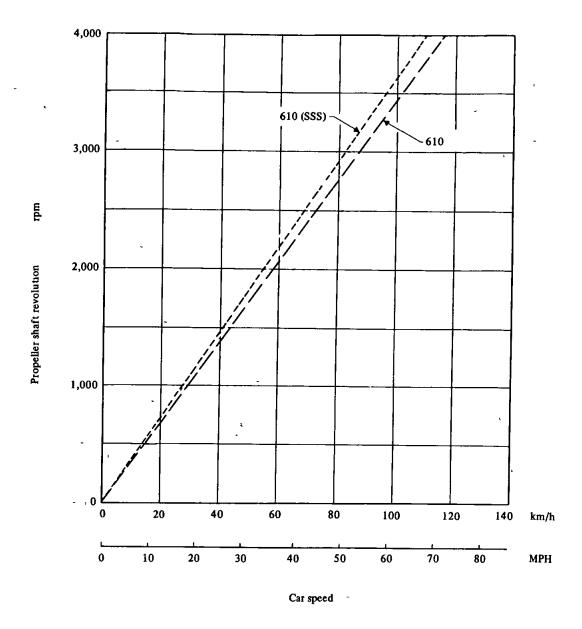
 N_n = Propeller shaft revolution (rpm)

 $R_{\rm F}^{\rm r}$ = Final gear ratio

r = Tire effective radius (m)


 π = The ratio of circumference of a circle to its diameter 3 14

CHECKING ITEMS DURING SPEED CHANGE


- 1. In "D" range, gear changes, $D_1 \rightarrow D_2 \rightarrow D_3$ are effected In "R" range, the speed does not increase
- 2 The kickdown operates properly
- 3 By moving the lever from "D" to "1", gear changes $D_3 \rightarrow 2(l_2) \rightarrow l_1$ are effected In the ranges " l_2 " and " l_1 ", the engine braking works properly
- 4 In "1", the speed does not increase
- 5 Should be quickly fixed at "2" range
- 6 In "P", vehicle can be parked properly

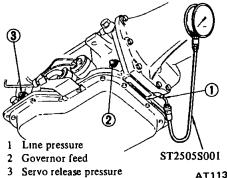
If any malfunction occurs in second gear during the road test, that is, if vehicle shakes, drags or slings while shifting up from "D₁", directly to "D₃" or in shifting up from "D₁" to "D₂", the brake band should be adjusted If these problems remain after the brake band is adjusted, check the servo piston seal for oil leakage

SHIFT SCHEDULE

Car speed-propeller shaft revolution chart (Approximate figures)

AT343

• Fig AT-143 Car speed — Propeller shaft revolution chart


LINE PRESSURE TEST

When any slipping occurs in clutch or brake, or the feeling during a speed change is not correct, the line pressure must be checked

Measuring line pressure is done by a pressure gauge attached to two pressure measuring holes after removing blind plugs located at transmission case See Figure AT-144

The line pressure measurement is begun at idling and taken step by step by enlarging the throttle opening

- 1 A sharp shock in upshifting or too high changing speeds are caused mostly by too high throttle pressure
- 2 Slipping or incapability of operation is mostly due to oil pressure leakage within the gear trains or spool valve

AT113

Fig AT-144 Measuring line pressure

LINE PRESSURE (governor feed pressure)

Range	Throttle openin Unit —mmHg	•	At cut back point [under approximately 15 km/h (9 MPH)] Unit kg/cm ² (psi)	After cut back [over approximately 35 km/h (22 MPH)] Unit kg/cm ² (psi)
"D"	Full throttle Minimum throttle	0 450	9 4 to 11 0 (134 to 156) 3 0 to 4 0 (43 to 57)	5 5 to 6 5 (78 to 92) 3 0 to 4 0 (43 to 57)
"2"	Full throttle Minimum throttle	0 450	10 0 to 12 0 (142 to 171) 6 0 to 12 0 (85 to 171)	5 5 to 7 0 (78 to 100) 5 5 to 7 0 (78 to 100)
"R"	Full throttle Minimum throttle	0 450	14 0 to 16 0 (199 to 228) 3 0 to 5 5 (43 to 78)	14 0 to 16 0 (199 to 228) 3 0 to 5 5 (43 to 78)

Notes a The line pressure during idling corresponds to the oil pressure before cut down at minimum throttle

b The oil pressure "After cut back" means that after the pressure modifier valve has operated

JUDGEMENT IN MEASURING LINE PRESSURE

1 Low idling line pressure in the ranges "D", "2", "1", "R" and "P"

This can be attributed to trouble in the pressure supply system or too low output of power caused by

- (1) A worn oil pump
- (2) An oil pressure leak in the oil pump, valve body or case
- (3) A sticking regulator valve
- 2 Low idling, line pressure in certain ranges only

This is presumably caused by an oil leak in the devices or circuits connected to the relevant ranges

- (1) When there is an oil leak in the rear clutch and governor, the line pressure in "D", "2" and "1" are low but the pressure is normal in "R"
- (2) When an oil leak occurs in the low and reverse brake circuit, the line pressure in "R" and "P" are low but the pressure is normal in "D", "2" and "1"
- 3 High idling line pressure

This is presumably caused by an increased vacuum throttle pressure owing to a leak in the vacuum tube or diaphragm or by an increased line pressure due to a sticking regulator valve

Vacuum leakage is checked by directly measuring the negative pressure after removing the vacuum pipe

A puncture of the vacuum diaphragm can be easily ascertained because the torque converter oil is absorbed into the engine and the exhaust pipe emits white smoke

4 Items to be checked when the line pressure is increasing

In this check, the line pressure should be measured with vacuums of 450 mmHg and 0 mmHg in accordance with the stall test procedure

- (1) If the line pressure do not increase despite the vacuum decrease, check whether the vacuum rod is incorporated
- (2) If the line pressure do not meet the standard, it is caused mostly by a sticking pressure regulating valve, pressure regulating valve plug, or amplifier

TROUBLE SHOOTING CHART

INSPECTING ITEMS

1 Inspection with automatic transmission on vehicle

- A Oil level
- B Range select linkage
- C Inhibitor switch and wiring
- D Vacuum diaphragm and piping
- E Downshift solenoid, kickdown switch and wiring
- F Engine idling rpm
- G Oil pressure (throttle)
- H Engine stall rpm
- I Rear lubrication
- J Control valve (manual)
- K Governor valve
- L Band servo
- M Transmission air check
- N Oil quantity
- O Ignition switch and starter motor
- P Engine adjustment and brake inspection
- 2 Inspection after inspecting automatic transmission on vehicle
- m Rear clutch
- n Front clutch
- q Band brake
- r Low and reverse brake
- s Oil pump
- t Leakage of oil passage
- u One-way clutch of torque converter
- v One-way clutch of transmission
- w Front clutch check ball
- x Parking linkage
- y Planetary gear

TROUBLE SHOOTING CHART FOR 3N71B AUTOMATIC TRANSMISSION

(The number shown below indicates the sequence in which the checks should be taken up)

Trouble	A	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0 1	- I	n	n	q	r	s	t	u	v	wx	у
Engine does not start in "N", "P" ranges		2	3					••••		•					1					1			-			
Engine starts in other range than "N" and "P"		1	2				•																			
Sharp shock in shifting from "N" to "D" range				2		1	3			4						(5)									
Vehicle will not run in "D" range (but runs in "2", "1" and "R" ranges)		1					2			3									-				(1		
Vehicle will not run in "D", "1", "2" ranges (but runs in "R" range) Clutch slips Very poor acceleration	1	2		,			4			5			6	3	,	7 (0	3)					9				
Vehicle will not run in "R" range (but runs in "D", "2" and "1" ranges) Clutch slips Very poor acceleration	1	2					3			5	•		6	4		۶)	8	G	D	(10			10	
Vehicle will not run in any range	1	2					3			5			6	4							7	8			(9)
Clutches or brakes slip somewhat in starting	1	2		6			3			5			7	4					_		8	9				
Vehicle runs in "N" range		1								3				2		Œ	D									
Maximum speed not attained Acceleration poor	1	2					4	5		7		6		3	8	3 0	D (13	9(ĵ o	13					
Vehicle braked by throwing lever into "R" range												3	2	1		(D	(5)		·				6)
Excessive creep						1					•															
No creep at all	1	2				3	, -			5	_			4		(9 (9			6	7			-	
Failure to change gear from "2nd" to "3rd"		ı		2	3					5	6	8	7	4				, (9		(Q				
Failure to change gear from "1st" to "2nd"		1		2	3					5	6	8	7	4			(9)			,	10			11)	
Too high a gear change point from "1st" to "2nd", from "2nd" to "3rd"				1	2		3			5	6			4	•						(Ð				
Gear change directly from "1st" to "3rd" occurs										2	4		3	1				(<u>5</u>		(6				

Automatic Transmission

Trouble	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	O P	m n	q	r	s	t	u	v	w x	у
Too sharp a shock in change from "1st" to "2nd"				1				2		4		5		3			6			-	-			
Too sharp a shock in change from "2nd" to "3rd"				1	2		3			3		5	4			6).	•						
Almost no shock or clutches slipping in change from "1st" to "2nd"	1	2		3		_	4			6		8	7	5		•	9			100			•	
Almost no shock or slipping in change from "2nd" to "3rd" Engine races extremely	1	2		3			4			6		8	7	5		9)		•	10			0	-
Vehicle braked by gear change from "1st" to "2nd"										2				1		•)	3			(5)		•
Vehicle braked by gear change from "2nd" to "3rd"										3		2		1			•							-
Failure to change gear from "3rd" to "2nd"				1						3	4	6	5	2		. (7	8			9				
Failure to change gear from "2nd" to "1st" or from "3rd" to "1st".				1						3	4	6	5	2			1				(8)		
Gear change shock felt during deceleration by releasing accelerator pedal		1		2	3		4			5	6						_	_		7				
Too high a change point from "3rd" to "2nd", from "2nd" to "1st"		1		2	3		4			5	6									7				
Kickdown does not operate when depressing pedal in "3rd" within kickdown vehicle speed				2	1					4	5			3			6			7				
Kickdown operates or engine over- runs when depressing pedal in "3rd" beyond kickdown vehicle speed limit		1		2			3			5	6		7	4		. @)			9				
Races extremely or slips in changing from "3rd" to "2nd" when depressing pedal		•		1			2			4		6	5	3		7	8			9			10	-
Failure to change from "3rd" to "2nd" when changing lever into "2" range		1			•		2			4	•	5		3			6			7				
Gear change from "2nd" to "1st" or from "2nd" to "3rd" in "2" range		1					2			3											-			

Automatic Transmission

Trouble	A	В	С	D	E	F	G	Н	ī	J	K	L	M	N	0	P	m	n	q	r	s	t	u	v	w	ку
No shock at change from "1" to "2" range or engine races extremely	1	2		3		4		1		6		٠	7	5					9		10	•				
Failure to change from "3rd" to "2nd" when shifting lever into "1" range		1					2			4	5	7	6	3		•		8	9			10			-	•
Engine brake does not operate in "1" range		1					2			4			5	3						6		7	•			
Gear change from "1st" to "2nd" or from "2nd" to "3rd" in "1" range		1								2									•			3		•		
Does not change from "2nd" to "1st" in "1" range	1	2								4	5	6	7	3						8		9				
Large shock changing from "2nd" to "1st" in "1" range			-	1				2		4	•			3						(5)				Ì		
Vehicle moves when changing into "P" range or parking gear does not disengage when shifted out of "P" range		1				•					,				•		,		•						Q	2)
Transmission overheats	1					-	3	4	2	6		8	7	5				9	10	0	13	13	13			13
Oil shoots out during operation White smoke emitted from exhaust pipe during operation	1	-	•	3	•		5	6	2	7			8	4				9	10	0	130	13	•			(3)
Offensive smell at oil charging pipe	1													2	•		3	•	(5)	6	7	8	9			10
Transmission noise in "P" and "N" ranges	1					•	2				•				,						3	•				
Transmission noise in "D", "2", "1" and "R" ranges	1						2		•								3			-	•		(3		6

TROUBLE SHOOTING GUIDE FOR 3N71B AUTOMATIC TRANSMISSION

Order	Test item	Procedure
Checking	1 Oil level gauge	Check gauge for oil level and leakage before and after each test
	2 Downshift solenoid	Check for sound of operating solenoid when depressing accelerator pedal fully with ignition key "ON"
	3 Manual linkage	Check by shifting into "P", "R", "N", "D", "2" and "1" ranges with selector lever
	4 Inhibitor switch	Check whether starter operates in "N" and "P" ranges only and whether reverse lamp operates in "R" range only
	5 Engine idling rpm	Check whether idling rpm meets standard
	6 Vacuum pressure of vacuum pipe	Check whether vacuum pressure is more than 450 mmHg in idling and whether it decreases with increasing rpm
	7 Operation in each range	Check whether transmission engages positively by shifting "N"→"D", "N"→"2", "N"→"1" and "N"→"R" range while idling with brake applied
	8 Creep of vehicle	Check whether there is any creep in "D", "2", "1" and "R" ranges
Stall test	1 Oil pressure before testing	Measure line pressures in "D", "2", "1" and "R" range while idling
	2 Stall test	Measure engine rpm and line pressure in "D", "2", "1" and "R" ranges during full throttle operation
	-	Notes a Temperature of torque converter oil used in test should be from 60 to 100°C (140 to 212°F) ie, sufficiently warmed up but not overheated b To cool oil between each stall test for "D", "2", "1" and "R" ranges, idle engine, ie., rpm at about 1,200 rpm for more than 1 minute in "P" range Measurement time must not be more than 5 seconds
	3 Oil pressure after testing	Same as item 1
Road test	1 Slow acceleration, 1 st →2nd 2nd →3rd	Check vehicle speeds and engine rpm in shifting up 1st 2nd range and 2nd 3rd range while running with lever in "D" range and engine vacuum pressure of about 200 mmHg
r	2 Quick acceleration, 1st → 2nd 2nd → 3rd	Same as item 1 above except with engine vacuum pressure of 0 mmHg (i e, in position just before kickdown)
,	3 Kickdown operation, 3rd → 2nd or 2nd → 1st	Check whether the kickdown operates and measure the time delays while running at 30, 40, 50, 60, 70 km/h (19, 25, 31, 38, 44 MPH) in "D ₃ " range

Automatic Transmission

Order	Test item	Procedure
	4 Shift down, $D_3 \rightarrow D_2 \rightarrow D_1$	Check vehicle speeds and engine rpm in shifting down from 3rd→2nd→1st (sequentially) while coasting with accelerator pedal released in "D ₃ " range and engine vacuum pressure of about 450 mmHg
	5 Shift down, D ₃ →1 ₂ →1 ₁	Check for shifting down $D_3 \rightarrow 1_2$ and engine braking, and further for shifting down $1_2 \rightarrow 1_1$ and engine braking, after shifting the lever into "1" range with the accelerator pedal released and the engine vacuum pressure of 0 mmHg while driving at about 50 km/h (31 MPH) in " D_3 " range.
•	6 Shift down, D ₃ →2	Check for quick shifting down D ₃ →2 and engine braking, after shifting the lever into "2" range while driving at about 50 km/h (31 MPH) in "D ₃ " range Further, check for locking of the transmission in 2nd gear ratio regardless of vehicle speed
	7 Shift up, $1_1 \rightarrow 1_2$	Check for failure of the transmission to shift up during acceleration, when starting in "1" range
	8 Shift up or down when starting in "2" range	Check the transmission for not shifting up or down during acceleration or deceleration, when starting in "2" range
	9 Parking	Confirm that vehicle will not move on grade when shifting to "P" range
Others	Abnormal shock, oil leakage	Enter into record conditions observed during these tests such as gear noise, abnormal clutch noise and acceleration performance

SERVICE DATA AND SPECIFICATIONS

General specifications

Torque converter	
Туре	Symmetrical 3-element 1-stage 2-phase torque converter
Stall torque ratio	20 1
Transmission	
Type	3-speed forward and one-speed reverse with planetary gear train
Control elements	
Multiple-disc clutch	2
Band brake	1
Multiple-disc brake	1
One-way clutch	1
Gear ratio	
1st	2 458
2nd	1 458
3rd	1 000
Reverse .	2 182
Selector positions	ı
P (Park)	Transmission is placed in neutral
	Output shaft is fixed
	Engine can be started
R (Reverse)	Backward running
N (Neutral)	Transmission is in neutral
	Engine can be started
D (Drive)	Up-or downshifts automatically to and from 1st, 2nd, and top
2 (2nd lock)	Fixed at 2nd
1 (Lock up)	Fixed at low or downshifts from 2nd
Oil pump	
Туре	Internally intermeshing involute gear pump
Number of pumps	1
Oil	Automatic transmission fluid "DEXRON" type
Capacity	55 liters (5% US qt, 4% Imp qt) except B210
	50 liters (5 % U S qt, 4 % Imp qt) on B210
	Approximately 27 liters (2%US qt, 2%Imp qt) in torque converter [25 liters (2%U.S qt, 2%Imp qt) on B210]
Hydraulic control system	Controlled by measuring the negative pressure of intake manifold and the revolution of output shaft
Lubrication system	Forced lubrication by an oil pump
Cooling system	Water-cooled by a circulation-type auxiliary cooler (located at the radiator)

Specifications and adjustment

A/T model code number .			X2401
Applied car model .		•	710,610
Engine model .			L16, L18
Torque converter assembly			
Stamped mark on the T/C			16 - B
Front clutch			
Number of drive plates			3
Number of driven plates		-	3 .
Clearance	mm (ın)		1 6 to 1 8 (0 063 to 0 071)
Thickenss of retaining plate	mm (in)		10 6 (0 417)
- v - v			10 8 (0 425)
			11 0 (0 433)
			11 2 (0 441)
			11 4 (0 449)
			11 6 (0 457)
Rear clutch			
Number of drive plates .			4
Number of driven plates .			4
Clearance	mm (ın)		1 0 to 1 5 (0 039 to 0 059)
Thickness of retaining plate	mm (ın)	r	4 8 (0 189)
Low & reverse brake			
Number of drive plates			4
Number of driven plates ·			4
Clearance	mm (ın) .	,	0 80 to 1 05 (0.031 to 0.041)
Thickness of retaining plate	mm (m)		11 8 (0 465)
			12 0 (0 472)
,			12 2 (0 480)
•			12 4 (0 488)
(s			12 6 (0 496)
5		•	12 8 (0 504)
Brake band			
Piston size	mm (m)		
Big dia .		•	64 (2 52)
Small dia	•		40 (1 58)
Control valve assembly		•	
Stamped mark on strainer			E
Governor assembly			
Stamped mark on governor body			35

Automatic Transmission

Engine stall revolution

L16 engine (Single carb)				1,800 to 2,000 rpm
L18 engine (Single carb)				1,950 to 2,150 rpm
L18 engine (Twin carb)	•	•		 1,900 to 2,150 rpm

Fightening torque

kg-m (ft-lb)

Drive plate to crankshaft	14 0 to 16 0 (101 to 116) 6 5 to 7 5 (47 to 54) for B210
Drive plate to torque converter .	4 0 to 5 0 (29 to 36)
Converter housing to engine	. 4 0 to 5 0 (29 to 36)
Transmission case to converter housing	4 5 to 5 5 (33 to 40)
Transmission case to rear extension	2 0 to 2 5 (14 to 18)
Oil pan to transmission case	0 5 to 0 7 (3 6 to 5 1)
Servo piston retainer to transmission case .	0 5 to 0 7 (3 6 to 5 1)
Piston stem (When adjusting band brake)	*1 2 to 1 5 (8 7 to 10 8)
Piston stem lock nut	1 5 to 4 0 (11 to 29)
One-way clutch inner race to transmission case	1 3 to 1 8 (9 4 to 13)
Control valve body to transmission case	0 55 to 0 75 (4 0 to 5 4)
Lower valve body to upper valve body	0 25 to 0 35 (1 8 to 2 5)
Side plate to control valve body	. 0 25 to 0 35 (1 8 to 2 5)
Nut for control valve reamer bolt	0 5 to 0 7 (3 6 to 5 1)
Oil strainer to lower valve body	. 0 25 to 0 35 (1 8 to 2 5)
Governor valve body to oil distributor	0 5 to 0 7 (3 6 to 5 1)
Oil pump housing to oil pump cover	0 6 to 0 8 (4 3 to 5 8)
Inhibitor switch to transmission case	0 5 to 0 7 (3 6 to 5 1)
Manual shaft lock nut	3 0 to 4 0 (22 to 29)
Oil cooler pipe or oil pipe to transmission case	3 0 to 5 0 (22 to 36)
Test plug (oil pressure inspection hole)	1 4 to 2 1 (10 to 15)
Support actuator (parking rod inserting position) to rear extension	0 8 to 1 1 (5 8 to 8 0)
Oil charging pipe to case	0 55 to 0 75 (4 0 to 5 4)
Dust cover to converter housing	. 0 55 to 0 75 (4 0 to 5 4)
Selector range lever to manual shaft	3 0 to 4 0 (22 to 29)

^{*} Turn back two turns after tightening

SPECIAL SERVICE TOOLS

No	Tool number & tool name	Description	,	For use on	Reference page or figure No
1	ST2505S001 Oil pressure gauge set	Use for checking hydraulic pressure		3N71B and 3N71A A/T	Fig AT-144
	-		SE119		
2	ST07870000 Transmission case stand	Use for setting transmission		3N71B A/T	Page AT-46
	,				
-	1 ~		SE120		- ,
3	ST25850000 Sliding hammers	Use for removing oil pump	-	3N71B and 3N71A A/T	Fig AT-85
	_	t	SE 121		
4.	ST25420001 Clutch spring	Use for assembling or disassembling front and rear clutch	*	3N71B and 3N71A A/T	Page AT-50 Fig AT-109 Fig AT-115
	compressor			A/1	
			SE 122		
5	GG93010000 Torque wrench	Use for tightening correct torque Max. torque 4.6 kg-m (0 33 ft-lb) Drive angle 3/8" square		3N71B and 3N71A A/T	Fig AT-98
			SE123		

Automatic Transmission

No	Tool number & tool name	** Description	For use on	Reference page or figure No
6.	ST25490000	Socket extension to connect torque wrench (GG93010000) with %" square socket wrench	3N71B	Fig AT-98
	Socket extension			
	,			
		SE124		
7	ST25160000 Torque driver	Use for tightening correct torque Max. torque 1 04 kg-m (90 ft-lb)	3N71B A/T and 3N71A	Fig AT-136 Fig AT-137
		SE125	<u> </u>	
8.	HT69860000 Shap ring remover	Use for removing and replacing snap ring	3N71B and 3N71A A/T	Fig AT-88
				,
		SE126		
9.	ST25320001 Snap ring remover	Use for removing and replacing snap ring	3N71B and ' 3N71A A/T	Page AT-50 Fig. AT-109 Fig AT-115
	,	SE305		
10.	ST25570001	Use for removing and installing one-way clutch inner race with torque wrench. Drive angle ½" square and 6 mm (across flat width)	3N71B A/T	Fig AT-93 Fig AT-98 Page AT-52
	Hex-head extension			
		SE128		

Automatic Transmission

No	Tool number & tool name	Description		For use on	Reference page or figure No
11	HT62350000 Spinner handle	Use disassembling and assembling control valve		3N71B and 3N71A A/T	Fig AT-130 Fig AT-133
			SE129		
12	HT61000800 Hexagon wrench	Use for disassembling and assembling control valve		3N71B and 3N71A A/T	Fig AT-130 Fig AT-133 Fig AT-136 Fig AT-137
		Quantile (
			SE130		
13	ST25580000 Oil pump assembling gauge	Use for centering oil pump		3N71B and 3N71A A/T	Fig AT-127 Fig AT-128
			SE131		

DATSUN MODEL 610 SERIES

SECTION PD

PROPELLER SHAFT & DIFFERENTIAL CARRIER

PD

PROPELLER SHAFT AND CENTER BEARING	PD- 2
DIFFERENTIAL CARRIER (TYPE R160) FOR SEDAN AND HARDTOP (I.R.S.)	PD- 7
DIFFERENTIAL CARRIER (TYPE H165B) FOR STATION WAGON (RIGID AXLE)	PD-18
TROUBLE DIAGNOSES AND CORRECTIONS	PD-27
SERVICE DATA AND SPECIFICATIONS	PD-29
SPECIAL SERVICE TOOLS	PD-32

NISSAN MOTOR CO., LTD.

PROPELLER SHAFT AND CENTER BEARING

CONTENTS

DESCRIPTION	PD-3	INSTALLATION	PD-4
REMOVAL	PD-3	CHECKING AND CORRECTING	
DISASSEMBLY	PD-3	UNBALANCED PROPELLER SHAFT	PD-5
CENTER BEARING DISASSEMBLY	PD-3	PROPELLER SHAFT VIBRATION	PD-5
INSPECTION	PD-3	SERVICE DATA	PD-5
ASSEMBLY	PD-3	TROUBLE DIAGNOSES AND	
CENTER BEARING ASSEMBLY	PD-4	CORRECTIONS	PD-6

2-joint type (Sedan)

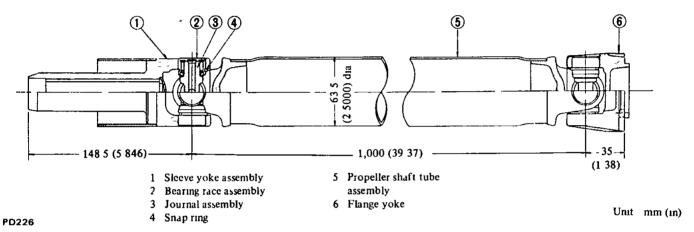
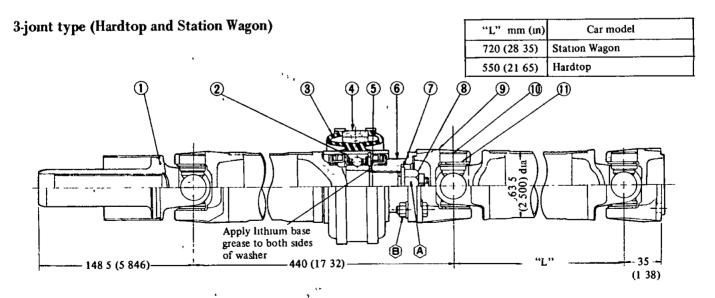



Fig PD-1 Cross-sectional view of propeller shaft for Sedan

- 1 Sleeve yoke assembly
- 2 Center bearing
- 3 Center bearing insulator
- 4 Cushion rubber

PD278

- 5 Washer
- 6 Companion flange
- 7 Plain washer

Ç

- 8 Locking nut
- 9 Flange yoke
- 10 Bearing race assembly
- 11 Snap ring
- Tightening torque (T) of bolts and nut kg-m (ft-lb)
- (A) T 20 to 24 (145 to 174)
- (B) T 24 to 33 (17 to 24)

Unit mm (in)

Fig PD-2 Cross-sectional view of propeller shaft, for Hardtop and Station Wagon -

DESCRIPTION

The propeller shaft is used to transfer the engine power, through the transmission, to the differential and the rear axle, which transmits it to the rear wheels. The propeller shaft has two or three universal joints, center bearing (except 2-joint type) and a sleeve yoke. The splines in the sleeve yoke and on the transmission mainshaft (output shaft) permit the propeller shatt to move forward and rearward.

The propeller shaft and universal joint assembly is carefully balanced during original assembly, that is, the dynamic unbalance is under 35 gr-cm (0 49 in-oz) at 4,000 rpm for Sedan and 35 gr-cm (0 49 in-oz) as 5,800 rpm for Hardtop and Station Wagon

If the propeller shaft has to be disassembled, it must be made carefully so that the above limit is not exceeded. Therefore, when the car is to be undercoated, cover the propeller shaft and universal joints to prevent application of the undercoating material.

REMOVAL

- 1 Raise car on hoist Put match marks both on propeller shaft and companion flange so that shaft can be remstalled in the original position
- 2 Remove bolts connecting shaft to companion flange Remove bolts (1) retaining center bearing support in case of the 3-joint type See Figure PD-3



Fig PD-3 Removing center bearing support

3 Draw out propeller shaft sleeve yoke from transmission by moving shaft nearward, passing it under rear axle

Watch for oil leakage from transmission end

Note Remove propeller shaft carefully so as not to damage the spline, sleeve yoke and rear oil seal

ST31500000

PD172

Fig PD-5 Removing lock nut

DISASSEMBLY

Primarily, do not disassemble propeller shaft because it is balanced as an assembly Check movement of propeller shaft with journal, and if journal does not move smoothly, disassemble

- I Mark propeller shaft and journal so that the original combination can be restored at assembly
- 2 Remove snap ring with a standard screwdriver
- 3 Lightly tap base of yoke with a hammer, and withdraw bearing race See Figure PD-4

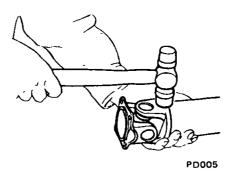


Fig PD-4 Removing bearing

Note When removing journal from yoke, be careful not to damage journal and yoke hole

CENTER BEARING DISASSEMBLY

When disassembling and repairing center bearing are required, the following procedures are applied

- 1 Put match marks on flange and front propeller shaft Remove bolts connecting flange yoke to companion flange
- 2 Release caulking on locking nut
- 3 Applying Drive Pinion Flange Wrench ST31530000, loosen off locking nut and remove center bearing See Figure PD-5

INSPECTION

1 Check journal pin for dent or brinell marks, and yoke hole for sign of wear or damage

Snap ring, bearing and seal ring should also be inspected to see if these are damaged, worn or deformed Replace if necessary

- 2 Check center bearing by rotating bearing race Discard if it is rough, noisy or damaged Cracked bearing insulator cannot be tolerated here
- 3 Check propeller shaft tube surface for dent or crack Change if necessary

ASSEMBLY

To assemble, reverse the foregoing procedure using reference marks prescribed on page PD-3 for Removal and Disassembly

New bearing need not be lubricated since it is lubricated for life Fill joint with recommended multi-purpose grease whenever propeller shaft is overhauled

Two opposite snap rings should be equal in thickness Be sure that play is below 0.02 mm (0.0008 in)

Available snap ring

White
Yellow,
Red
Green
Blue
Light brown
Unpainted
Pınk

Install and assemble components correctly so that joint moves under friction resistance of less than 15 kg-cm (13 in-lb)

When the above steps are complete, place the shaft in a balancing machine and adjust unbalance less than 35 gr-cm (0 49 in-oz) at 4,000 rpm for Sedan, or less than 35 gr-cm (0 49 in-oz) at 5,800 rpm for Hardtop and Station Wagon

CENTER BEARING ASSEMBLY

Center bearing assembling procedures are as follows

- 1 Install center bearing in center bearing insulator
- 2 Install center bearing assembly, washer and companion flange on front shaft using reference marks put in disassembly procedure, and press it by a specified load of 400 to 1,500 kg (882 to 3,307 lb)

Note Apply lithium base grease (including disulphide Molybdenum) to both faces of bearing washer when installing

3 Install washer and lock nut on front shaft and tighten nut using Drive Pinion Flange Wrench ST31530000 to specified torque

Tightening torque 20 to 24 kg-m (145 to 174 ft-lb)

- 4 Using punch, collapse the upper part of lock nut into the groove of shaft
- 5 Join companion flange of front shaft with flange yoke of rear shaft and tighten connecting bolts to specified torque

Tightening torque 2 4 to 3 3 kg-m (17 to 24 ft-lb)

6 Install center bearing bracket and

support on center bearing and tighten bolts ① to specified torque See Figures PD-6 and PD-7

Tightening torque 1 9 to 2 6 kg-m (14 to 19 ft-lb)

Note When installing center bearing bracket and support, be sure to set the longer portion on support end to right See Figures PD-6 and PD-7

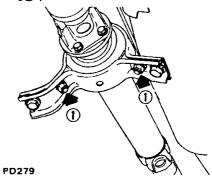
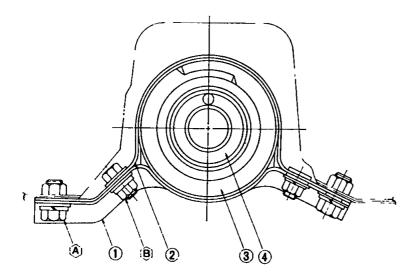



Fig PD-6 Installing center bearing bracket and support

- 1 Center bearing support
- 2 Center bearing bracket
- 3 Cushion rubber
- 4 Center bearing

Tightening torque (T) of bolts and nuts kg-m (ft-lb) (Å) T 3 6 to 4 8 (26 to 35) (B) T 1 9 to 2 6 (14 to 19)

PD280

Fig PD-7 Cross-sectional view of center bearing

INSTALLATION

To install, reverse the foregoing removal procedure

Align propeller shaft with companion flange using reference marks prescribed in "Removal" procedure and tighten them with bolts Tightening torque
2 4 to 3 3 kg-m
(17 to 24 ft-lb)

Insert bolts through the holes of center bearing support and plain washers, and torque bolts to retain center bearing on body (See Figure PD-3)

Tightening torque 3 6 to 4 8 kg-m (26 to 35 ft-lb)

CHECKING AND CORRECTING UNBALANCED PROPELLER SHAFT

PROPELLER SHAFT VIBRATION

To check and correct an unbalanced propeller shaft, proceed as follows

- 1 Remove undercoating and other foreign material which could upset shaft balance, and check shaft vibration by road test
- 2 If shaft vibration is noted during road test, disconnect propeller shaft at differential carrier companion flange, rotate companion flange 180 degrees and reinstall propeller shaft
- 3 Align check shaft vibration If vibration still persists, replace propeller shaft assembly

SERVICE DATA

The control of the co	Ty	Туре		
Item	2-joint type	3-joint type		
Permissible dynamic unbalance gr-cm (in-oz)	35 (0 49) at 4,000 rpm	35 (0 49) at 5,800 rpn		
Axial play of spider journal mm (in)	less than 0 02 (0 0008)			
Journal swinging torque kg-cm (in-lb)	less than 15 (13 0)			
Propeller shaft (front and rear) out-of-round mm (in)	less than 0 6 (0 024)			
Tightening torque kg-m (ft-lb) Shaft to companion flange (gear carrier) bolts	2 4 to 3 3 (17 to 24)			
Companion flange fixing nut (front shaft)	-	20 to 24 (145 to 174)		
Flange yoke (rear shaft) to companion flange (front shaft) bolts	_	2 4 to 3 3 (17 to 24)		
Center bearing bracket fixing nuts	_	1 9 to 2 6 (14 to 19)		
Center bearing bracket to body bolts	_	3 6 to 4 8 (26 to 35)		

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Vibration during at medium or high speed	Worn or damaged universal joint needle bearing	Replace
'	Unbalance due to bent or dented propeller shaft	Replace
	Loose propeller shaft installation	Retighten
	Worn transmission rear extension bushing	Replace
	Damaged center bearing or insulator	Replace
	Undercoating or mud on the shaft causing unbalance	Clean up shaft
	Tire unbalance	Balance wheel and tire assembly
• • •	Balance weights missing	Replace
Knocking sound during	Worn damaged universal joint	Replace
starting or noise	Worn sleeve yoke and mainshaft spline	Replace
during coasting on propeller shaft	Loose propeller shaft installation	Retighten
propener share	Loose joint installation	Adjust snap ring
	Damaged center bearing or insulator	Replace
	Loose or missing bolts at center bearing bracket to body	Replace or tighten bolts
Scraping noise	Dust cover on sleeve yoke rubbing on transmission rear extension Dust cover on companion flange rubbing on differential carrier	Straighten out dust cover to remove inter- ference
Whine or whistle	Damaged center bearing	Replace

DIFFERENTIAL CARRIER (TYPE R160) FOR SEDAN AND HARDTOP (I.R.S.)

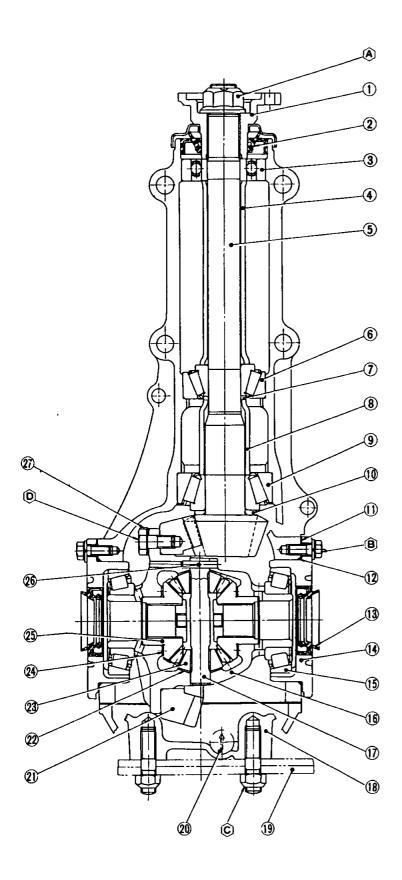
CONTENTS

DESCRIPTION	PD- 7	ADJUSTMENT OF DRIVE PINION	
REMOVAL	PD- 9	PRELOAD	PD-11
PRE-DISASSEMBLY INSPECTION	PD- 9	ADJUSTMENT OF DRIVE PINION	10,1
DISASSEMBLY	PD- 9	HEIGHT	PD-12
DISASSEMBLY OF DIFFERENTIAL		ADJUSTMENT OF SIDE RETAINER	10-12
CASE	PD-10	SHIMS	PD-13
INSPECTION	PD-10	INSTALLATION	PD-15
ASSEMBLY AND ADJUSTMENT	PD-10	REPLACEMENT OF FRONT OIL SEAL	PD-16
PRECAUTIONS IN REASSEMBLY	PD-10	SIDE OIL SEAL	PD-17
ASSEMBLY OF DIFFERENTIAL GEAR			10-17
CASE	PD-10		

DESCRIPTION

The differential gear carner assembly on the 610 series is available in two different types

One type used on Sedan and Hardtop has a hypoid type drive pinion and ring gear set with three different gear ratios, as indicated in the following table


The drive pinion is mounted with one ball bearing and two tapered roller bearings which are preloaded by pinion bearing adjusting spacer and washer during assembly

The drive pinion is positioned by a washer located between a shoulder of the drive pinion and the rear bearing

The differential case is supported in the carrier by two tapered roller side bearings. These are preloaded by inserting shims between the carrier and the side retainers. The differential case assembly is positioned for proper ring gear-to-drive pinion backlash by varying these shims. The ring gear is bolted to the differential case. The case houses two side gears in mesh with two pinions mounted on a pinion shaft. The pinion shaft is anchored in the case by lock pin. The pinions and side gears are backed by thrust washers.

Type of gear carner assembly	R	160	H165B
Gear ratio	3 700	4 111	3 889
Engine model	L18	L18	L18
Car model	Sedan	Hardtop	Station Wagon

(TYPE R160)

- 1 Companion flange
- 2 Oil seal Supply multi-purpose grease to oil seal lip when assembling
- 3 Front pilot bearing
- 4 Front pilot bearing spacer
- 5 Drive pinion
- 6 Pinion front bearing
- 7 Pinion bearing adjusting washer Adjust pinion bearing preload by selecting 7 and 8
- 8 Pinion bearing adjusting spacer
- 9 Pinion rear bearing
- 10 Pinion height adjusting washer
- 11 Side retainer adjusting shim Adjust side bearing preload and ring gear-to-drive pinion backlash by selecting (1)
- 12 O-ring
- 13 Oil seal Supply multi-purpose grease to oil seal lip when assembling
- 14 Side retainer
- 15 Side bearing
- 16 Differential case
- 17 Pinion mate shaft
- 18 Rear cover
- 19 Differential mounting member
- 20 Breather
- 21 Ring gear
- 22 Thrust washer
- 23 Pinion mate
- 24 Thrust washer
 Adjust the pinion mate-to-side gear backlash (or the clearance between the rear face of side gear and thrust washer) to
 0 1 to 0 2 mm (0 0039 to
 0 0079 in) by ②
- 25 Side gear
- 26 Lock pin
- 27 Lock strap

Tightening torque (T) of bolts and nuts kg-m (ft-lb)

- (A) T 17 to 20 (123 to 145)
- (B) T 09 to 12 (65 to 87)
- © T 6 to 8 (43 to 58)
- (D) T 7 to 8 (51 to 58)

PD317

Fig. PD-8 Cross-sectional view of differential carrier for Sedan and Hardtop (IRS)

REMOVAL

- 1 Jack up rear of car and support on safety stands
- 2 Disconnect propeller shaft at companion flange
- 3 Disconnect drive shafts ① on the wheel side Seε Figure PD-9

Remove side yoke fixing bolts, and extract side yokes together with drive shafts See Figure PD-10

Note Be careful not to damage side yoke and oil seal when removing

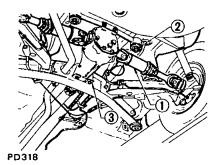


Fig PD-9 Under view

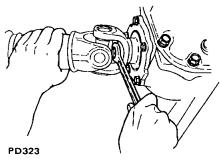


Fig PD-10 Removing side yoke fixing holt

- 4 With differential carrier jacked up, remove nuts ② on both ends of differential member See Figure PD-9
- 5 Loosen off four fitting bolts (3) that hold differential carrier onto suspension member See Figure PD-9
- 6 Pull off carrier backward together with jack See Figure PD-11

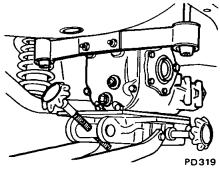


Fig PD-11 Removing differential carrier

After carrier assembly is removed, support suspension member on a stand to prevent its insulators being twisted or damaged

Note Do not place the center of suspension member on the stand before removal operation Otherwise, it will be difficult to extract the gear carrier assembly

PRE-DISASSEMBLY INSPECTION

Differential carrier should be inspected before any parts are removed from it

These inspections are helpful in finding the cause of the trouble and in determining the corrections needed

1 Mount carrier on Gear Carrier Attachment KV38100800 See Figure PD-12 Remove mounting member and rear cover

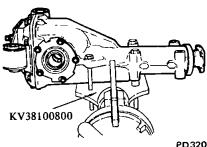
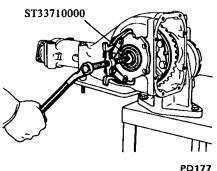


Fig PD-12 Holding differential carrier

- 2 Visually inspect parts for wear or damage
- 3 Rotate gears to see that there is any roughness which would indicate damaged bearings or chipped gears. Check the gear teeth for scoring or signs of abnormal wear Measure preload of drive pinion
- 4 Set up a dial indicator and check the backlash at several points around ring gear Backlash should be within 0 1 to 0 2 mm (0 0039 to 0 0079 in)
- 5 Check the gear tooth contact with a mixture of powdered red lead and oil apply sparingly to all ring gear teeth

For the tooth contact pattern, see page PD-15 for Contact Pattern


DISASSEMBLY

Remove side retainers, using Gear

Carrier Side Retainer Attachment ST33710000 and suitable puller See Figure PD-13

Notes

- a Mark right and left side retainers before removal
- b Be careful not to confuse right and left hand side retainers and shims for proper reassembly

PU1//

Fig PD-13 Removing side retainer

- 2 Extract differential case from carrier
- 3 When replacing side bearing, extract bearing outer race from side retainer using Gear Carrier Oil Seal Puller ST33290001 See Figure PD-14

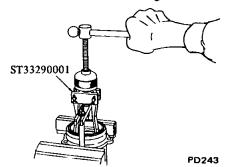


Fig PD-14 Removing side bearing outer race

4 Loosen drive pinion nut, holding companion flange with Drive Pinion Flange Wrench ST31530000 and pull off companion flange using a suitable puller See Figure PD-15

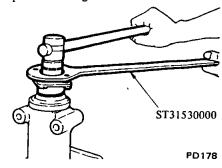


Fig PD 15 Removing drive pinion

- 5 Extract drive pinion from carrier using a press Take out drive pinion together with rear bearing cone, bearing spacer and adjusting washers
- 6 Remove oil seal

Note Oil seal must not be reused

- 7 Remove pilot bearing together with pilot bearing spacer and front bearing cone using Pilot Bearing Drift ST30650001
- 8 Hold rear bearing inner race with Drive Pinion Rear Bearing Inner Race Puller ST30031000 and extract from drive pinion with a press See Figure PD-16

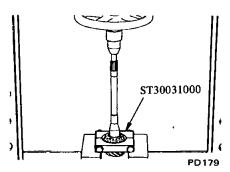


Fig PD-16 Removing pinion rear bearing inner race

9 To remove front and rear bearing outer races, put a drift to race surface, and withdraw them by tapping the top of drift with a hammer

DISASSEMBLY OF DIFFERENTIAL CASE

1 Extract bearing using Differential Side Bearing Puller ST3306S001 (set of ST33051001 and ST33061000) See Figure PD-17

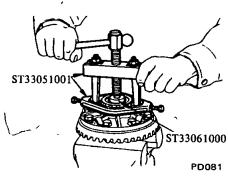


Fig PD-17 Removing side bearing

Notes

- a The puller should be handled with care in catching the edge of bearing inner race
- b Be careful not to confuse the left and right hand parts
- 2 Remove ring gear by unfolding lock strap and loosening ring gear bolts

Note Loosen bolts diagonally

- 3 Punch off pinion mate shaft lock pin from ring gear side using Solid Punch KV31100300
- Note Lock pin is caulked at pin hole mouth on differential case Do not punch it off forcibly without checking how it is caulked
- 4 Draw out pinion mate shaft and remove pinion mate gears, side gears and thrust washers

Note Put marks on gear and thrust washer so that they can be reinstalled in their original positions from which they were removed

- 3 Inspect all bearing races and rollers for scoring, chipping or evidence of excessive wear. They should be in tiptop condition such as not worn and with mirror-like surfaces. Replace if there is a shadow of doubt on their efficiency, as an incorrect bearing operation may result in noises and gear seizure.
- , If you need the information on "Visual Serviceability Standard for Taper Roller Bearing", refer to Section FA for Inspection
- 4 Inspect thrust washer faces Small faults can be corrected with sand-paper If pinion mate-to-side gear backlash (or the clearance between side gear and thrust washer) exceeds limits 0.1 to 0.2 mm (0.0039 to 0.0079 in), replace thrust washers
- 5 Inspect carrier and differential case for cracks or distortion If either condition is evident, replace
- 6 As a general rule, oil seal should be replaced at each disassembly

INSPECTION

Thoroughly clean all disassembled parts, and examine them to see that they are worn or damaged, and how they are affected Repair or replace all faulty parts, whichever is necessary

- 1 Check gear teeth for scoring, cracking or chipping, and make sure that tooth contact pattern indicates correct meshing depth. If any fault is evident, replace parts as required
- Note Drive pinion and drive gear are supplied for replacement as a set, therefore, should either part be damaged, replace as a set
- 2 Check pinion gear shaft, and apinion gear for scores and signs of wear, and replace as required

Follow the same procedure for side gear and their seats on differential case

ASSEMBLY AND ADJUSTMENT

Assembly can be done in the reverse order of disassembly. The following directions for adjustment and usage of special tools enable to obtain a perfect differential operation.

PRECAUTIONS IN REASSEMBLY

- 1 Arrange shims, washers and the like to install them correctly
- 2 Thoroughly clean the surfaces on which shims, washers, bearings and bearing retainers are installed
- 3 Apply gear oil when installing bearings
- 4 Pack recommended multi-purpose grease cavity between lips when fitting oil seal

ASSEMBLY OF DIFFERENTIAL GEAR CASE

1 Assemble pinion mates, side gears and thrust washers in differential case

- 2 Fit pinion shaft to differential case so that it meets lock pin holes
- 3 Adjust side gear-to-pinion mate backlash or adjust the clearance between the rear face of side gear and thrust washer See Figure PD-18

If above procedure is not effective with existing washer, try with other washers available for the purpose

Normal backlash or clearance 0.1 to 0.2 mm (0.0039 to 0.0079 in)

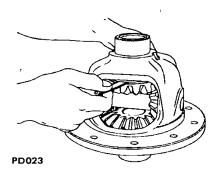


Fig PD-18 Measuring clearance

Side gear thrust washer

Thickness mm (in)

0 75 to 0 80 (0 0295 to 0 0315) 0 80 to 0 85 (0 0315 to 0 0335) 0 85 to 0 90 (0 0335 to 0 0354)

- 4 Lock pinion shaft lock pin using a punch after it is secured into place
- 5 Apply oil to gear tooth surfaces and thrust surfaces and check if they turn properly
- 6 Place ring gear on differential case and install bolts and lock washers

Tightening torque 7 to 8 kg-m (51 to 58 ft-lb)

Notes

- a Use only genuine ring gear bolts and new lock washers
- b Tighten bolts in criss-cross fashion lightly tapping around bolt heads with a hammer See Figure PD-19

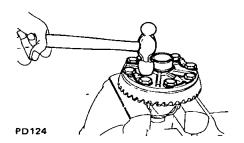


Fig PD-19 Tapping bolt head

7 When replacing side bearing, measure bearing width using Master Gauge KV38101900 and Weight Block ST32501000 prior to installation See Figure PD-20

Standard bearing width 20 00 mm

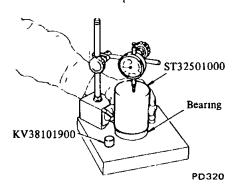


Fig PD-20 Measuring bearing width

8 Press fit side bearing cone on differential case using Gear Carrier Side Bearing Drift ST33230000 and Adapter ST33061000 See Figure PD-21

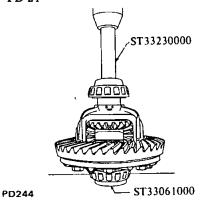


Fig PD-21 Installing side bearing cone

9 Press fit side bearing outer race into side retainer using Drive Pinion Outer Race Drift Set ST30611000 and ST30621000

10 Set new oil seal on side retainer using Oil Seal Drift ST33270000 Apply recommended multi-purpose grease cavity between seal lips

ADJUSTMENT OF DRIVE PINION PRELOAD

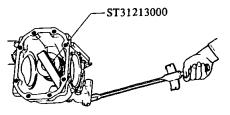
Adjust preload of drive pinion with spacer and washer between front and rear bearing cones, regardless of thickness of pinion height adjusting washer

This adjustment must be carried out without oil seal inserted

Press fit front and rear bearing outer races into gear carrier using Drive Pinion Outer Race Drift Set ST30611000, ST30701000 and ST30613000

Front ST30611000, and

ST30701000


Rear ST30611000 and

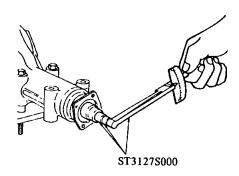
ST30613000

2 Insert pinion height adjusting washer (use 3 09 thickness) and rear bearing cone into Dummy Shaft ST31212000 to make convenient to adjust pinion height See Figure PD-24

Note Reuse the old washer if they have normal tooth contact pattern in a pre-disassembly check

3 Fit drive pinion bearing spacer, washer, front bearing cone, Drive Pinion Dummy Collar ST31214000 and companion flange in this order on dummy shaft and tighten drive pinion nut to the specified torque using Stopper ST31213000 See Figure PD-22

PD184


Fig PD-22 Tightening drive pinion nut

Measure pinion bearing preload using Preload Gauge ST3127S000, and select washer and spacer that will provide required preload See Figure PD-23

Pinion bearing preload
(Without oil seal)
7 to 10 kg-cm
(6 1 to 8 7 in-lb)
At companion flange bolt hole
2 0 to 2 9 kg
(4 4 to 6 4 lb)
Tightening torque of pinion nut
17 to 20 kg-m
(123 to 145 ft-lb)

Notes

- a Replace bearing washer and spacer with thicker ones if pinion cannot be turned by hand while it is being tightened
- b. Preload of used bearing is the same value as that of a new bearing

PD245

Fig PD-23 Measuring pinion preload

Pinion bearing adjusting spacer

	Length mm (in)
	56 20 (2 2126)
	56 40 (2 2205)
f	56 60 (2 2283)
,	56 80 (2 2362)
	57 00 (2 2441)
	57 20 (2 2520)

Pinion bearing adjusting washer

Thickness mm (in) 2 30 to 2 32 (0 0906 to 0 0913) 2 32 to 2 34 (0 0913 to 0 0921) 2 34 to 2 36 (0 0921 to 0 0929) 2 36 to 2 38 (0 0929 to 0 0937) 2 38 to 2 40 (0 0937 to 0 0945) 2 40 to 2 42 (0 0945 to 0 0953) 2 42 to 2 44 (0 0953 to 0 0961) 2 44 to 2 46 (0 0961 to 0 0969) 2 46 to 2 48 (0 0969 to 0 0976) 2 48 to 2 50 (0 0976 to 0 0984) 2 50 to 2 52 (0 0984 to 0 0992) 2 52 to 2 54 (0 0992 to 0 1000) 2 54 to 2 56 (0 1000 to 0 1008) 2 56 to 2 58 (0 1008 to 0 1016)

ADJUSTMENT OF DRIVE PINION HEIGHT

Adjust pinion height with washer provided between rear bearing cone and back of pinion gear

2 58 to 2 60 (0 1016 to 0 1024)

- I Install Height Gauge ST31211000 on carrier with dummy shaft mounted See Figure PD-25
- 2 Measure the clearance (N) between the tip end of height gauge and the end surface of dummy shaft, using a thickness gauge See Figure PD-24

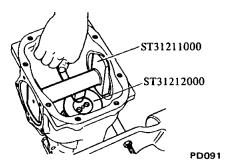


Fig PD-23 Adjusting pinion height

3 The thickness of drive pinion height adjusting washer can be obtained from the following formula

$$T = W + N - [(H - D' - S) \times 0.01] - 0.2$$

Where,

- T Required thickness of rear bearing adjusting washers (mm)
- W Thickness of washers temporarily inserted (mm)
- N Measured value with thickness gauge (mm)
- H Figure marked on the drive pinion head See Figure PD-26
- D' Figure marked on the dummy shaft
- S Figure marked on the height gauge

Figures for H, D' and S are dimensional variations in a unit of 1/100 mm against each standard measurement

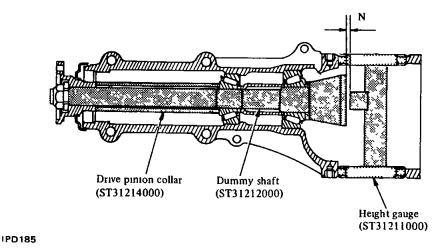


Fig PD-25 Measuring the clearance

PD 186

Fig PD-26 Variation number on drive pinion

Examples of calculation

Ex 1 ---

W = 3.09 mm

N = 0.33 mm

H = +2, D' = -1, S = 0

$$T = W + N - [(H - D' - S) \times 0.01]$$

$$-0.2$$

$$= 3.09 + 0.33 - [((+2) - (-1) - (0)) \times 0.01] - 0.2$$

$$= 3.09 + 0.33 - [(2 + 1 - 0)]$$

 $\times 0.011 - 0.2$

 $= 309 + 033 - [3 \times 001] - 02$

= 309 + 033 - 003 - 02

= 3.19 mm

The correct washer is 3 18 mm thick

Ex 2 ---

$$H = -2$$
, $D' = +1$, $S = -1$

$$T = W + N - [(H - D' - S) \times 0.01]$$

$$-0.2$$

$$= 3.09 + 0.28 - [((-2) - (+1) - (-1)) \times 0.01] - 0.2$$

$$= 3.09 + 0.28 - [(-2 - 1 + 1) \times 0.01] - 0.2$$

$$= 3.09 + 0.28 - [-2 \times 0.01]$$

= 309 + 028 + 002 - 02

= 3.19 mm

The correct washer is 318 mm thick

Ex 3 ---

$$W = 3.09 \text{ mm}$$

$$N = 0.45 \text{ mm}$$

$$H = 0$$
, $D' = 0$, $S = 0$

T = W + N -
$$[(H - D' - S) \times 0.01]$$

- 0.2
= 3.09 + 0.45 - $[(0 - 0 - 0) \times 0.01]$ - 0.2

$$= 309 + 045 - [0 \times 001]$$

-02

= 309 + 045 - 0 - 02= 334 mm

The correct washer is 3 33 mm

Note If values signifying H, D' and S are not given, regard them as zero and compute After assembly. check to see that tooth contact is correct If not, readjust For the tooth contact pattern, see page PD-15 for Contact Pattern

Pinion height adjusting washer

Thickness	ss mm (ın)
3 09 (0 1217)
3 12 (0 1228)
3 15 (0 1240)
3 18 (0 1252)
3 21 (0 1264)
3 24 (0 1276)
3 27 (0 1287)
3 30 (0 1299)
3 33 (0 1311)
3 36 (0 1323)
3 39 (0 1335)
3 42 (0 1346)
3 45 (0 1358)
3 48 (0 1370)
351 (0 1382)
3 54 (0 1394)
357 (0 1406)
3 60 (0 1417)
3 63 (0 1429)
3 66 (0 1441)

Fit determined pinion height adjusting washer in drive pinion, and press fit rear bearing cone in it using Base ST30032000 See Figure PD-27

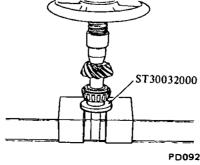


Fig PD-27 Pressing rear bearing cone

Lubricate pinion front and rear bearings Install drive pinion in gear carrier into which drive pinion bearing spacer and washer, front bearing cone and front bearing pilot spacer, moreover, pilot bearing and oil seal are fitted Fit oil seal using Oil Seal Drift ST30720000

Fit companion flange on drive pinion, and secure it in position by tightening nut to specified torque confirming preload

Tightening torque 17 to 20 kg-m (123 to 145 ft-lb) Preload (with oil seal) 8 to 11 kg-cm (69 to 95 in-lb) At companion flange bolt hole 23 to 32 kg (5 1 to 7 1 lb)

Note If drive pinion lock nut is worn, replace it

ADJUSTMENT OF SIDE RETAINER SHIMS

If the hypoid gear set, carrier, differential case, side bearing or side bearing retainer has been replaced with new part, adjust the side bearing preload with adjusting shim. The required thicknesses of the left and right retainer shims can be obtained from the following formulas

$$T_1 = (A + C + G_1 - D) \times 0.01$$

+ 0.76 - E
 $T_2 = (B + D + G_2) \times 0.01$
+ 0.76 - F

Where.

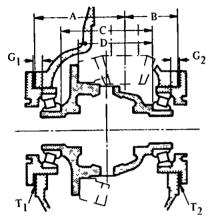
Required thickness of left side retainer shim (mm)

Required thickness of right side retainer shim (mm)

A & B Figure marked on the gear carrier See Figure PD-29

Figure marked on the differential case See Figure PD-30

E & F These are differences in width of left or right side bearing against the standard width (20 00 mm) (mm)


If bearing width is 19 89, the difference will be as follows

$$20\ 00 - 19\ 89 = 0\ 11$$

G₁ & G₂ Figure marked on the left or right, side retainer See Figure PD-31

Figures for A, B, C, D, G₁ and G₂ are dimensional variations in a unit of 1/100 mm against each standard measurement

To measure width of side bearing, see differential case assembly procedure

PD093 Fig PD-28 Thickness of left and right shims

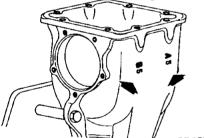


Fig PD-29 A & B figure

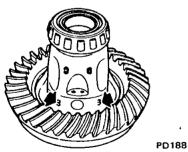


Fig PD-30 C & D figure

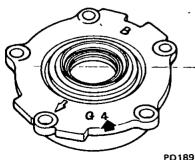


Fig PD-31 G1 & G2 figure

Examples of calculation

Ex 1 ---

$$A = 5$$
, $B = 5$, $C = 3$, $D = 3$, $G_1 = 4$, $G_2 = 1$, $E = 0.11$ mm, $F = 0.15$ mm

Left side

$$T_1 = (A + C + G_1 - D) \times 0.01$$

$$+ 0.76 - E$$

$$= (5 + 3 + 4 - 3) \times 0.01$$

$$+ 0.76 - 0.11$$

$$= 9 \times 0.01 + 0.76 - 0.11$$

$$= 0.09 + 0.76 - 0.11$$

$$= 0.74 \text{ mm}$$

The correct shims are as follows

Thickness		Quantit	t y
0 07	х	2	= 0 14
0 10	x	1	= 0.10
0 50	x	1	= 0 50
Total thick	nes	<u> </u>	= 0 74 mm

Right side

$$T_2 = (B + D + G_2) \times 0.01 + 0.76$$

$$- F$$

$$= (5 + 3 + 1) \times 0.01 + 0.76$$

$$- 0.15$$

$$= 9 \times 0.01 + 0.76 - 0.15$$

$$= 0.09 + 0.76 - 0.15$$

$$= 0.70 \text{ mm}$$

The correct shims are 0 20 plus 0 50 mm thick

Ex. 2 ---
$$A = 2$$
, $B = 3$, $C = 0$, $D = 3$
 $G_1 = 2$, $G_2 = 3$, $E = 0.20$ mm,
 $F = 0.17$ mm

Left side

$$T_1 = (A + C + G_1 - D) \times 0.01$$

$$+ 0.76 - E$$

$$= (2 + 0 + 2 - 3) \times 0.01$$

$$+ 0.76 - 0.20$$

$$= 1 \times 0.01 + 0.76 - 0.20$$

$$= 0.01 + 0.76 - 0.20$$

$$= 0.57 \text{ mm}$$

The correct shims are 0 07 plus 0 50 mm thick

Right side

$$T_2 = (B + D + G_2) \times 0.01$$

$$+ 0.76 - F$$

$$= (3 + 3 + 3) \times 0.01 + 0.76$$

$$- 0.17$$

$$= 9 \times 0.01 + 0.76 - 0.17$$

$$= 0.09 + 0.76 - 0.17$$

$$= 0.68 \text{ mm}$$

The correct shims are as follows

Thickness	(Quanti	ty
0 07	x	4	= 0 28
0 20	x	2	= 0 40
Total thick	ness		= 0 68 mm

Note If values signifying A, B, C, D, G₁ and G₂ are not given, regard them as zero and compute
After assembly, check to see that preload and backlash are correct If not, readjust

Side retainer adjusting shim

Thickness mm (in)	
0 05 (0 0020)	
0 07 (0 0028)	
0 10 (0 0039)	
0 20 (0 0079)	
0 50 (0 0197)	

- 2 Install differential case assembly in gear carrier in reverse order to which it is disassembled
- 3 Fit given shims and O-ring in both side retainers, and install retainers in carrier using Gear Carrier Side Retainer Guide ST33720000 (See Figure PD-32), and the arrow mark on retain-

er positioned as shown in Figure PD-33

Note When installing retainers, take care that side bearing outer races are not damaged by roller

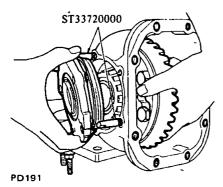


Fig PD-32 Installing side retainer

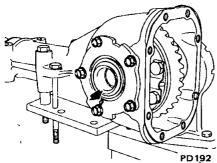


Fig PD-33 The arrow mark on retainer

- 4 Measure ring gear-to-drive pinion backlash by using a dial indicator and adjust it to 0.1 to 0.2 mm (0.0039 to 0.0079 in) See Figure PD-34
- If it is below the specified value, move shim from right to left. If it is over it, move it inversely

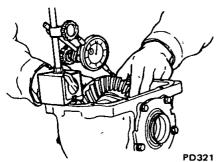


Fig PD-34 Measuring the backlash of ring gear and pinion

5. At the same time, check side bearing preload Bearing preload should be 9 to 17 kg-cm (7 8 to 14 8 in-lb) of rotating torque at companion flange [2 6 to 4 9 kg (5 7 to 10 8 lb) at companion flange bolt hole]

If preload is not according to this specification, adjust it with side retainer shims

Incidentally, decrease or increase in thickness of shims causes change of ring gear-to-pinion backlash

Thus, check if they have proper backlash

- 6 Check and adjust the tooth contact pattern of ring gear and drive pinion
- (1) Thoroughly clean ring and drive pinion gear teeth
- (2) Paint ring gear teeth lightly and evenly with a mixture of powdered red lead and oil of a suitable consistency to produce a contact pattern
- (3) Rotate pinion through several revolutions in the forward and reverse direction until a definite contact pattern is developed on ring gear
- (4) When contact pattern is incorrect, readjust thickness of adjust shim

Be sure to wipe off red lead completely upon completion of adjustment

(5) Incorrect contact pattern of teeth can be adjusted in the following manner

Contact pattern

a Heel contact

To correct, increase thickness of pinion height adjusting washer in order to bring drive pinion close to ring gear See Figure PD-35

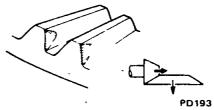


Fig PD-35 Heel contact

b Toe contact

To correct, reduce thickness of pinion height adjusting washer in order to make drive pinion go away from ring gear See Figure PD-36

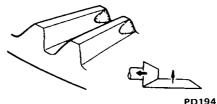


Fig PD-36 Toe-contact

c Flank contact

Adjust in the same manner as in b See Figure PD-37

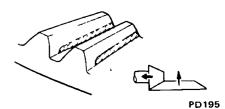


Fig PD-37 Flank contact

d Face contact

Adjust in the same manner as in a See Figure PD-38

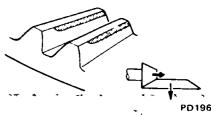
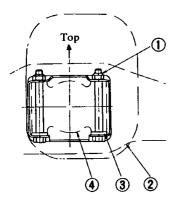


Fig PD-38 Face contact

e Correct tooth contact



Fig PD-39 Correct contact


Note Change in thickness of adjusting washer is accompanied by change in backlash Check it when installing gear

- 7 Install rear cover
- 8 Fit differential mounting member, and tighten nuts to specified torque of 6 to 8 kg-m (43 to 58 ft-lb)

INSTALLATION

Install in the reverse order of removal

1 Position gear carrier assembly onto rear suspension member, and temporarily tighten it with four bolts together with differential mounting spacer See Figure PD-40

PD242

- 1 Nut
 - T 5 to 7 kg-m (36 to 51 ft-lb)
- 2 Suspension member
- 3 Spacer
- 4 Diff carrier assembly

Fig PD-40 Layout of spacer

Differential mounting spacer

	Thickness mm (in)
A	4 5 (0 177)
В	1 0 (0 039)

- 2 Fit differential mounting member to fitting bolts by pushing it forwards, and torque nuts to 7 to 10 kg-m (51 to 72 ft-lb)
- 3 Secure gear carrier assembly onto rear suspension member with four bolts

Tightening torque 5 to 7 kg-m (36 to 51 ft-lb)

4 Install side yokes together with drive shafts to differential gear carrier assembly, and tighten side yoke fixing bolts to specified torque using torque wrench See Figure PD-41

Tightening torque
3 2 to 4 3 kg-m
(23 to 31 ft-lb)

Note Be careful not to damage side yoke and oil seal when installing

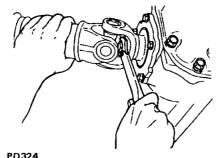


Fig PD-41 Tightening side yoke fixing bolt

5 Join drive shafts with companion flanges of rear axle shafts and tighten connecting bolts to specified torque

Tightening torque 5 to 6 kg-m (36 to 43 ft-lb)

- 6 Install other parts in the manner reverse of removal
- 7 Fill correct gear oil

Note Oil quantity 08 liter (% US qt, 3/4 Imp qt)

REPLACEMENT OF FRONT OIL SEAL

Replacement of front oil seal with differential gear carrier assembly installed on the car

Procedures are as follows

- 1 Drain gear oil
- 2 Raise the rear end of car and support it with safety stands
- 3 Detach propeller shaft from companion flange of carrier
- 4 Remove drive pinion nut, holding companion flange with Drive Pinion Flange Wrench ST31530000 See Figure PD-42

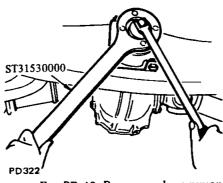


Fig PD-42 Removing drive pinion

5 Extract companion flange using a standard puller See Figure PD-43

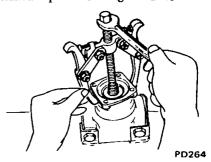


Fig PD-43 Removing companion flange

6 Remove oil seal using Gear Carrier Oil Seal Puller ST33290001. See Figure PD-44

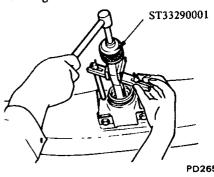


Fig PD-44 Removing oil seal

- 7 Set new oil seal in position using Gear Carrier Oil Scal Drift ST30720000 Apply grease cavity between seal lips
- 8 Fit companion flange on drive pinion, and secure them in position by tightening nut to specified torque confirming the following preload, using Drive Pinion Flange Wrench ST31530000

Tightening torque of pinion nut

17 to 20 kg-m (123 to 145 ft-lb)

Pinion bearing preload (with oil seal)

8 to 11 kg-cm (7 0 to 9 6 in-lb)

At companion flange bolt hole 2 3 to 3 2 kg (5 1 to 7 1 lb)

9 Reinstall propeller shaft by reversing the foregoing removal procedure And fill up gear oil

SIDE OIL SEAL

Side oil seal is replaced by using the following procedures

- 1 Disconnect drive shaft on the wheel side
- 2 Remove side yoke fixing bolt, and extract side yoke together with drive shaft See Figure PD-10

Note Be careful not to damage side yoke and oil seal when removing

- 3 Remove oil seal using Oil Seal Puller ST33290001
- 4 Set in new oil seal using Oil Seal Drift ST33270000

Note Apply grease to cavity between oil seal lips

5 Install side yoke together with drive shaft to differential gear carrier assembly, tighten side yoke fixing bolt to specified torque using torque wrench See Figure PD-41

Tightening torque 3 2 to 4 3 kg-m (23 to 31 ft-lb)

Note Be careful not to damage side yoke and oil seal when installing

6 Join drive shaft with companion flange of rear axle shaft and tighten connecting bolt to specified torque

Tightening torque
5 to 6 kg-m
(36 to 43 ft-lb)

Note Check O-ring of side yoke fixing bolt If necessary, remove universal joint spider located at the side yoke side, and replace O-ring Refer to Section RA for Disassembly and Assembly.

DIFFERENTIAL CARRIER (TYPE H165B) FOR STATION WAGON (RIGID AXLE)

CONTENTS

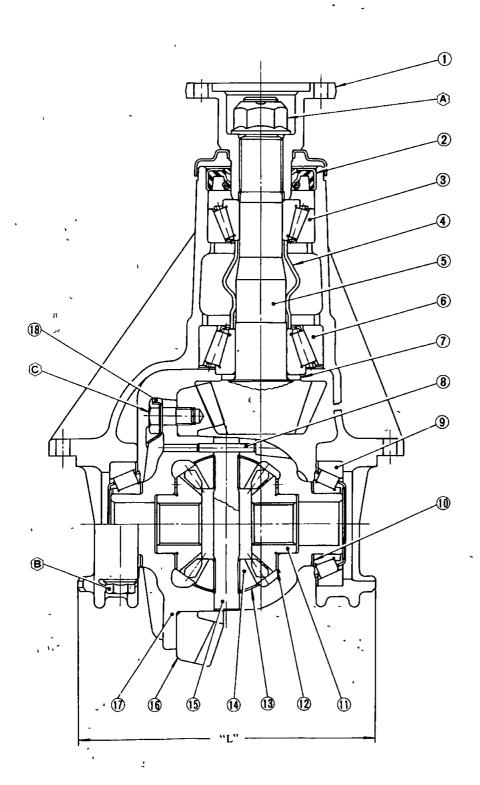
DESCRIPTION '	•	PD-18	ASSEMBLY OF DIFFERENTIAL	
REMOVAL		PD-20	GEAR CASE	PD-21
PRE-DISASSEMBLY INSPECTION		PD-20	ADJUSTMENT OF DRIVE PINION	
DISASSEMBLY		PD-20	HEIGHT	PD-22
DISASSEMBLY OF DIFFERENTIAL			ADJUSTMENT OF DRIVE PINION	
CASE		PD-20	PRELOAD	PD-23
INSPECTION		PD-21	ADJUSTMENT OF SIDE BEARING	
ASSEMB'LY AND ADJUSTMENT		PD-21	SHIMS	PD-23
PRECAUTIONS IN REASSEMBLY		PD-21	INSTALLATION	PD-25
-		t	REPLACEMENT OF FRONT OIL SEAL	PD-26

DESCRIPTION

The differential gear carrier assembly for Station Wagon is available in type H165B as indicated in the following table

The differential gear carrier assembly has hypoid type drive pinion and ring gear set with a gear ratio of 3 889

The drive pinion is mounted in two tapered roller bearings which are preloaded by a collapsible spacer during assembly The drive pinion is positioned by a washer located between a shoulder of the drive pinion and the rear bearing


The differential case is supported in the carrier by two tapered roller side bearings. These are preloaded by inserting shims between the bearings and the differential case. The differential case assembly is positioned for proper ring gear-to-drive pinion backlash by varying these shims. The ring gear is bolted to the differential case. The case houses two side gears in mesh with two pinions mounted on a pinion shaft. The pinion shaft anchored in the case by lock pin. The pinions and side gears are backed by thrust washers.

The carrier is of malleable cast iron

Note Replacement of front oil seal with differential gear carrier assembly installed on the car must not be allowed due to used collapsible spacer on its model

Type of gear carner assembly	R160		, H165B
Gear ratio	3 700	4 1 1 1	3 889
Engine model	L18	L18	,L18
Car model	Sedan	Hardtop	Station Wagon

(TYPE H165B)

- 1 Companion flange
- 2 Oil seal Supply grease to oil seal lip when assembling
- 3 Pinion front bearing
 - Collapsible spacer
 Adjust pinion bearing preload
 by this spacer. Procedure can
 be accomplished by referring to
 "Adjustment of drive pinion
 preload"
- 5 Drive pinion
- 6 Pinion rear bearing
- 7 Pinion height adjusting washer
- 8 Lock pin
- 9 Side bearing
- 10 Side bearing adjusting shim Adjust side bearing preload and ring gear-to-drive pinion backlash by selecting (10)
- 11 Side gear
- 12 Thrust washer
 Adjust pinion mate-to-side gear
 backlash (or the clearance between
 the rear face of side gear and
 thrust washer) 0 1 to 0 2 mm
 (0 0039 to 0 0079 in) by (12)
- 13 Thrust washer
- . 14 Pinion mate
- 15 Differential pinion shaft
- 16 Ring gear Ring gear-to-drive pinion backlash 0 10 to 0 15 mm (0 0039 to 0 0059 in)
- 17 Differential gear case
- 18 Lock strap

Tightening torque (T) of bolts and nut kg-m (ft-lb)

(A) T More than 14 (101)

This nut should tightened by referring to "Adjustment of drive pinion preload"

- **B** T 5 to 6 (36 to 43)
- © T 7 to 8 (51 to 58)

L 173 23 to 173 29 mm (6 8201 to 6 8224 in)

PD316

Fig PD-68 Sectional view of differential carrier for Station Wagon

REMOVAL

- 1 Jack up rear of car and support it by placing a safety stand under rear axle case Drain gear oil
- 2 Remove propeller shaft and rear axle shafts These works can be done as described in Section RA for Removal
- 3 Loosen off nuts securing differential carrier to rear axle case, and take out differential gear carrier assembly

PRE-DISASSEMBLY INSPECTION

Differential case or carrier should be inspected before any parts are removed from it

These inspections are helpful in finding the cause of the problem and in determining the corrections needed

1 Mount carrier on Gear Carrier Attachment ST06360001 See Figure PD-69

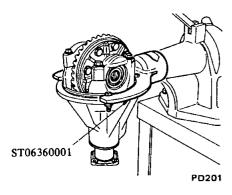


Fig PD-69 Holding differential carrier

- 2 Visually inspect parts for wear or damage
- 3 Rotate gears to see that there is any roughness which would indicate damaged bearings or chipped gears Check the gear teeth for scoring or signs of abnormal wear Measure preload of drive pinion
- 4 Set up a dial indicator and check the backlash at several points around ring gear Backlash should be 0 10 to 0 15 mm (0 0039 to 0 0059 in)
- 5 Check the gear tooth contact with a mixture of powdered red lead and oil applied sparingly to all ring gear teeth

For the tooth contact pattern, see page PD-25 for Contact Pattern

DISASSEMBLY

1 Put match marks on side bearing caps and carrier, and remove side bearing caps and take out differential case assembly See Figure PD-70

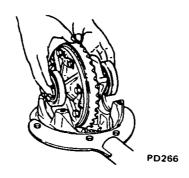


Fig PD-70 Removing differential case assembly

Note Care should be taken not to confuse the left and right hand bearing caps and hearing outer races so that reassembly will be easily carried out with the same parts in the original position

2 Remove drive pinion nut using Drive Pinion Flange Wrench ST31530000, and pull off companion flange using a suitable puller See Figure PD-71

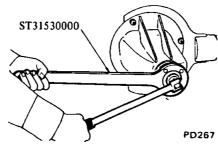


Fig PD-71 Removing drive pinion

- 3 Extract drive pinion assembly to the rearwards by tapping the front end with a soft hammer Drive pinion can be taken out together with rear bearing inner race and bearing spacer
- 4 Remove oil seal and take out front bearing inner race

Note Oil seal must not be reused

5 Hold rear bearing inner race with Drive Pinion Rear Bearing Inner Race Puller ST30031000 and extract from drive pinion with a press See Figure PD-72

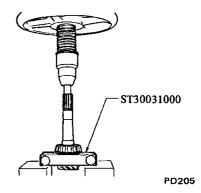


Fig PD-72 Removing pinion rear bearing inner race

6 To remove outer races of both front and rear bearing, apply a brass drift to race side surface, and withdraw them by lightly tapping the top of drift with a hammer See Figure PD-73

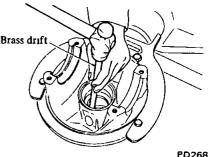


Fig PD-73 Removing pinion front and rear bearing outer races

DISASSEMBLY OF DIFFERENTIAL CASE

1 When replacing side bearing, use Gear Carrier Side Bearing Puller ST3305S001 (set of ST33051001 and ST33052000) See Figure PD-74

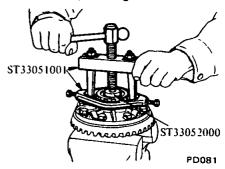


Fig PD-74 Removing side bearing

Notes

- a Puller should be handled with care in catching the edge of bearing inner race
- b Be careful not to confuse left and right hand parts
- 2 Remove ring gear by spreading out lock strap and loosening ring gear bolts in diagonally
- 3 Punch off pinion mate shaft lock pin from ring gear side using Solid Punch KV31100300 See Figure PD-75

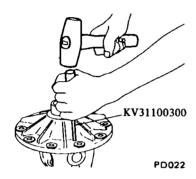


Fig PD-75 Removing lock pin

Note Lock pin is caulked at pin hole mouth on differential case Do not punch it off forcibly without checking how it is caulked

4 Draw out pinion mate shaft and remove pinion mate gears, side gears and thrust washers

Note Put marks on gear and thrust washer so that they can be reinstalled in their original positions from which they were removed

INSPECTION

Thoroughly clean all disassembled parts, and examine them to see that they are worn, damaged or otherwise faulty, and how they are affected Repair or replace all faulty parts, whichever is necessary

I Check gear teeth for scoring, cracking or chipping, and make sure that tooth contact pattern indicates correct meshing depth. If any fault is evident, replace parts as required

- Note Drive pinion and ring gear are supplied for replacement as a set, therefore, should either part be damaged, replace as a set
- 2 Check pinion gear shaft, and pinion gear for scores and signs of wear, and replace as required

Follow the same procedure for side gear and their seats on differential case

- 3 Inspect all bearing races and rollers for scoring, chipping or evidence of excessive wear. They should be in tiptop condition such as not worn and with mirror-like surfaces. Replace if there is a shadow of doubt on their efficiency, as an incorrect bearing operation may result in noises and gear seizure. If you need the information on "Visual Serviceability Standard for Taper Roller Bearing", refer to Section FA for Inspection.
- 4 Inspect thrust washer faces Small faults can be corrected with sand-paper If pinion mate-to-side gear backlash (or the clearance between side gear and thrust washer) exceeds limits 0 1 to 0 2 mm (0 0039 to 0 0079 in), replace thrust washers
- 5 Inspect carrier and differential case for cracks or distortion If either condition is evident, replace faulty parts
- 6 As a general rule, oil seal should be replaced at each disassembly

ASSEMBLY AND ADJUSTMENT

Assembly can be done in the reverse order of disassembly. The following directions for adjustment and usage of special tools enable to obtain a perfect differential operation.

PRECAUTIONS IN REASSEMBLY

- 1 Arrange shims, washers and the like to install them correctly
- 2 Thoroughly clean the surfaces on which shims, washers, bearings and bearing caps are installed
- 3 Apply gear oil when installing bearings
- 4 Pack recommended multi-purpose grease cavity between hips when fitting oil seal

ASSEMBLY OF DIFFERENTIAL GEAR CASE

- 1 Assemble pinion mates, side gears and thrust washers in differential case
- 2 Fit pinion shaft to differential case so that it meets lock pin holes
- 3 Adjust pinion mate-to-side gear backlash (or the clearance between the rear face of side gear and thrust washer) to 0.1 to 0.2 mm (0.0039 to 0.0079 in) by selecting side gear thrust washer.

Side gear thrust washer

Thickness	ss mm (ın)
0 785	(0 0309)
0 835	(0 0329)
0 885	(0 0348)
1 035	(0 0407)
1 185	(0 0467)

- 4 Lock pinion shaft lock pin using a punch after it is secured into place
- 5 Apply oil to gear tooth surfaces and thrust surfaces and check if they turn properly
- 6 Place ring gear on differential case and install bolts and lock washers Torque bolts to specification, and bend up lock washers

Tightening torque 7 to 8 kg-m (51 to 58 ft-lb)

Notes

- a Use only genuine drive gear bolts and new lock washers
- b Tighten bolts in criss-cross fashion lightly tapping around bolt heads with a hammer
- 7 When replacing side bearing, measure bearing width using Master Gauge ST33741000 and a Weight Block ST32501000 prior to installation See Figure PD-76

Standard bearing width 18 5 mm (0 7283 in)

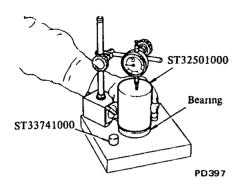


Fig PD-76 Measuring bearing width

8 Press fit side bearing cone into differential case using Gear Carrier Side Bearing Drift KV38102100 and Adapter ST33052000 See Figure PD-77

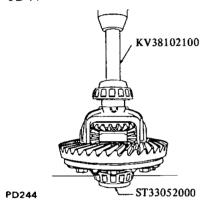


Fig PD-77 Installing side bearing

ADJUSTMENT OF DRIVE PINION HEIGHT

Adjust the pinion height with washer provided between rear bearing inner race and the back of pinion gear

1 Press fit front and rear bearing outer races into gear carrier using Drive Pinion Outer Race Drift Set ST30611000, ST30701000 and ST30613000

Front ST30611000 and ST30701000

Rear ST30611000 and ST30613000

2 Fit rear bearing on carrier, and install Dummy Shaft on rear bearing, and place Height Gauge on carrier See Figure PD-78

ST31141000 Height gauge ST31942000 Dummy shaft

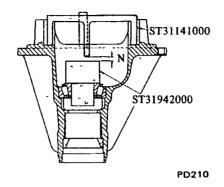


Fig PD-78 Adjusting pinion height

3 Measure the clearance (N) between the tip end of height gauge and the end surface of dummy shaft, using a thickness gauge See Figure PD-79

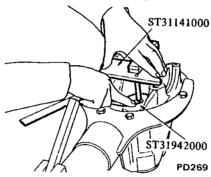


Fig PD-79 Measuring clearance

4 The thickness of drive pinion height adjusting washer can be obtained from the following formula

$$T = N - [(H - D' - S) \times 0.01] + 2.98$$

Where,

- T Required thickness of rear bearing adjusting washer (mm)
- N Measured value with thickness gauge (mm)
- H Figure marked on the drive pinion head See Figure PD-80
- D' Figure marked on the dummy , shaft
- S Figure marked on the height

Figures for H, D' and S are dimensional variations in a unit of 1/100 mm against each standard measurement

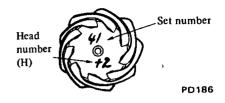


Fig PD-80 Variation number on drive pinion

Examples of calculation

Ex 1 ---

$$N = 0.42 \text{ mm}, H = +2, D' = -1$$

 $S = +1$

$$T = N - [(H - D' - S) \times 0.01]$$
+ 2.98
= 0.42 - [((+2) - (-1) - (+1))
\times 0.01] + 2.98
= 0.42 - [(2 + 1 - 1) \times 0.01]
+ 2.98
= 0.42 - [2 \times 0.01] + 2.98
= 0.42 - 0.02 + 2.98
= 3.38 mm

The correct washer is 3 39 mm thick

Ex 2 ---

$$N = 0.35 \text{ mm}, H = -3, D' = +1$$

 $S = -2$

$$T = N - [(H - D' - S) \times 0.01]$$
+ 2.98
= 0.35 - [((-3) - (+1) - (-2)) \times 0.01] + 2.98
= 0.35 - [(-3 - 1 + 2) \times 0.01] + 2.98
= 0.35 - [-2 \times 0.01] + 2.98
= 0.35 + 0.02 + 2.98
= 3.35 mm

The correct washer is 3 36 mm thick

Ex 3 -
N = 0 51 mm, H = 0, D' = 0

S = 0

T = N - [(H - D' - S) × 0 01]
+ 2 98
= 0 51 - [(0 - 0 - 0) × 0 01]
+ 2 98
= 0 51 - [0 × 0 01] + 2 98
= 0 51 - 0 + 2 98
= 0 51 + 2 98
= 3 49 mm

The correct washer is 3 48 mm thick

Note If values signifying H, D' and S are not given, regard them as zero and compute After assembly, check to see that tooth contact is correct If not, readjust For the tooth contact pattern, see page PD-25 for Contact Pattern

Pinion height adjusting washer

	Thickness	ww (1u)	
	3 09 (0	1217)	
	3 12 (0	1228)	
	3 15 (0	1240)	
-	- 3 18 (0	1252) -	
	3 21 (0	1264)	
	3 24 (0	1276)	
	- 3 27 (0	1287),	ı
-	3 30 (0	1299)	
	4 3 33 (0	1311)	1
3	3 36 (0	1323)	
,	3 39 (0	1335)	1
	3 42 (0	1346)	
	3 45 (0	1358)	
	3 48 (0	1370)	
	351 (0	1382)	
	3 54 (0	1394)	
	3 57 (0	1406)	
	3 60 (0	1417)	
	3 63 (0	1429)	
	3 66 (0	1441)	

5 Fit determined pinion height adjusting washer in drive pinion, and press fit rear bearing inner race in it, using Base ST30032000

ADJUSTMENT OF DRIVE PINION PRELOAD

Adjust the preload of drive pinion with collapsible spacer

This procedure has nothing to do with thickness of pinion height adjusting washer

Note Reuse of a collapsible spacer must not be allowed

- 1 After adjusting pinion height, lubricate front bearing with gear oil and place it in carrier
- 2 Install a new oil seal in carrier using Oil Seal Drift ST33400001 Lubricate cavity between seal lips with recommended multi-purpose grease when installing
- 3 Place a new collapsible spacer on drive pinion and lubricate pinion rear bearing with gear oil
- 4. Insert companion flange into oil seal and hold it firmly against pinion front bearing cone From the rear of the carrier, insert drive pinion into companion flange
- 5 Ascertain that threaded portion of drive pinion and a new pinion nut are free from oil or grease
- 6 Holding companion flange with Drive Pinion Flange Wrench ST31530000, tighten nut and then drive pinion is pulled into front bearing cone and into flange

As drive pinion is pulled into front bearing cone; drive pinion end play is reduced While there is still end play in drive pinion, companion flange and cone will be felt to bottom. This indicates that bearing cone and companion flange have bottomed on collapsible spacer.

From this point, a much greater torque must be applied to turn pinion nut since spacer must be collapsed From this point, nut should also be tightened very slowly and drive pinion end play checked often so that pinion bearing preload does not exceed the limits

When the drive pinion end play is eliminated, the specified preload is being approached Replace collapsible spacer if this specification is exceeded

Note Do not decrease preload by loosening pinion nut This will remove compression between pinion front and rear bearing cones and collapsible spacer and may permit front bearing cone to turn on drive pinion, moreover, nut becomes loose

7 Turn drive pinion in both directions several times to set bearing rollers And adjust bearing preload to specifications using Preload Gauge¹, ST3127S000 See Figure PD-81

Tightening torque of pinion nut
14 to 17 kg-m
(101 to 123 ft-lb)

Preload (with oil seal)
8 to 11 kg-cm
(6 9 to 9 5 in-lb)

At companion flange bolt hole
2 0 to 2 9 kg (4 4 to 6 4 lb)

Note Preload of used bearing is the same value as that of a new bearing

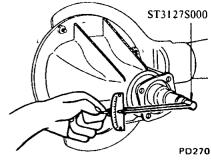


Fig PD-81 Measuring pinion preload

ADJUSTMENT OF SIDE BEARING SHIMS

1 If hypoid gear set, carrier, differential case or side bearing have been replaced with new ones, adjust the side bearing preload with adjusting shim

The required thickness of adjusting shim can be calculated by the following formulas

$$T_1 = (A - C + D - H') \times 0.01$$

+ 0.200 + E
 $T_2 = (B - D + H') \times 0.01 + 0.090$
+F

Where,

- T₁ Required thickness of left side bearing adjusting shim (mm)
- T₂ Required thickness of right side bearing adjusting shim (mm)
- A Figure marked on the left side bearing housing of gear carrier
- B Figure marked on the right side bearing of gear carrier
- C & D Figure marked on the differential case
- E&F These are differences in width of left or right side bearing against the standard width (18 50 mm) (mm)

If bearing width is 18 39, the difference will be as follows

$$1850 - 1839 = 011$$

H' Figure marked on the ring gear See Figures PD-82 and PD-83

Figures for A, B, C, D and H' are dimensional variations in a unit of 1/100 mm against each standard measurement

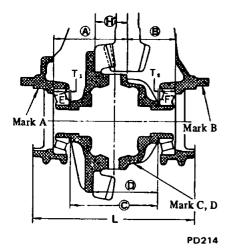


Fig PD-82 Thickness of shim on left and right sides

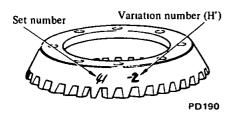


Fig PD-83 Variation number on ring gear

Examples of calculation

Ex 1 ---

$$A = 1$$
, $B = 2$, $C = 2$, $D = 3$
 $E = 0.11$ mm, $F = 0.15$ mm
 $H' = -2$

Left side

$$T_1 = (A - C + D - H') \times 0.01$$

$$+ 0.200 + E$$

$$= (1 - 2 + 3 - (-2))$$

$$\times 0.01 + 0.200 + 0.11$$

$$= (1 - 2 + 3 + 2) \times 0.01$$

$$+ 0.200 + 0.11$$

$$= 4 \times 0.01 + 0.200 + 0.11$$

$$= 0.04 + 0.200 + 0.11$$

$$= 0.35 \text{ mm}$$

The correct shims are 0.05 plus 0.10 plus 0.20 mm thick

Right side

$$T_2 = (B - D + H') \times 0.01$$

$$+ 0.090 + F$$

$$= (2 - 3 + (-2)) \times 0.01$$

$$+ 0.090 + 0.15$$

$$= (2 - 3 - 2) \times 0.01$$

$$+ 0.090 + 0.15$$

$$= -3 \times 0.01 + 0.090 + 0.15$$

$$= -0.03 + 0.090 + 0.15$$

$$= 0.21 \text{ mm}$$

The correct shims are three pieces of 0 07 mm thick

Ex 2 ---

Left side

$$T_1 = (A - C + D - H') \times 0.01$$

$$+ 0.200 + E$$

$$= (0 - 1 + 0 - (+2)) \times 0.01$$

$$+ 0.200 + 0.20$$

$$= (0 - 1 + 0 - 2) \times 0.01$$

$$+ 0.200 + 0.20$$

$$= -3 \times 0.01 + 0.200 + 0.20$$

$$= -0.03 + 0.200 + 0.20$$

$$= 0.37 \text{ mm}$$

The correct shims are 0 07 plus 0 10 plus 0 20 mm thick

Right side

$$T_2 = (B - D + H') \times 0.01$$

$$+ 0.090 + F$$

$$= (3 - 0 + (+2)) \times 0.01$$

$$+ 0.090 + 0.17$$

$$= (3 - 0 + 2) \times 0.01$$

$$+ 0.090 + 0.17$$

$$= 5 \times 0.01 + 0.090 + 0.17$$

$$= 0.05 + 0.090 + 0.17$$

$$= 0.31 \text{ mm}$$

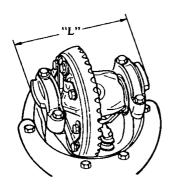
The correct shims are as follows

Thickness Quantity
$$\begin{array}{cccc}
0.07 & \times & 3 & = 0.21 \\
0.10 & \times & 1 & = 0.10
\end{array}$$
Total thickness = 0.31 mm

Note If values signifying A, B, C, D and H' are not given, regard them as zero and compute

After assembly, check to see that

After assembly, check to see that preload and backlash are correct If not, readjust


Side bearing adjusting shim

Thickness mm (in)	
0 05 (0 0020)	
0 07 (0 0028)	
0 10 (0 0039)	
0 20 (0 0079)	
0 50 (0 0197)	
	_

- 2 Fit determined side bearing adjusting shim on differential case, and press fit left and right side bearing inner races on it, using Side Bearing Drift KV38102100 and Adapter ST33052000 See Figure PD-77
- 3 Install differential case assembly into gear carrier, tapping with a soft hammer
- 4 Align mark on bearing cap with that on gear carrier, and install bearing cap on carrier And tighten bolts to specified torque

Tightening torque 5 to 6 kg-m (36 to 43 ft-lb) 5 Measure "L" dimension (between left and right bearing cap edges) by a micrometer See Figures PD-68 and PD-84

"L" dimension 173 23 to 173 29 mm (6 8201 to 6 8224 in)

PD391

Fig PD-84 Measuring "L" dimension

6 Measure ring gear-to-drive pinion backlash See Figure PD-85

If backlash is too small, decrease thickness of left shim and increase thickness of right shim by the same amount

If backlash is too great, reverse the above procedure

Backlash

0 10 to 0 15 mm (0 0039 to 0 0059 m)

Fig PD-85 Measuring backlash

- 7 Check and adjust the tooth contact pattern of ring gear and drive pinion
- (1) Thoroughly clean ring and drive pinion gear teeth
- (2) Paint ring gear teeth lightly and evenly with a mixture of powdered red lead and oil of a suitable consistency to produce a contact pattern

- (3) Rotate pinion through several revolutions in the forward and reverse direction until a definite contact pattern is developed on ring gear
- (4) When contact pattern is in correct, readjust thickness of adjust shim

Be sure to wipe off red lead completely upon completion of adjustment

(5) Incorrect contact pattern of teeth can be adjusted in the following manner

PD 195

Fig PD-88 Flank contact

d Face contact

Adjust in the same manner as in a See Figure PD-89

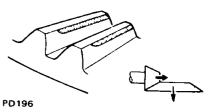


Fig PD-89 Face contact

e Correct tooth contact



Fig PD-90 Correct contact

Note Change in thickness of adjusting washer is accompanied by change in backlash Check it when installing gear

Contact pattern

a Heel contact

To correct, increase thickness of pinion height adjusting washer in order to bring drive pinion close to ring gear See Figure PD-86

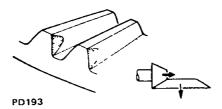


Fig PD-86 Heel contact

b Toe contact

To correct, reduce thickness of pinion height adjusting washer in order to make drive pinion go away from ring gear See Figure PD-87

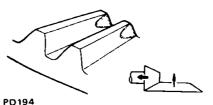


Fig PD-87 Toe contact

c Flank contact

Adjust in the same manner as in b See Figure PD-88

INSTALLATION

Installing can be done in the reverse order of removal

Tightening torque

Gear carrier to rear axle case 2 0 to 2 5 kg-m

(14 to 18 ft-lb) Drain and filler plug

4 2 to 6 9 kg-m (30 to 50 ft-lb)

Gear oil quantity

13 liters

(1 % U S qt, 1 % Imp qt)

REPLACEMENT OF FRONT OIL SEAL

When replacing front oil seal, do as follows

1 Remove differential gear carrier assembly and mount it on Gear Carrier Attachment ST06360001

This work can be done by referring to "Removal" procedure

2 Remove side bearing caps and take out differential case assembly Remove drive pinion nut and extract drive pinion assembly Remove oil seal

These works can be done by referring to "Disassembly" procedure

3 Install a new oil seal in carrier using Oil Seal Drift ST33400001

Lubricate cavity between seal lips with recommended multi-purpose grease when installing

- 4 Place a new collapsible spacer on drive pinion and lubricate pinion rear bearing with gear oil
- 5 Insert companion flange into oil seal Insert drive pinion into companion flange from the rear of the carrier and secure them in position by tightening nut to the given torque confirming specified preload

These works can be done by referring to "Adjustment of Drive Pinion Preload" procedure

6 Install differential case assembly into gear carrier Measure "L" dimension, backlash with specification, adjust them with side bearing shims

These works can be done by referring to "Adjustment of Side Bearing Shims" procedure

7 Reinstall differential gear carrier assembly, rear axle shafts and propeller shaft Fill up differential carrier with correct gear oil

Notes

- a. Replacement of front oil seal with differential gear carrier assembly installed on the car must not be allowed due to used collapsible spacer on its model
- b Whenever front oil seal is replaced, collapsible spacer must be replaced

TROUBLE DIAGNOSES AND CORRECTIONS

When a gear carrier is suspected of being noisy, it is advisable to make a thorough test to determine whether the noise originates in the tires, road surface, exhaust, universal joint, propeller shaft, wheel bearings, engine, transmission, or gear carrier Noise which originates in other places cannot

be corrected by adjustment or replacement of parts in the rear axle assembly

Condition	Probable cause	Corrective action
Noise on drive, coast and float	Shortage of oil	Supply gear oil Rebuild gear carrier if necessary
	Incorrect tooth contact between ring gear and drive pinion	Adjust tooth contact or replace the hypoid gear set
	Incorrect backlash between ring gear and drive pinion	Adjust backlash or replace the hypoid gear set if necessary
	Seized up or damaged ring gear and drive pinion	Replace the hypoid gear set
	Seized up, damaged or broken drive pinion bearing	Replace the pinion bearing and faulty parts
	Seized up, damaged or broken side bearing	Replace the side bearing and faulty parts
	Loosen bolts or nuts fixing ring gear, side retainers, bearing cap, etc	Clamp them to specified torque, and replace faulty parts
Noise on turn	Seized up, damaged or broken side and pinion gear	Replace faulty parts
	Seized up, damaged or broken side gear and pinion thrust washer	Replace faulty parts
	Pinion gears too tight on their shaft	Replace faulty parts
	Interference between side yoke and differential case (for I R S model)	Repair the part responsible for interference, or replace the side yoke and differential case
Knocking sound during	Excessive backlash	
starting or gear shifting	Incorrect backlash ring gear-to-drive pinion backlash, or side-to-pinion gear	Adjust backlash
	Worn gears or case	Replace worn parts
	Worn side yoke (or rear axle shaft) and side gear spline	Replace worn parts
	Pinion bearing under preload	Adjust preload
	Loosened drive pinion nut	Repair or replace
	Loosen bolts or nuts fixing ring gear, side retainers, bearing cap, etc	Clamp them or replace if necessary

Propeller Shaft & Differential Carrier

Condition	Probable cause	Corrective action
Seizure of breakage	Shortage of oil or use of unsuitable oil	Replace faulty parts
	Excessively small backlash	Adjust backlash and replace as required
	Incorrect adjustment of bearings or gears	Replace faulty parts
	Severe service due to an excessive loading, improper use of clutch	Replace faulty parts
	Loose bolts and nuts, such as ring gear bolts	Replace faulty parts
Oil leakage	Worn-out, damaged or improperly driven front oil seal, or bruised, dented or abnormally worn slide face of companion flange	Replace faulty oil seal Repair the affected flange with sandpaper or replace if necessary
	Worn, damaged or improperly driven side oil seal, or bruised, dented or abnormally worn slide face of side yoke	Treat as above
	Loose bolts such as side yoke, side retainer or gear carrier	Tighten the bolts to specified torque
	Faulty gasket or O-ring	Replace faulty parts with new ones
	Loose filler or drain plug	Tighten the plug
	Clogged or damaged breather	Repair or replace

SERVICE DATA AND SPECIFICATIONS

	Sedan and (IRS	-	Station Wagon
Туре	R160)	H165B
Gear carrier material	-	Malleable	cast-ıron
Gear ratio	Sedan Hardtop	3 700 4 111	3 889
Drive pinion preload adjusted by	Shin	n	Collapsible spacer
Drive pinion Preload kg-cm (in-lb) (without oil seal) (with oil seal) At companion flange bolt hole kg (lb) (without oil seal) (with oil seal)	7 to 10 (6 1 8 to 11 (6 9 2 0 to 2 9 (4 2 3 to 3 2 (5	to 9 5) 4 to 6 4)	- 7 to 10 (6 1 to 8 7) - 2 0 to 2 9 (4 4 to 6 4
Thickness of pinion height adjusting washer mm (in)	3 09 (0 3 12 (0 3 15 (0 3 18 (0 3 21 (0 3 24 (0 3 27 (0 3 30 (0 3 36 (0 3 39 (0 3 42 (0 3 45 (0 3 45 (0 3 51 (0 3 57 (0 3 60 (0 3 60 (0 3 66 (0	1228) 1240) 1252) 1264) 1276) 1287) 1299) 1311) 1323) 1335) 1346) 1358) 1370) 1382) 1394) 1406) 1417) 1429)	3 09 (0 1217) 3 12 (0 1228) 3 15 (0 1240) 3 18 (0 1252) 3 21 (0 1264) 3 24 (0 1276) 3 27 (0 1287) 3 30 (0 1299) 3 33 (0 1311) 3 36 (0 1323) 3 39 (0 1335) 3 42 (0 1346) 3 45 (0 1358) 3 48 (0 1370) 3 51 (0 1382) 3 54 (0 1394) 3 57 (0 1406) 3 60 (0 1417) 3 63 (0 1429) 3 66 (0 1441)
Length of pinion bearing adjusting spacer mm (in)	56 2 (2 56 4 (2 56 6 (2 56 8 (2 57 0 (2 57 2 (2	2205) 2283) 2362) 2441)	Non adjustable collapsible spacer

	R160	H165B
Thickness of pinion bearing	2 30 to 2 32 (0 0906 to 0.0913)	
adjusting washer mm (in)	2 32 to 2 34 (0 0913 to 0 0921)	
, ,	2 34 to 2 36 (0 0921 to 0 0929)	
	2 36 to 2 38 (0 0929 to 0 0937)	
	2 38 to 2 40 (0 0937 to 0 0945)	
	2 40 to 2 42 (0 0945 to 0 0953)	
	2 42 to 2 44 (0 0953 to 0 0961)	Non adjustable
	2 44 to 2 46 (0 0961 to 0 0969)	collapsible space
	2 46 to 2 48 (0 0969 to 0 0976)	ounapsion apace.
	2 48 to 2 50 (0 0976 to 0 0984)	
	2 50 to 2 52 (0 0984 to 0 0992)	
	2 52 to 2 54 (0 0992 to 0 1000)	
	2 54 to 2 56 (0 1000 to 0 1008)	
	2 56 to 2 58 (0 1008 to 0 1016)	
	2 58 to 2 60 (0 1016 to 0 1024)	
Side gear and pinion mate		
Thickness of side gear thrust	0 75 to 0 80 (0 0295 to 0 0315)	0 785 (0 0309)
washer mm (in)	0 80 to 0 85 (0 0315 to 0 0335)	0 835 (0 0329)
·	0 85 to 0 90 (0 0335 to 0 0354)	0 885 (0 0348)
	•	1 035 (0 0407)
		1 185 (0 0467)
Pinion mate-to-side gear backlash (or clearance between side gear and thrust washer) mm (in)	0 1 to 0 2 (0 0039 to 0 0079)	0 1 to 0 2 (0 0039 to 0 0079)
Ring gear		
Ring gear-to-drive pinion backlash mm (in)	0 1 to 0 2 (0 0039 to 0 0079)	0 10 to 0 15 (0 0039 to 0 0059)
Thickness of side retainer	0 05 (0 0020)	_
adjusting shim mm (in)	0 07 (0 0028)	
, ,	0 10 (0 0039)	
	0 20 (0 0079)	
	0 50 (0 0197)	
Thickness of side bearing adjusting	-	0 05 (0 0020)
shim mm (in)		0 07 (0 0028)
		0 10 (0 0039)
		0 20 (0 0079)
		0 50 (0 0197)
Side bearing standard width	20.0 (0.7974)	
mm (ın)	20 0 (0 7874)	18 5 (0 7283)
"L" dimension mm (in)	_	173 23 to 173 29
L dimension mun (m)		2.0 20 10 2,0 2,

	R160	H165B	
Tightening torque kg-m (ft-lb)			
Drive pinion nut	17 to 20 (123 to 145)	More than 14 (101)	
Ring gear bolt	7 to 8 (5		
Side bearing cap bolt	_ ~ `	5 to 6 (36 to 46)	
Differential carrier to axle case	·	20 to 25 (14 to 18)	
Side retainer bolt	0 9 to 1 2 (6 5 to 8 7)	-	
Side yoke fixing bolt	3 2 to 4 3 (23 to 31)	<u> </u>	
Rear cover fixing bolt	1 9 to 2 6 (14 to 19)	_	
Rear cover to mounting member	6 to 8 (43 to 58)		
Differential carrier to suspension			
member	5 to 7 (36 to 51)		
Drive shaft to rear axle shaft fixing	5 to 6 (36 to 43)	_	
bolt			
Differential mounting member self	•		
lock nut	7 to 10 (51 to 72)	-	
Companion flange to propeller shaft	2 4 to 3 3 (17 to 24)		
Oil drain and filler plug	4 to 6 (29 to 43)	4 2 to 6 9 (30 to 50	
Oil capacity (about)	0 8 liter	1 3 liters	
Ch deposit, (constr,	(% USqt, % Impqt)	(1 % USqt, 1 %	
		Imp qt)	
Adjusting methods			
Variable numbers expressed by	mm (× 0	0 01)	
Dummy shaft	τ	Jse	
Drive pinion adjusting formula	$T = W + N - [H - D' - S) \times 0.01] - 0.2$	$T = N - [(H - D' - S) \times 0.01] + 2.98$	
Side bearing adjusting formula	$T_1 = (A + C + G_1 - D)$	$T_1 = (A - C + D$	
	× 0 01 + 0 76 – E	$-H') \times 0.01$	
•	$T_2 = (B + D + G_2) \times 0.01$	+ 0 20 + E	
·	+ 0 76 – F	$T_2 = (B - D + H')$	
	1	× 0 01 + 0 09	
_		+ F	

SPECIAL SERVICE TOOLS

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
1	KV38100800 Gear carrier attachment (R160)	This attachment is used with engine stand (ST0501S000) Strut and steering gear box mounting holes are provided with engraved identification marks "D" for gear carrier "S" for strut "G" for steering gear box	710(SSS) 610 HGC110 KC130 S30 510	Fig PD-12
2	ST06360001 Diff attachment (H165B)	Same as above	W610 J710 HC110 B120	Fig PD-69 Page PD-26
3	ST3121S000 Drive pinion setting gauge assembly (R160) ST31211000 Height gauge ST31212000 Dummy shaft ST31213000 Stopper ST31214000 Collar	These tools are used to adjust the pinion height 12 7 (0 50) 155 (6 1) 30 (1 18) dia 373 5 (14 7)	610 S30 HGC110 KHC130	Fig PD-22 Fig PD-24 Fig PD-25 Page PD-11
		34 (1 34) dia 0		

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
,				
	,			
		•	١,	
4	ST3114S000 Drive pinion setting gauge assembly (H165) ST31942000 Dummy shaft ST31141000 Height gauge	These tools are used to adjust the pinion height 30 (1 18) dia 35 45 (1 40) SE209	W610 J710 C110 B120	Fig PD-78 Fig PD-79
	,	SE210		
5	ST30611000 Bearing drift bar	These tools are used when press fitting bearing outer race 350 (13 8) 25 (0 93) dia	710 B210 610 C110 C130 330 S30 B120 620 F20 E20	Page PD-11 Page PD-22
		SE405	C240 T40 140	

	Tac1			, , , , , , , , , , , , , , , , , , ,
No	Tool number & . tool name	Description Unit mm (in)	For use on	Reference page or Figure No
6	ST30701000 Drift	For drive pinion front bearing outer race 61 5 (2 42) dia	(Front) 710 B210 (H150) 610 W610 HC110 KHC130 B120 620 (Rear) B210 (H145A) B210 (H150)	Page PD-11 Page PD-22
7	ST30613000 Dnft	For drive pinion rear bearing outer race 72 (2 83) dia	(Rear) 710 610 C110 B120 620 (Front) VC110 HC130 330 (R200) F20 E20 C240 T40 140	Page PD-11 Page PD-22
8	ST30621000 Drift	For side bearing outer race 7 9 (3 11) dia SE408	(Side) 710 610 GC110 KC130 (Rear) GC110 VC110 C130 330 S30(All) F20(All)	Page PD-11
9	ST3003S000 Drive pinion rear inner bearing puller assembly ST30031000 Puller ST30032000 Base	This assembly clamps rear bearing inner race and pulls it out by a hydraulic press Before insertion, place another drift facing inner race, and then press-fit outer dia 80 (3 15) inner dia 50 (1 97) SE041	610 (All) 710 (All) 510 B210 620 HC110 B120	Fig PD-16 Fig PD-27 Fig PD-72 Page PD-23

Propeller Shaft & Differential Carrier

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
10 '	ST30650001 Pilot bearing drift	For use when pulling out front pilot bearing After drive pinion has been pulled, insert this tool from behind the gear carrier case, and apply it onto pinion front bearing inner race, and then press out pinion front bearing inner race, front pilot bearing spacer and pilot bearing	610 (R160) 710 (R160) 510 HGC110 KHC130	Page PD-10
11	ST30720000 Gear carrier front oil seal drift	This tool is used to drive in front oil seal without damaging it 77 (3 03) dia 55.5 (2 185) dia SE208	610 (R160) 710 (R160) 510 W510 HGC110 KHC130	Page PD-13 Page PD-16
12	ST33400001 Front oil seal drift	Same as above	W610 B210 (All) J710 HC110 B120	Page PD-23 Page PD-26
		47 (1 85) dia 60 (2 36) dia SE410		,
•				
	, , , , ,	7		
				1

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
13	ST33290001 Gear carrier oil seal puller	This tool is used to pull out oil seal from gear carrier This tool also enables to remove side bearing outer race from retainer without damaging	Ail models	Fig PD-14 Fig PD-44 Page PD-17
14	ST31530000 Drive pinion flange wrench	This tool is used to hold the flange to ease the operation of tightening and loosening drive pinion nut	610 710 510 W510 620 330 S30 E20 C110 C130 E20 B120	Fig PD-5 Fig PD-15 Fig PD-42 Fig PD-71 Page PD-23
15	ST3127S000 Preload gauge 1 GG91030000 Torque wrench 2 HT62940000 Socket adapter 3 HT62900000 Socket adapter	This tool is used to measure the preload of pinion bearing 1/4" w × 3/8" a 3/8" c × 1/2" a	610 B210 710 C110 C130 330 S30 B120 620 F20 E20 C240 T40 140 60	Fig PD-23 Fig PD-81
16	ST33051001 Side bearing puller	These tools are used to pull out side bearing	610 B210 710 C110 C130 330 S30 B120 620 F20 E20	Fig PD-17 Fig PD-74

			1	
No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
17	ST33052000 Adapter	22 (0 866) dia 28 (1 10) dia	V610 W610 B210 (All) J710 C110 VC110 620	Fig PD-74 Fig PD-77 Fig PD-24
		SE421		
18	ST33061000 Adapter	28 5 (1 10) dia 38 (1 50) dia SE422	KP710 610 (R160) HGC110 VC110 C130 S30 KSE20	Fig PD-17 Fig PD-21
19	ST33230000 Diff side bearing drift	Use of this tool makes it possible to drive in bearing without damaging it 28 5 (1 12) dia 51 (2 01) dia 178 (7 01)	610 510 W510 KSE20 620 F20 VHC110 C130	Fig PD-21
20	KV38102100 Diff side bearing drift	Use of this tool makes it possible to drive in bearing without damaging it 36 0 (1 42) 24 5 (0 965) 43 0 (1 693) SE217	J710 W610 V610 C110 VC110 B120 620	Fig PD-77 Page PD-24

No	Tool number & tool name	Description Unit mm (in)	For use on ,	Reference page or . Figure No
21	ST33710000 Gear carrier side retainer attachment	This tool is used to hold the puller drive shaft when removing side retainer by the puller 24 (0 94) dia 30 (1 18) dia 89 (3 50)	610 (R160) 510 710 (R160) HGC110 KHC130	Fig PD-13
22 .	Gear carrier side retainer guide	This guide bolt is used when attaching retainer to gear carrier. Use of this tool prevents damaging O-ring and helps smooth the operation 8 (0 31) dia 40 (1 57)	610 (R160) 510 710 (R160) HGC110 KHC130	Fig PD-32 Page PD-14
23	ST33270000 Gear carrier oil seal drift	This tool is used when driving in oil seal. Using this drift completely eliminates the possibility of damaging oil seal. 30 (1 18) 62 (2 44) dia	610 (R160) 510 S30 710 (R160) HGC110 KHC130	Page PD-11 Page PD-17
24	KV31100300 Solid punch	This tool is used to drive out lock pin of pinion mate shaft 4 5 (0 177) dia 95 (3 74) 65 (2 56)	710(All) 610(All) 610(All) C110 (All) C130 (All) 330 S30(All) B120 620 F20(All) T20(All) E20(All) C240 T40 140	Fig PD-75 Page PD-10

Propeller Shaft & Differential Carrier

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
25	ST32501000 Weight block	These tools are used to measure difference in width of side bearing against standard width 70 (2 76) 84 5 (3 33) SE417	710 B210 610 C110 C130 330 S30 B120 620 F20 KSE20	Fig PD-20 Fig PD-76 Page PD-21
26	ST33741000 Master gauge [18.5 mm (0 728 in)]	20 (0 79)	J710 W610 C110 B120	Fig PD-76 Page PD-21
27	KV38101900 Master gauge [20 0 mm (0 79 in)]	20 (0 79) 20 (0 79) SE419	710 610 V610 VC110 (H190) HGC110 C130 330 S30 (R180) 620 F20 KSE20	Fig PD-20

SERVICE MANUAL

DATSUN MODEL 610 SERIES

SECTION FA

FRONT AXLE & FRONT SUSPENSION

FΛ

DESCRIPTION	FA- 2
INSPECTION AND ADJUSTMENT	FA- 3
FRONT AXLE	FA- 5
FRONT SUSPENSION	FA- 7
SERVICE DATA AND SPECIFICATIONS	FA-13
TROUBLE DIAGNOSES AND CORRECTIONS	FA-15
SPECIAL SERVICE TOOLS	FA-18

NISSAN MOTOR CO., LTD.

DESCRIPTION

All models employ a strut type front suspension in which the shock absorber and spindle are assembled into a single unit. It is supported by a coil spring at the top and by the transverse link at the bottom

The spindle and outer casing are of an integral design. The ball joint, located at the outer end of the transverse link, serves as a pivot for the movement of the spindle.

These are assembled on the suspension member through a rubber bushing

to avoid metal to metal contact

The shock absorber is basically a double acting hydraulic ram consisting mainly of an outer casing, an inner casing, a piston and a piston rod

The gland packing and piston guide keep the rod in place as well as prevent leakage

The coil spring is placed on the piston rod with its seat on the bottom

The seat is welded to the outer casing These are mounted on the chassis frame through the thrust bearing at the top The transverse link, tension rod and rubber bushing take thrusts from front and rear

The stabilizer uses a torsion bar, it takes thrusts from either side of the car. Thus, the entire suspension handles thrusts from any angle is those from front and rear by the tension rod, those in a vertical direction with the strut, and those from either side of the car by means of the transverse link.

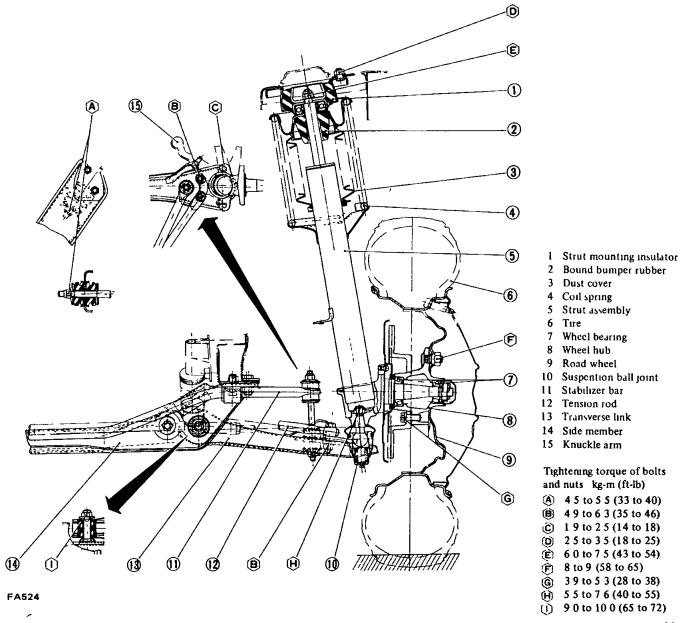


Fig FA-1 Front axle and suspension assembly

INSPECTION AND ADJUSTMENT

CONTENTS

INSPECTION	
SUSPENSION	PARTS
ADJUSTMENT	

FA-3	WHEEL BEARING
FA-3	WHEEL ALIGNMENT
i A 3	CAR LEVEL

FA 3 FA 4 FA-4

INSPECTION

Periodically inspect in accordance with a regular maintenance schedule

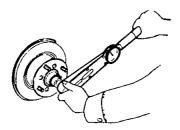
SUSPENSION PARTS

- 1 Jack up the front of car until front wheels clear the floor
- 2 Shaking each front wheel by grasping the upper and lower surfaces of the tire, check suspension parts for looseness, wear, or damage Tighten all loose bolts and nuts to the specified torque Replace all worn parts as described under "Front Suspension"
- 3 Check wheel bearings If any axial end-play is present, adjust bearings to specifications Replace worn or damaged bearings as described under "Front Axle"
- 4 Check the shock absorbers assembled into strut If these are not in good condition, car posture and wheel alignment may be affected

ADJUSTMENT

WHEEL BEARING

Improper adjustment of wheel bearings causes abnormal wear and score on the bearings and knuckle spindle


To obtain proper preload on wheel bearings, proceed as follows

Note In order to assure correct bearing preload and to extend service life of wheel bearings, be sure to prevent dirt and foreign particles from getting in bearings, grease seal and spindle nut

1 Jack up and support car on the stands at the side member in a safe manner, and remove wheel, hub cap, cotter pin and brake pads Refer to Section BR for "Pad Replacement"

2 Tighten spindle nut to specifications, using a suitable torque wrench

Tightening torque 2 5 to 3 0 kg-m (18 to 22 ft-lb)

FA263

Fig FA-2 Tightening spindle nut

- 3 Rotate wheel hub a few turns in both directions to seat wheel bearing correctly Then, retighten spindle nut to the above torque
- 4 Loosen spindle nut 60 degrees

Install adjusting cap and loosen within 15 degrees until grooves are aligned with hole in spindle

5 Again spin wheel hub several turns in both directions to see if it rotates freely Then, measure bearing preload using a spring balance as follows

Rotation starting torque of wheel bearing

New parts

8 5 kg-cm (7 4 in-lb) or less
As measured at wheel hub bolt
1 5 kg (3 3 lb) or less
Adjustment with old parts
4 5 kg-cm (3 9 in-lb)
As measured at wheel hub bolt
0 8 kg (1 8 lb)

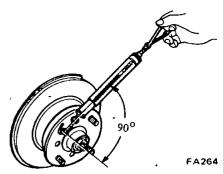


Fig FA 3 Measuring bearing preload

Repeat above procedures until correct preload is obtained

Notes

- a To measure bearing preload, attach a spring balance to hub bolt and pull it at right angle to a line drawn through center of bearing and hub bolt to which it is attached
- b The slightest shaft play cannot be tolerated here
- 6 Insert a new cotter pin with the legs through adjusting cap and spindle, spread legs away from each other against sides of adjusting cap to secure the installation See Figure FA.4

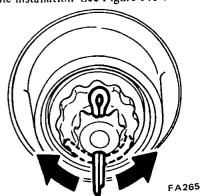


Fig FA 4 Installing cotter pin

7 Install hub cap

WHEEL ALIGNMENT

Correct front wheel alignment assures proper vehicle handling characteristics and minimum steering effort with the least amount of tire wear

Before adjusting front wheel alignment, be sure to carry out a preliminary inspection of the front end parts as follows

- 1 Tire pressure
- 2 Wheel bearings and spindle nuts
- 3 Steering gear play
- 4 Steering gear housing (loose at frame)
- 5 Steering linkage and connections
- 6 Shock absorber action

When using the equipment for front wheel alignment inspection, follow the instructions furnished with the equipment Moreover, the inspection should be made with the car set level and at curb weight

- 1 Turn steering wheel so that front wheels are pointed straight ahead Then, check that steering gear is in straight ahead position
- 2 The length of side adjusting rod (marked with an arrow) should be adjusted to specification by turning both side adjusting rods See Figure FA-5

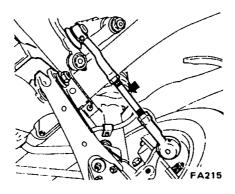


Fig FA-5 Adjusting toe-in

- 2 Turn adjusting bolts (indicated by arrow) in or out as required until correct turning angle is obtained See Figure FA-6
- 3 Put nylon cap on adjusting bolt

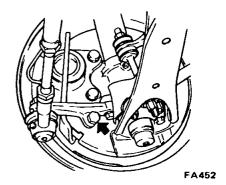


Fig FA-6 Adjusting steering angle

Camber and caster

Camber and caster are preset at factory and cannot be adjusted

Car requires only toe-in and leveling adjustments

Note Both sides of the side rod ball joint center to center distances should be balanced first

Steering angle

Inner wheel 37° to 38° Outer wheel 30°42′ to 32°42′

Toe-in

Measure toe-in and adjust if necessary For adjustment, proceed as follows

Steering angle

Check steering angle using the following procedures if necessary

1 Place front wheels on turn table

CAR LEVEL

Adjustment can be made by selecting spring which will keep car in a normal, level position

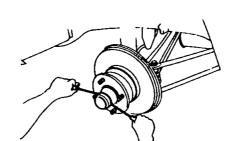
FRONT AXLE

CONTENTS

4 Work off hub cap from end of spindle using two screwdrivers or any other suitable tool as shown in Figure

FA-9. If necessary, tap around it with a soft hammer while removing cap

FRONT AXLE REMOVAL


FA-5 INSPECTION FA-5 INSTALLATION

FA-5 FA-6

FRONT AXLE

REMOVAL

- 1 Jack up car until wheel drops to full down position, remove wheel
- 2 Remove flare nut connecting brake hose to brake tube at the bracket on front strut, take out brake hose lock spring and plug up brake hose opening See Figure FA-7

FA038
Fig FA-9 Removing hub cap

FA259

Fig FA-11 Removing wheel bearing outer race

9 Loosen four bolts securing brake disc in position, remove disc brake rotor from wheel hub assembly

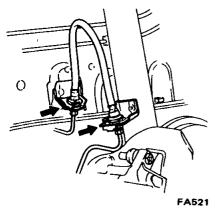


Fig FA-7 Removing brake hose

Note During this operation, use caution to avoid damaging O-ring

- 5 Pry off cotter pin, take out adjusting cap and wheel bearing lock nut
- 6 Remove wheel hub from spindle with bearing installed
- 7. Wheel hub may be removed together with disc rotor

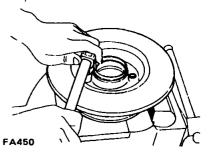
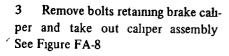



Fig FA-12 Removing disc brake rotor

10 Loosen screws securing baffle plate in position, take out baffle plate

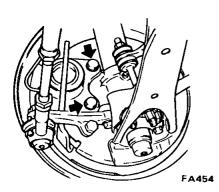


Fig FA-8 Removing brake caliper installation boits

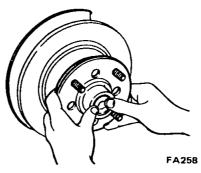


Fig FA-10 Removing wheel hub

8 Utilizing two grooves inside hub, drive out wheel bearing outer race from hub with a brass drift

INSPECTION

Wheel hub

Check hub for cracks by means of a magnetic exploration or dyeing test, and replace if cracked

Grease seal

If grease leakage is detected during removal, replace seal

Replace grease seal every disassembly even if it appears good

Wheel bearing

Thoroughly clean grease and dirt from wheel bearing with cleaning solvent, and dry with compressed air free of moisture Check wheel bearing to see that it rolls freely and is free from noise, crack, pitting, or wear Also, check condition of outer race Removal of outer race from hub is not necessary

INSTALLATION

Install front axle in the reverse order of removal, noting the following

l Install baffle plate to knuckle spindle

- 2 Install disc brake rotor to wheel hub, tighten to 3 9 to 5 3 kg-m (28 to 38 ft-lb)
- 3 Install bearing outer race by tapping its outer periphery with a mallet, or using Front Wheel Bearing Drift ST35300000, until it is bottomed in hub
- 4 Pack the inside of hub and hub cap with recommended multi-purpose grease to the described level See Figure FA-13

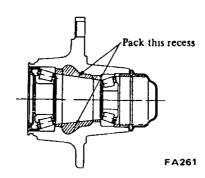


Fig FA-13 Lubricating points of wheel hub

5 Pack cavities of each bearing cone with grease

Fig FA-14 Filling bearing cone with grease

- 6 Put inner bearing cone in hub and install a new grease seal Be sure to lubricate sealing lips of the grease seal before installation
- 7 Put hub assembly on spindle and then install outer bearing cone
- 8 Apply sparingly grease to washer and threaded parts of spindle and spindle nut Then, install washer and spindle nut Adjust the installation as outlined under "Wheel Bearing Adjustment"

Note In order to assure correct bearing preload and to extend service life of wheel bearings, be sure to avoid dirt and foreign particles getting in bearings, grease seal, washer and spindle nut

9 After lowering car to the ground, tighten wheel nut, bleed brake

FRONT SUSPENSION

CONTENTS

SPRING AND STRUT ASSEMBLY	FA- 7	INSTALLATION			FA-11
DESCRIPTION	FA- 7	TRANSVERSE LINK AND	4		
REMOVAL	FA- 7	LOWER BALL JOINT	•	•	FA-11
DISASSEMBLY	FA- 8	REMOVAL			FA-11
INSPECTION	FA- 8	INSPECTION		1	FA-11
ASSEMBLY	FA- 9 🟅	INSTALLATION			FA-12
INSTALLATION	FA-10 ,	SUSPENSION CROSSMEMBER			FA-12
TENSION ROD AND STABILIZER BAR	FA-10	REMOVAL			FA-12
REMOVAL	FA-10 ,	INSPECTION			FA-12
INSPECTION	FA-10 '	INSTALLATION			FA-12

SPRING AND STRUT ASSEMBLY

DESCRIPTION

The front suspension employs struts right and left Each strut consists of an outer casing, a piston, a piston rod and an inner cylinder

The cylinder incorporates a piston rod guide at the top and a check valve at the bottom

The piston rod, piston rod guide, cylinder and bottom valve should be handled as a matched set

If any of these parts becomes faulty, all the parts must be replaced as a unit

When a spring requires replacement, use the one having the same color identification. If this is not done, the car may not settle in a normal level posture

Gland packing assembly 12 Piston ring Oil seal 13 Valve plate Piston body O-ring Piston rod guide 15 Nut Bolt assembly Distance collar Cylinder 17 Spring retainer 18 Rebound stopper 19 Check valve spring Strut-outer casing 20 Bottom valve body Piston rod Check valve plate Check valve spring 21 22 Valve plate retainer 23 Nut 10 Check valve spring 11 Check valve plate 24 Bottom plate Shock absorber operation

Expansion

FA268

Compression

Fig FA-15 Sectional view of strut assembly

Operating valve

Operating valve

REMOVAL

- I Jack up car and support it with safety stands Remove wheel
- 2 Loosen flare nut connecting brake hose to brake tube at the bracket on front strut See Figure FA-7 Take out brake hose locking spring Separate brake hose from brake tube
- 3 Loosen flare nut securing brake tube to cylinder and then separate from brake cylinder
- 4 Loosen bolts retaining caliper in place, take out caliper as an assembled unit
- 5 Remove bolts connecting strut to knuckle arm See Figure FA-16

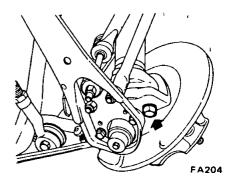


Fig FA-16 Removing bolts connecting knuckle arm

6 Detach knuckle arm from bottom of strut This can be done by forcing transverse link down with a suitable bar as shown in Figure FA-17

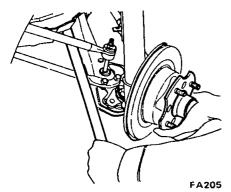
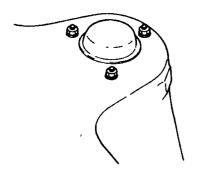



Fig FA-17 Removing knuckle arm

- 7 Place jack under strut to receive its weight when nuts are removed
- 8 Lift engine hood to gain access to nuts holding strut in place on car body See Figure FA-18

FA451

Fig FA-18 Removing strut holding

9 With springs attached, lower jack slowly while holding strut by hand, take out strut

DISASSEMBLY

When disassembling a strut, caution should be exercised to prevent dirt and dust from getting inside strut. This dirt and dust is extremely abrasive and, if permitted to enter strut, causes internal leaks and premature wear of moving parts.

- 1 Install Strut & Steering Gear Housing Attachment KV48100300 on bottom of strut, secure above assembly in jaws of a suitable vise See Figure FA-20.
- 2 Pry snap ring off dust cover
- 3 Set up Spring Compressor ST3565S001 on spring Compress spring just far enough to permit turning of strut insulator by hand Remove self-locking nut See Figure FA-19

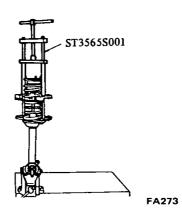


Fig FA-19 Installing strut in vise

- 4 Take out strut insulator, strut bearing, oil seal, upper spring seat and bound bumper rubber in the order listed
- 5 Remove spring from strut with Spring Compressor ST3565S001 left on spring
- 6 Retract piston rod by pushing it down until it bottoms Without disturbing the above setting, remove gland packing with Gland Packing Wrench ST35500001. See Figure FA-20

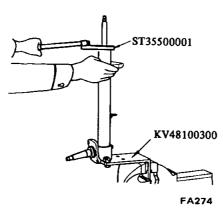
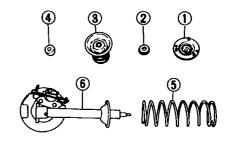


Fig FA-20 Removing gland packing

Note Clean gland packing of mud and other accumulated foreign particles

- 7. Remove O-ring from top of piston rod guide
- 8 Lift out piston rod together with cylinder. See Figure FA-21


Fig FA-21 Removing piston rod and cylinder

Note Under no circumstances should piston and piston rod guide be removed from cylinder since these are adjusted to each other to provide precision mating surfaces and should be handled as a matched set

- 9 Drain fluid thoroughly from inner cylinder Use a suitable container to receive fluid drained
- 10 Wash all metallic parts in cleaning solvent
- 11 Drain fluid which collects inside outer casing thoroughly

Note This operation is very important since performance of strut varies with amount of fluid initially filled.

INSPECTION

- 1 Strut mounting insulator
- 2 Bearing
- 3 Spring upper seat and dust cover
- 4 Damper rubber
- 5 Coil spring
- 6 Strut assembly

FA337

Fig FA-22 Exploded view of spring and strut assembly

- 1 Replace gland packing, O-ring and fluid with new ones or fresh oil whenever strut is disassembled
- Wash all parts, except for non-metalic parts, with solvent and dry with compressed air
- 3 Blow dirt and dust off of nonmetalic parts using compressed air.

(1) Outer casing

Check outer casing for evidence of deformation, cracking or other damage If necessary, replace

(2) Spindle

Check spindle for hair cracks on base and damaged threads Replace strut if any of above conditions exceed limits.

(3) Strut mounting insulator

Replace if rubber and metal joints are melted or cracked Rubber parts should be replaced if deteriorated

(4) Strut mounting bearing

Replace if inspection reveals abnormal noise or excessive rattle in axial direction

ASSEMBLY

When assembling strut, be careful not to drop or scratch parts since they are precisely machined to very close tolerances. Before assembly, clean away all dirt to prevent any possible entry of dirt into strut.

- 1 Set Steering Gear Housing Attachment KV48100300 in place on bottom of strut and place attachment in jaws of a suitable vise
- 2 Install piston rod and cylinder into place in outer casing
- 3 Pour correct amount of fluid into outer casing See Figure FA-23

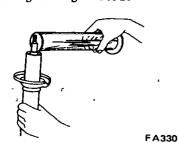


Fig FA-23 Filling outer casing with fluid

Note It is important that correct amount of fluid be poured into strut to assure correct damping force of shock absorber

Amount of oil
325 cc (19 83 cu in) for AMPCO
(ATSUGI) make
332 cc (20.26 cu in) for K.Y B.
(KAYABA) make

4 Place rod guide on top of piston

rod, install gland packing using Gland Packing Guide ST35530000

Lubricate sealing lip, asterisked in

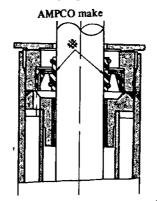
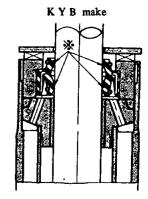



Figure FA-24, with recommended multi-purpose grease

FA222

Fig FA-24 Sectional view of gland packing

5 Tighten gland packing to 7 to 13 kg-m (51 to 94 ft-lb) torque See Figure FA-25

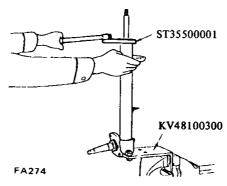


Fig FA-25 Tightening gland packing

Notes

FA221

- a When tightening gland packing, it is important that piston rod be extended approximately 120 mm (4.72 in) from end of outer casing to expel most of air out of strut.
- b Gland packing should be tightened to 7.0 to 13.0 kg-m (51 to 94 ft-lb) torque with the aid of Gland Packing Wrench ST35500001 When doing so, the amount of torque to be read beneath wrench needle should be modified according to the following formula

C kg-m =
$$7 \times (\frac{\mathcal{L}}{\mathcal{L} + 0.1})$$
 or
C ft-lb = $51 \times (\frac{\mathcal{L}}{\mathcal{L} + 0.33})$

Where,

- C .Value read on the torque wrench [kg-m (ft-lb)]
- L. Effective length of torque wrench [m (ft)]

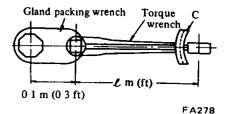
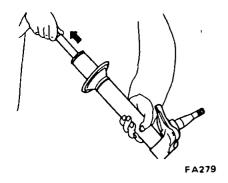



Fig FA-26 Gland packing wrench

- 6 After the above steps have been completed, air should be removed from shock absorber system in the following manner
- (1) Hold strut by hand with its spindle end facing down, without disturbing the above setting, pull out piston rod completely. Then, turn strut upside down so that spindle end is now facing up. Under this condition, retract piston rod all the way. See Figure FA-27
- (2) Repeat the above procedure several times so that air will be completely bled from strut
- (3) If, during the above step, an equal pressure is felt through the hand gripping piston rod on both strokes, it is an indication that air has been completely expelled from strut

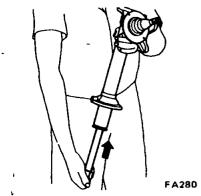


Fig FA-27 Bleeding air from strut

- 7 Place Strut & Steering Gear Housing Attachment KV48100300 in jaws of a vise
- 8 Before proceeding any further, pull piston rod all the way out to the limit of its stroke, install bound bumper rubber to prevent piston rod from falling by its own weight
- 9 Place front spring on lower spring seat and compress spring with Spring Compressor ST3565S001

Install dust cover, upper spring seat, mounting bearing and insulator in the order listed

10 Lubricate parts, indicated by arrow in Figure FA-28, with recommended multi-purpose grease

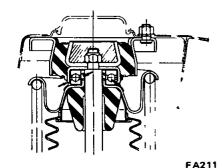


Fig FA-28 Greasing mounting bearing and oil seal

Notes

- a Use care to avoid damaging piston rod during disassembly and assembly Do not use pliers or the like to extract piston rod
- b Install mounting bearing so that it points in correct direction See Figure FA-28.
- 11 Tighten piston rod self-locking nut to 60 to 7 5 kg-m (43 to 54 ft-lb) torque
- 12 After placing spring in position (Figure FA-29) between upper and lower spring seats, release compressor gradually

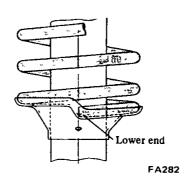


Fig FA-29 Installing front spring

Raise bound bumper rubber to upper spring seat

d When installing steering knuckle arm to the bottom of strut assembly, apply the suitable sealing material to the portion indicated in Figure FA-31 so as to prevent ball stud from rust.

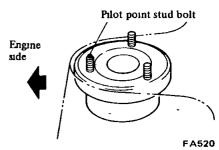


Fig FA-30 Mounting direction of strut insulator

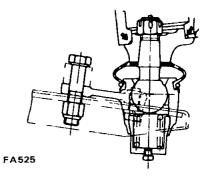


Fig FA-31 Applying sealing material

INSTALLATION

Install the strut and spring assembly in the reverse order of removal, noting the following

Tightening torque

Strut to body nuts

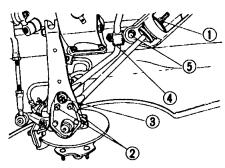
2 5 to 3 5 kg-m (18 to 25 ft-lb)

Steering knuckle arm to strut

7 0 to 10 0 kg-m (51 to 72 ft-lb)

Notes

- a When installing strut and spring assembly to body, make sure that the painted mark on strut insulator faces the engine side See Figure FA-30
- b Replace self-locking nuts whenever strut is disassembled
- c. Make sure brake hose is secure and not twisted


TENSION ROD AND STABILIZER BAR

REMOVAL

- 1 Jack up car and support it with safety stands, remove wheel
- 2 Remove splash board
- 3 Back off nut (1) securing tension rod to bracket, and remove bolts (2) which secure tension rod to transverse link Tension rod can then be taken out
- 4 Remove nut ③ connecting stabilizer connecting rod to transverse link
 5 Take out bolts ④ securing stabilizer bracket in position Loosen four tension rod bracket bolts ⑤ in ad-

vance. Remove stabilizer from car

frame See Figure FA-32.

FA338 Fig FA-32 Removing stabilizer and tension rod

INSPECTION

- 1 Check tension rod and stabilizer for evidence of deformation and cracking, if necessary, replace
- 2 Check rubber parts such as tension rod and stabilizer bushings to be sure they are not deteriorated or cracked

INSTALLATION

Install tension rod and stabilizer bar in the reverse order of removal, noting the following

- 1 Ensure that stabilizer is correctly installed to the portion of the left and right sides
- 2 Check to be sure that tension rod bushing is properly centered in its seat
- 3 Examine if clearance between tension rod and stabilizer bar is equal on both sides See Figure FA-33

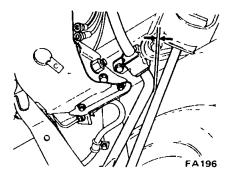


Fig FA-33 Adjusting clearance between tension rod and stabilizer bar

- 4 Be sure that bolt attaching tension bracket is correctly tightened
- 5 Do not tighten transverse link side bolt of tension rod without first tightening bolt securing tension rod to tension rod bracket

Tightening torque

Stabilizer bar to frame bolt

1 4 to 1 8 kg-m
(10 to 13 ft-lb)

Stabilizer connecting rod nut
1 2 to 1 7 kg-m
(9 to 12 ft-lb)

Tension rod bracket bolt
5 1 to 6 9 kg-m
(37 to 50 ft-lb)

Tension rod installation nut
4 5 to 5 5 kg-m
(33 to 40 ft-lb)

Tension rod to transverse link bolt

4 9 to 6 3 kg-m (35 to 46 ft-lb)

TRANSVERSE LINK AND LOWER BALL JOINT

The transverse link is connected to the suspension member through a rubber bushing and to the strut through a ball joint

The lower ball joint is assembled at the factory and cannot be disassembled Lubricate ball joints with recommended multi-purpose grease every recommended maintenance interval

REMOVAL

- I Jack up car and support it with safety stands, remove wheel
- 2 Remove splash board
- 3 Pry cotter pin off'side rod socket ball joint Remove castle nut and separate side rod socket from knuckle arm with Ball Joint Remover HT72520000
- 4 Loosen bolts holding knuckle arm in place Separate knuckle arm from bottom end of strut For details, refer to "Spring and Strut Assembly"
- 5 Remove tension rod and stabilizer bar

For detail, refer to "Spring and Strut Assembly"

6 Remove pin assembly connecting transverse link to suspension cross-member after loosening front and rear nuts

Remove transverse link with suspension ball joint and knuckle arm

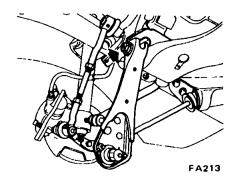


Fig FA-34 Removing transverse link

- 7 Place transverse link in a vise, loosen bolt securing ball joint to transverse link and remove ball joint from transverse link with Ball Joint Remover HT72520000
- 8 Withdraw transverse link bushing from transverse link using Front Transverse Link Bushing Replacer Set ST36700000 and a press

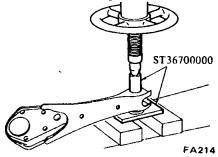
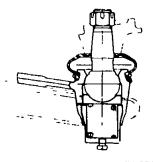


Fig FA-35 Removing transverse link
bushing

INSPECTION

Transverse link


1 Check for signs of cracks, distortion or other damage Replace if any of above conditions are beyond repair

2 If rubber bushing shows evidence of cracking, replace with a new one

Ball joint

1. Ball joint is assembled at factory and cannot be disassembled Measure force required to keep joint turning If found to be more or less than specifications, discard

Turning torque
New parts
75 to 125 kg-cm
(65 to 109 in-lb)
Used parts
More than 50 kg-cm (43 in-lb)

FA526

Fig FA-36 Sectional view of lower ball joint

- 2 Check conditional dust cover If found to be cracked excessively beyond use, replace ball joint with a new one
- 3. Lubricate ball joint with recommended multi-purpose grease regularly

To lubricate, remove plug and install grease nipple in its place

Pump grease slowly until old grease is completely forced out After greasing, reinstall plug

Note. When a high-pressure grease gun is used, operate the grease gun carefully so that grease is injected slowly and new grease does not come out from the clamp portion

Tightening torque

Ball joint bolt Socket bolt

1 9 to 2 5 kg-m (14 to 18 ft-lb)

Tension rod fastening bolt 4 9 to 6 3 kg-m

(35 to 46 ft-lb)

Ball joint castle nut

5 5 to 7 6 kg-m (40 to 55 ft-lb)

Transverse link to suspension crossmember

9 0 to 10 0 kg-m (65 to 72 ft-lb)

SUSPENSION CROSSMEMBER

6 Using floor jack beneath center of suspension crossmember, raise car until wheel falls to full down position Remove bolt, indicated by arrow, and separate suspension crossmember from car body

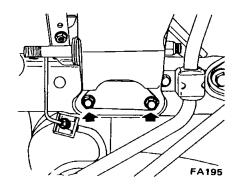


Fig FA-38 Removing suspension crossmember

REMOVAL

- 1 Jack up car and support it with safety stands remove wheels
- 2 Remove splash board
- 3 Remove transverse link For details, refer to "Transverse Link and Lower Ball Joint"
- 4 With an overhead hoist and lifting cable, support weight of engine to remove load from mountings
- 5 Remove engine mounting bolts and nuts indicated by arrows in the sketch below Separete suspension crossmember from engine

INSPECTION

1 Check suspension crossmember for evidence of deformation and cracking, if necessary, replace

INSTALLATION

Install transverse link and lower ball joint in reverse order of removal In rebushing link, use Front Transverse Link Replacer Set ST36700000

Rebushing should also be in the manner that outer end of bushing is flush with end of link

To install, first tighten transverse link mounting bolts temporarily Final tightening should be carried out with vehicle under normal load

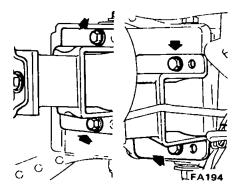


Fig FA-37 Front mounting insulator

INSTALLATION

Install strut and spring assembly in the reverse order of removal, noting the following

Tightening torque
Suspension member to frame
4 0 to 5 0 kg-m
(29 to 36 ft-lb)

SERVICE DATA AND SPECIFICATIONS

Suspension type
Shock absorber type
Wheel alignment (Unladen)

Independent strut

Double-acting hydraulic

		All models
Caster	degree	55' to 2°25'
Camber	degree	50' to 2°20'
Toe-ın	mm (ın)	4 to 6 *2 (0 16 to 0 24)
i oe-in	degree *1	22' to 33'
Kıngpın ınclınatıon	degree	6°40′ to 8°10′

- *1 On both sides
- *2 Radial tire 3 to 5 mm (0 12 to 0 20 in)

Front wheel turning angle

Inner wheel	37° to 38°
Outer wheel	30°42′ to 32°42′

Coil spring

	Sedan		Hardtop		Station Wagon	
,	Right-hand spring	Left-hand spring	Right-hand spring	Left-hand spring	Right-hand spring	Left-hand spring
Wire dimater mm (in)	12 (0	47)	13 (0	51)	12 (0 47)	12 (0 47)
Coil diameter mm (in)	130 (5 12)	130 ((5 12)	130 (5 12)	130 (5 12)
Free length mm (in)	386 5	(15 22)	330 ([12 99)	386 5 (15 22)	371 5 (14 63
Effective turn	6	5	6:	25	6 5	6 5
Installed height/load mm/kg (in/lb)	200/270	(7 87/595)	200/270 ((7 87/595)	200/270 (7 87/595)	185/270 (7 28/595)
Spring constant kg/mm (lb/in)	1 45	(81 2)	2 08	(116 5)	1 45 (81 2)	1 45 (81 2)

Strut assembly

(Tighten to this torque, then adjust to specified-preload)

			·,	
		Sedan and Station Wagon	Hardtop	1
Piston rod diameter	mm (m)	22 (0 87)	22 (0 87)	
Damping force				
Expansion (0 3 m/s	ec) kg (lb)	32 to 48 (71 to 106)	64 to 96 (141 to 212)	
Compression (0 3 m	ı/sec) kg (lb)	20 to 30 (44 to 66)	32 to 48 (71 to 106)	
Stroke	mm (ın)	178 (7 01)	178 (7 01)	
Wheel bearing Rotation starting torque In case of new parts	kg-cm (ın-lb)	·	8 5 (7 4) or less	
At wheel hub bolt	kg (lb)		. 1 5 (3 3) or less	
In case of readjustment At wheel hub bolt	kg-cm (ın-lb) . kg (lb)		4 5 (3 9) or less	
Spindle nut returning angle	degree	•	0 8 (1 8) or less 60	
Tightening torque	. (6.11)			
Suspension member to body	kg-m (ft-lb)	•• • • • • • • • • • • • • • • • • • • •	. 40 to 50 (29 to	•
Stabilizer bar to connecting rod nut	kg-m (ft-lb)	• • • • •	1 2 to 1 7 (9 to	,
Drum brake back plate fixing bolt	kg-m (ft-lb)	• • • •	. 2.8 to 4 0 (20 to	-
Tension rod nut	kg-m (ft-lb)		4 5 to 5.5 (33 to	•
Tension rod to transverse link	kg-m (ft-lb)	• • • • • • • • • • • • • • • • • • • •	4 9 to 6.3 (35 to	•
Tension rod bracket bolt	kg-m (ft-lb)	•	. 5 1 to 6 9 (37 to	•
Strut assembly upper support nut	kg-m (ft-lb)	• • • • • •	. 25 to 35 (18 to	•
Transverse link to suspension crossmen		• • • • • •	9 0 to 10 0 (65 t	-
Knuckle arm to strut assembly	kg-m (ft-lb)	· · · · · · · · · · · · · · · · · · ·	7 0 to 10 0 (51 t	-
Ball joint to transverse link	kg-m (ft-lb)	• • • • • • • • • • • • • • • • • • • •	19 to 25 (14 to	18)
Ball joint to transverse link with tensio rod	n kg-m (ft-lb)		49 to 63 (35 to	46)
Ball joint to knuckle arm	kg-m (ft-lb)		5.5 to 7 6 (40 to	•
Engine mounting bracket bolt	kg-m (ft-lb)	• •	09 to 1.2 (7 to 9	•
Gland packing	kg-m (ft-lb)		70 to 13 0 (51 t	•
Wheel bearing nut	kg-m (ft-lb)		2.5 to 3 0 (18 to	
(Tenhan to the towns the advert to		• • • •	2.5 10 5 5 (10 10	22,

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Vibration, shock and shimmying of steering	Improper tire pressure	Adjust
wheel	Imbalance and deformation of roadwheel	Correct the imbalance or replace
Vibration Loose connection of the serration parts and wear of each part of linkage cause	Un evenly worn tire or insufficient lightening	Replace or tighten
vibration of front wheels, which in turn is transmitted to the steering wheel This is	Improperly adjusted or worn front wheel bearing	Adjust or tighten
very noticeable when travelling over rough	Faulty wheel alignment	Adjust
roads	Worn fitting transverse link bushings	Replace
Shock When the front wheels are travelling	Insufficiently tightened steering gear housing	Retighten
over bumpy roads, the play of the steering linkage is transmitted to the steering wheel	Wear of steering linkage	Replace defective parts
This is especially noticeable when travelling on rough roads	Worn suspension ball-joint	Replace
on rough roads	Excessive backlash due to improper adjustment of the retainer parts	Adjust correctly
Shimmying Abnormal vibration of the front	Damaged idler arm	Replace
suspension group and the whole steering linkage, which occur when a specific speed is attained	Worn column bearing, weakened column bearing spring, or loose clamp	Replace or retighten
actained	Malfunction of shock absorber (inside the strut) or loose installation bolts	Replace or retighten
	Imbalance of vehicle level	Correct the imbalance
Vehicle pulls to right or left When driving with hands off the steering	Improper tire pressure or insufficient tightening of wheel nuts	Adjust or tighten
wheel over a flat road, the car gently swerves to right or left	Difference in height of right and left tire treads	Replace tires
, _1	Incorrect adjustment or abrasion of front wheel bearing	Adjust or replace
Note A faulty rear suspension may also be	Collapsed or twisted front spring	Replace
the cause of this problem, therefore, see	Incorrect wheel alignment	Adjust
also the chapter dealing with the rear suspension	Incorrect brake adjustment (binding)	Adjust
· ·	Worn rubber bushings for transverse link and tension rod	Replace
	Deformed steering linkage and suspension link	Replace
•	Imbalance of car level	Correct the imbalance

Condition	Probable cause	Corrective action
Instability of car	Improper tire pressure	Adjust
	Worn rubber bushings for transverse link and tension rod	Replace
	Incorrect wheel alignment	Adjust
-	Worn or deformed steering linkage and suspension link	Replace
-	Incorrect adjustment of steering gear	Adjust
	Deformed or imbalanced wheel	Correct or replace
Stiff steering wheel	Improper tire pressure	Adjust
(check-up procedure)	Insufficient lubricants or mixing impurities in steering linkage or excessively worn steering linkage	Replenish grease or replace the part
Jack up front wheels, detach the steering gear and operate the steering wheel, and,	Stiff or damaged suspension ball-joint, or lack of grease	Replace
	Worn or incorrectly adjusted wheel bearing	Replace or adjust
If it is light, check steering linkage, and	Worn damaged steering gear and bearing	Replace
suspension groups	Incorrectly adjusted steering gear	Adjust
If it is heavy, check steering gear and steering column groups	Deformed steering linkage	Replace
seering committee by	Incorrect wheel alignment	Adjust
	Damaged strut upper end bearing	Replace
	Damaged or stiff piston or shock absorber rod (in the strut)	Replace
	Interference of steering column with turn signal switch	Adjust
Excessive steering wheel play	Incorrectly adjusted steering gear housing	Adjust
	Worn steering linkage	Replace
	Improperly fitted gear box	Retighten
	Incorrectly adjusted wheel bearing	Adjust
	Worn transverse link and tension rod fitting bushings	Replace
Noises	Improper tire pressure	Adjust
	Insufficient lubricating oil and grease for suspension ball joint and steering linkage, or their breakage	Replenish lubricating oil and grease, or replace
•	Loose steering gear bolts, linkage and suspension groups	Retighten
	Damaged shock absorber (inside the strut)	Replace
	Darnaged wheel bearing	Replace
	Worn steering linkage and steering gear	Replace
	Worn transverse link and tension rod fitting bushings	Replace

Front Axle & Front Suspension

Condition	Probable cause	Corrective action
Noises	Broken or collapsed coil spring	Replace
	Loose strut mounting insulator tightening nuts	Retighten
	Loose stabilizer bolt	Retighten
Grating tire noise	Improper tire pressure	Adjust
r	Incorrect wheel alignment	Adjust
	Deformed knuckle spindle and suspension linkage	Replace
Jumping of disc wheel	Improper tire pressure	Adjust
	Imbalance wheels	Adjust
	Damaged shock absorber	Replace
	Damaged tire	Replace
	Deformed wheel rim	Replace
Excessively or partially worn tire	Improper tire pressure	Adjust
	Incorrect wheel alignment	Adjust
,	Worn wheel bearing	Replace
	Incorrect brake adjustment	Adjust
	Improper tire shifting (rotation)	Adjust
	Rough and improper driving manner	Drive more gently

SPECIAL SERVICE TOOLS

	· •		•		
No	Tool number & tool name	& Description			
1	KV48100300 Strut and steering gear housing attachment	V48100300 Strut and steering gear housing This tool is used as an attachment to strut or steering gear box when work is performed in a vise S mark indicates hole for strut G mark indicates hole for steering gear box			
2	ST3530000 Front wheel bearing drift	This tool is used to attach outer race for front wheel bearing 45 1 (1 776) dia 59 (2 32) dia	B210 (For Europe) 710, 610 S30 HGC110 C130	Page FA-6	
3	ST35500001 Gland packing wrench	This tool is used to remove or install gland packing at the top end of strut 100 (3 9 4) 12 7 (0 500) width across flats, 55 (2 17) SF220	B210 (For Europe) 710 610 C110 C130	Fig FA-20 Fig FA-25	
4	ST3565S001 Coil spring compressor ST35651001 Body ST35652001 Clamp	This tool is used to compress coil spring in disassembling or assembling strut assembly	B210 (For Europe) 710 610 C110 C130 S30 B120	Fig FA-19	

No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
5	ST36700000 Transverse link bushing replacer	This tool is used to replace transverse link bushing. In its application, align the tool with the bushing center by using a press 34 (1 34) 130 (5 12) 70 (2 76)	B210 (For Europe) 710 610 S30	Fig FA-35 Page FA-12
		SE222		
6	ST35530000 Gland packing guide	This tool is used as a guide in installing gland packing by covering shock absorber shaft to prevent oil seal from marring in packing	B210 710 610 C110 C130	Page FA-9
		SE093		
7	HT72520000 Ball joint remover	This tool is used to remove ball stud from knuckle arm	All models	Page FA-11
		SE399		

SERVICE MANUAL

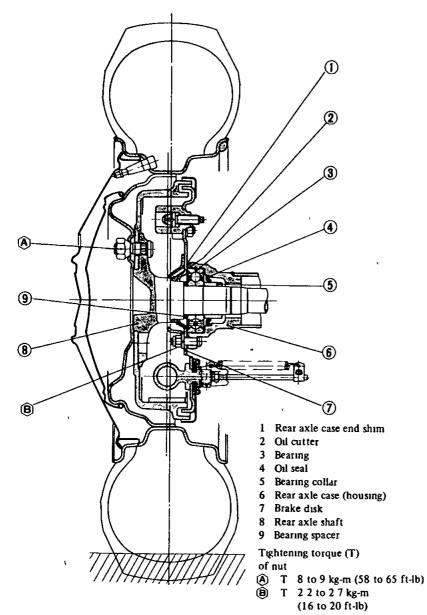
DATSUN MODEL 610 SERIES

SECTION RA

REAR AXLE & REAR SUSPENSION

RA

REAR AXLE AND REAR SUSPENSION -RIGID AXLE-	RA- 2
REAR AXLE AND REAR SUSPENSION -INDEPENDENT REAR SUSPENSION-	RA- 8
SERVICE DATA AND SPECIFICATIONS	RA-16
TROUBLE DIAGNOSES AND CORRECTIONS	RA-19
SPECIAL SERVICE TOOLS	RA-20



NISSAN MOTOR CO., LTD. TOKYO, JAPAN

REAR AXLE AND REAR SUSPENSION -RIGID AXLE-

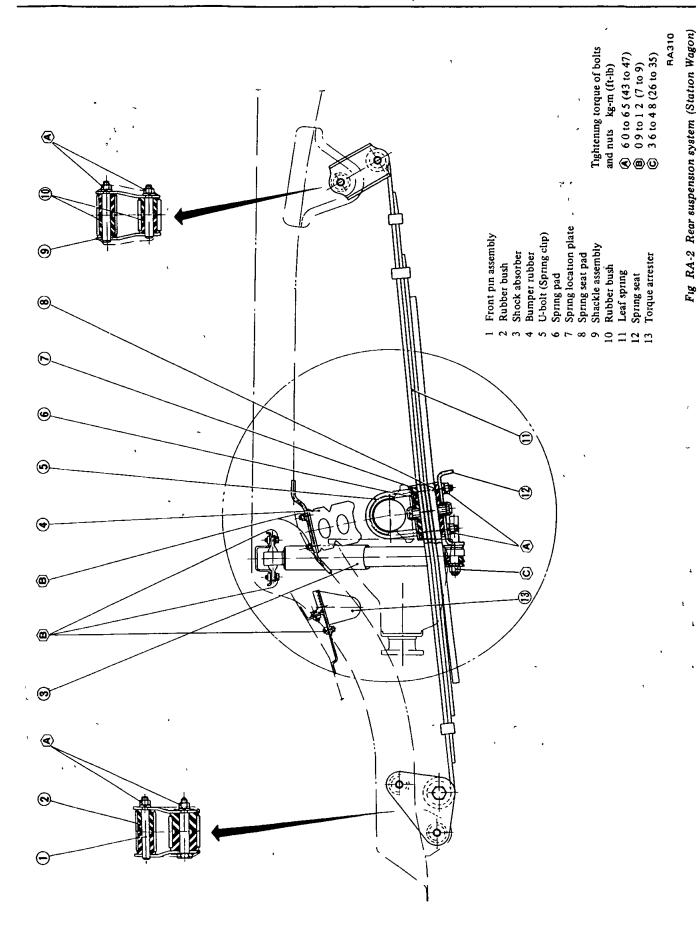
CONTENTS

DESCRIPTION	RA- 2	INSPECTION		RA- 6
REAR AXLE ASSEMBLY	RA- 4	INSTALLATION		RA- 6
REMOVAL	RA- 4	REAR SPRING		RA- 6
INSTALLATION	RA- 4	REMOVAL.		RA- 6
REAR AXLE SHAFT AND		INSPECTION		RA- 6
WHEEL BEARING	RA- 4	INSTALLATION	•	RA- 6
REMOVAL	RA- 4	SHOCK ABSORBER		RA- 7
INSPECTION	RA- 5	REMOVAL		RA- 7
INSTALLATION	RA- 5	INSPECTION		RA- 7
REAR AXLE CASE	RA- 6	INSTALLATION	•	RA- 7
REMOVAL	RA- 6			

DESCRIPTION

The rear suspension is integrated with the rear axle assembly

The rear axle assembly is of the semi-floating type in which the car weight is carried on the axle shafts through the bearings in the outer end of the rear axle case The axle case is a "Banjo" type.


The rear axle assembly is attached to the frame through semi-elliptic leaf springs and shock absorbers

Rubber bushings at each end of the leaf springs and shock absorbers, spring pad at spring seats, singly, or in combination, effectively absorb vibration and noise

The rear axle shafts are floating fitted to the differential side gears through splines. The outer ends are supported at the ends of rear axle case by a single set of sealed ball bearings.

The bearings are lubricated with recommended multi-purpose grease. The axle shaft oil seals are located inboard of the bearings. The bearings are secured against shaft shoulders by means of collars.

Fig RA-1 Cross-sectional view of rear axle

RA-3

REAR AXLE ASSEMBLY

REMOVAL

It is not necessary to remove the rear axle assembly for minor repairs

However, if the axle case is damaged, the rear axle assembly may be removed as follows

1 Raise rear of car high enough to permit working under it Place a jack under the center of axle case so it just starts to raise rear axle assembly

Place stands under body member on both sides Remove rear wheels

- 2 Mark propeller shaft flange and companion flange of differential carrier so that the original combination can be restored at assembly
- 3 Withdraw propeller shaft sleeve yoke from transmission by moving the shaft rearward, passing it under rear axle Watch for oil leakage from transmission end
- Note Remove propeller shaft carefully so as not to damage spline, sleeve yoke and rear oil seal
- 4 Disconnect hand brake cable by removing clevis pin (1) See Figure RA-3
- 5 Disconnect rear brake hose at body side ② Cover brake hose and pipe openings to prevent entrance of dirt See Figure RA-3
- 6 Disconnect shock absorbers at lower end 3 and push shock absorbers up out of the way See Figure RA-3
- 7 Lower jack under axle case Remove U-bolts (spring clips) (4) to separate axle case from spring See Figure RA-3

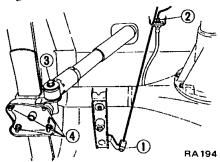


Fig RA-3 Under view

8 Place a jack under the center of axle case Pass axle case through space above spring, and take it out to the side See Figure RA-4

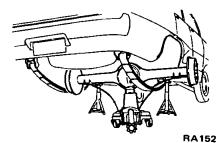


Fig RA-4 Removing rear axle assembly

INSTALLATION

Install the axle case assembly in the reverse order of removal, noting the following instructions

Tightening torque

U-bolt (Spring clip) 6 0 to 6 5 kg-m (43 to 47 ft-lb)

Shock absorber lower end nut 3 6 to 4 8 kg-m (26 to 35 ft-lb)

Propeller shaft-to-companion flange connecting bolt 2 4 to 3 3 kg-m (17 to 24 ft-lb)

REAR AXLE SHAFT AND WHEEL BEARING

REMOVAL

- 1 Raise rear of car and place stands under axle case on both sides Remove rear wheels
- 2 Pull-off spring (1) and disconnect cross rod from lever by removing clevis pin (2) See Figure RA-5
- 3 Disconnect brake tube at rear brake disc See Figure RA-5

Cover brake hose and pipe openings to prevent entrance of dirt

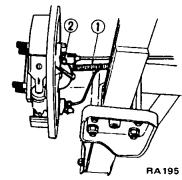


Fig RA-5 Removing brake parts

- 4 Remove brake drum
- 5 Remove nuts retaining brake disc to axle case See Figure RA-6

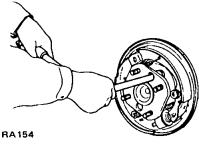


Fig RA-6 Removing nuts

6 Pull out axle shaft assembly together with brake disc using Rear Axle Stand KV40101000 and Sliding Hammer ST36230000 See Figure RA-7

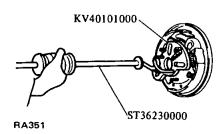


Fig RA-7 Removing rear axle shaft assembly

- 7 Remove oil seal in axle case if necessary and install new seal Insure against damaging the seal lip
- 8 Cut bearing collar with cold chisel See Figure RA-8

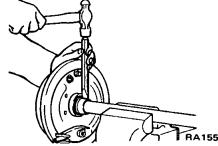
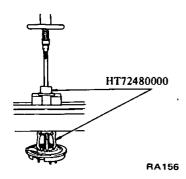



Fig RA-8 Cutting bearing collar

Note Take care not to damage axle shaft with cold chisel during operation

IFig RA-9 Removing wheel bearing

9 Remove wheel bearing and collar using Rear Axle Shaft Bearing Puller HT72480000 Then take out brake disc See Figure RA-9

INSPECTION

Inspect the following parts for fault and replace as necessary

- I Check axle shaft for bending, cracks, damage, wear and distortion
 Check the lip of oil seal for damage, deformation and wear
- 3 Check bearing for wear and damage

INSTALLATION

Install in the reverse order of removal

I Install bearing spacer, bearing and new bearing collar onto axle shaft, and press bearing collar by specified load more than 3 tons using Rear Axle Shaft Lock Collar Inserter ST38210000 See Figure RA-10

Notes

- a A new collar must be used Before installing, clean collar and axle shaft
- b Clean bearing, and pack with recommended multi-purpose grease
- c Insert wheel bearing with seal side toward wheel

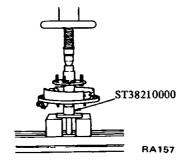
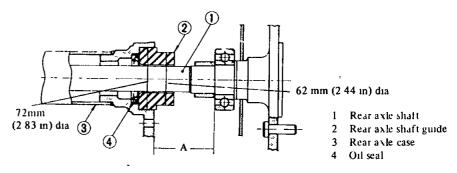


Fig RA-10 Installing wheel bearing

- 2 Install oil seal using Oil Seal Drift KV40100300
- 3 Pack cavity between seal lips with recommended multi-purpose grease when installing


- 4 Use care not to damage oil seal when installing
- 5 When inserting axle shaft into axle case, use Rear Axle Shaft Guide ST37840000 not to damage the sealing lips of oil seal

To insert axle shaft into axle case, proceed as follows

Install Rear Axle Shaft Guide ST37840000 on axle case

Remove the guide when the distance "A" between the axle flange and bearing is 70 to 90 mm (2 76 to 3 54 in) See Figure RA-11

Note Apply multi-purpose grease to the outer periphery of the rear axle shaft bearing collar

RA205

Fig RA-11 Installing rear axle shaft

6 Adjust the gap "C" between wheel bearing and brake disc to within 0.1 mm (0.004 in) by use of shim See Figure RA-12

Rear axle case end shim thickness 0 075 mm (0 0030 in)

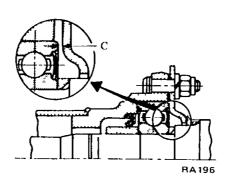


Fig RA-12 Gap "C"

7 Measure axial end play of axle shaft with dial indicator. It should be 0.10 to 0.45 mm (0.0039 to 0.0177 in) See Figure RA-13

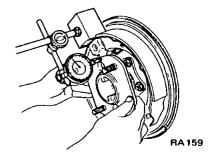


Fig RA-13 Measuring end play

Tightening torque

Brake disc fixing nut 2 2 to 2 7 kg-m (16 to 20 ft-lb)

Brake tube

15 to 18 kg-m (11 to 13 ft-lb)

Wheel nut

8 to 9 kg-m (58 to 65 ft-lb)

Fig RA-14 Removing shock absorber

3 Position jack under rear axle case Raise jack and float axle case from

Disconnect rear spring shackle by

removing nuts See Figure RA-15

spring

lower end and U-bolts

REAR AXLE CASE

REMOVAL

Rear axle case is removed and installed as follows

- 1 Raise rear of car and place stands under body member on both sides
- 2 Remove rear axle assembly (Refer to Removal of Rear Axle Assembly)
- 3 Remove rear axle shaft on both sides (Refer to Removal of Rear Axle Shaft and Wheel Bearing)
- 4 Remove differential gear carrier assembly

An alternate procedure can be followed as listed below

- 1 Raise rear of car and place stands under body member on both sides
- 2 Remove rear axle shaft on both sides
- 3 Remove differential gear carrier assembly
- 4 Remove rear axle case

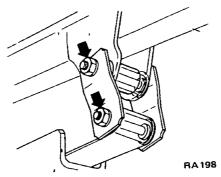


Fig RA-15 Removing spring shackle

INSPECTION

Check axle case for deformation or cracks and replace if necessary

INSTALLATION

Installation can be accomplished following the reverse order of removal

Tightening torque
Differential carrier to axle case fix nut
2 0 to 2 5 kg-m
(14 to 18 ft-lb)
Oil drain and filler plug
4 2 to 6 9 kg-m
(30 to 50 ft-lb)

REAR SPRING

REMOVAL

- I Raise rear of car and place stands under body member on both sides
- 2 Disconnect shock absorber at lower end (1) and remove U-bolts (Spring clips) (2) See Figure RA-14

5 Disconnect spring front pin by removing nuts Disconnecting spring from body See Figure RA-16

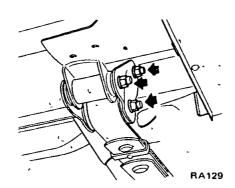


Fig RA-16 Removing spring pin

6 Remove rubber bush in spring if necessary and install new bush

INSPECTION

RA197

Clean all rust and dirt from spring leaves, using a wire brush if necessary

- 1 Examine spring leaves for fractures or cracks
- 2 Check front bracket and pin, shackle, U-bolts and spring seat for wear, cracks, bending and damaged threads If defective parts are found, replace with new ones
- 3 Inspect all rubber parts for wear, damage, separation and deformation Replace them if necessary

INSTALLATION

Use the following procedure when tightening U-bolts (spring clips)

- 1 Apply soapy water to each side of spring pad
- 2 Torque U-bolts to the specified setting, exercising care not to tilt U-bolts sideways

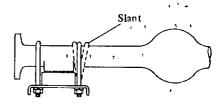


Fig RA-17 Installing U-bolt

- 3 Install four nuts in place by making them snug tight evenly (until the same number of threads is engaged), before tightening with a box wrench securely
- 4 When tightening nuts with a box wrench, alternately turn them one full rotation at a time until the projection of each bolt head is within 3 mm (0 12 in) above the nut Check again that the four nuts are torqued evenly

Notes

- a Close adherence to the above instructions will add much to increased service life of U-bolts
- b After installation, make sure that location plate and spring seat closely come into contact with each other

Closely observe the following instruc-

c Do not remove any particular U-, bolt alone Be sure to remove adjacent U-bolts too

To install the part other than Ubolts, reverse the order of removal, closely observing the following

Coat rubber bushes with soapy water, prior to assembly

Car weight must be on rear wheels when tightening front pin, shackle and shock absorber lower end bolt in order to clamp rubber bushes in an unloaded position

Tightening torque

Spring front pin nut

6 0 to 6 5 kg-m (43 to 47 ft-lb)

Spring shackle nut

6 0 to 6 5 kg-m (43 to 47 ft-lb)

U-bólt

6 0 to 6 5 kg·m (43 to 47 ft-lb)

Shock absorber lower end bolt 3 6 to 4 8 kg-m

(26 to 35 ft-lb)

SHOCK ABSORBER

REMOVAL

1 Raise rear of car and place stands under axle case on both sides

Use a hoist or open pit if available

- 2 Disconnect lower end of shock absorber by removing bolt ① or nut ① at spring seat See Figure RA-18
- 3 Disconnect upper end of shock absorber by removing nut ② or bolts
 ② at frame See Figure RA-18

- 2 Check for oil leakage and cracks Also, check shaft for bending
- 3 Inspect rubber bushings for damage, cracks and deformation Replace parts if necessary

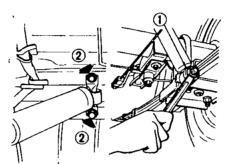


Fig RA-18 Removing shock absorber

INSPECTION

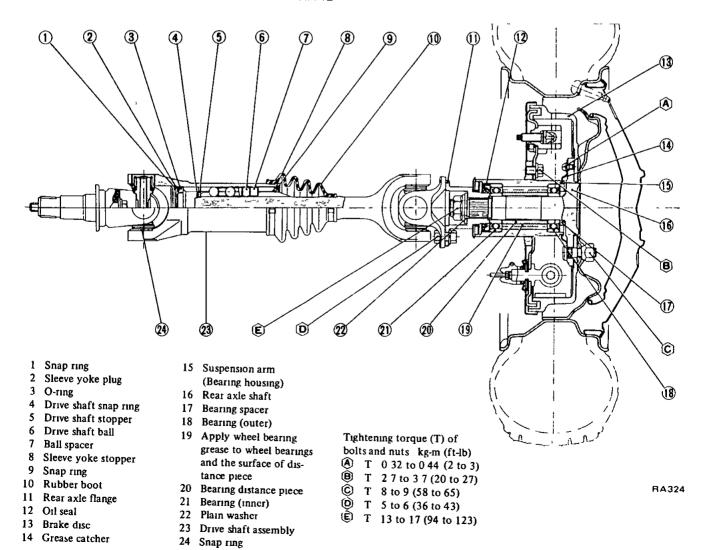
1 Test shock absorber and compare with specifications given in "Service Data and Specifications" Replace if necessary

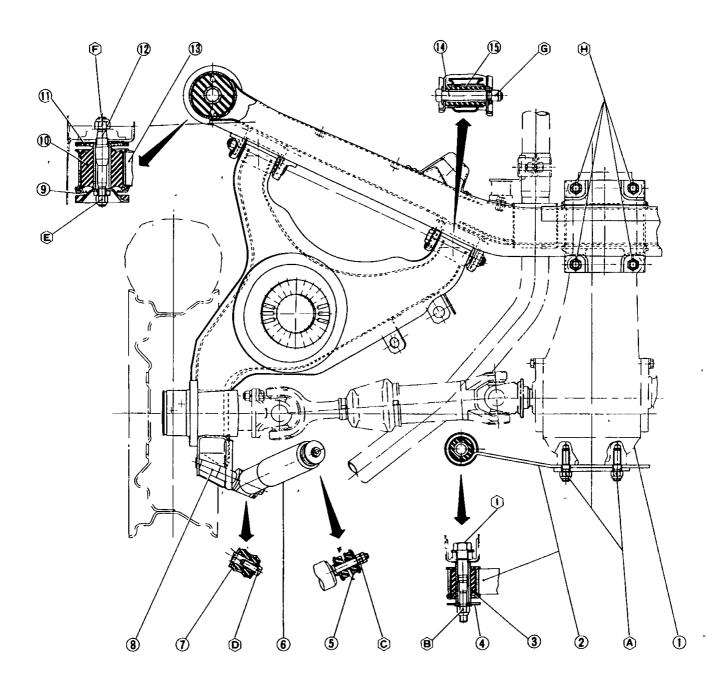
INSTALLATION

Install shock absorber in the reverse order of removal, noting the following

Note Car weight must be on rear wheels when tightening shock absorber upper and lower ends in order to clamp rubber bushings in an unloaded position

Shock absorber upper end bolt 0 9 to 1 2 kg-m (7 to 9 ft-lb)


Shock absorber lower end nut 3 6 to 4 8 kg-m (26 to 35 ft-lb)


Caution Do not open or heat gas filled type shock absorbers which are equipped on some models

REAR AXLE AND REAR SUSPENSION -INDEPENDENT REAR SUSPENSION-

CONTENTS

DESCRIPTION	RA-10	REAR SUSPENSION ARM	RA-12
REAR AXLE & SUSPENSION		REMOVAL	RA-12
ASSEMBLY	RA-10	INSPECTION	RA-13
REMOVAL	RA-10	INSTALLATION	RA-13
INSPECTION AND REPAIR	RA-11	REAR AXLE SHAFT, WHEEL BEARINGS	* * 10
INSTALLATION	RA-11	AND SEALS	RA-13
SUSPENSION MEMBER	RA-11	REMOVAL AND DISASSEMBLY	RA-13
REMOVAL	RA-11	INSPECTION	RA-13
INSTALLATION	RA-11	ASSEMBLY AND INSTALLATION	RA-13
SUSPENSION COIL SPRING	RA-12	WHEEL BEARING ADJUSTMENT	RA-14
REMOVAL	RA-12	DRIVE SHAFT	RA-14
INSPECTION AND REPAIR	RA-12	REMOVAL	RA-15
INSTALLATION	RA-12	DISASSEMBLY	RA-15
SHOCK ABSORBER	RA-12	INSPECTION	RA-15
REMOVAL	RA-12	ASSEMBLY	RA-15
INSPECTION	RA-12	INSTALLATION	RA-15
INSTALLATION	RA-12		

- 1 Differential gear carrier assembly
- 2 Differential mounting member
- 3 Differential mounting insulator
- 4 Differential mounting lower stopper
- 5 Rubber bushing
- 6 Shock absorber
- 7 Rubber bushing
- 8 Suspension arm assembly
- Suspension member mounting lower stopper

- 10 Suspension member mounting insulator
- 11 Suspension member mounting upper stopper
- 12 Rear suspension front mounting bolt
- 13 Rear suspension member assembly
- 14 Suspension arm pin
- 15 Suspension arm bush

Tightening torque of bolts and nuts kg-m (ft-lb)

- (A) 5 to 7 (36 to 51)
- (B) 7 to 10 (51 to 72)
- (c) Tighten under side nut of double nuts until they will no longer go
- (D) 1 6 to 2 2 (12 to 16)
- (E) 7 to 10 (51 to 72)
- (F) 11 to 15 (80 to 108)
- **©** 8 to 10 (58 to 72)
- (H) 5 to 7 (36 to 51)

① 20 to 30 (145 to 217)

RA313

Fig RA-20 Rear suspension system

DESCRIPTION

The rear suspension is of the semitralling arm type independent suspension

Primarily, rear wheel is supported with the coil spring and suspension arm, the differential gear carrier is aligned independently and separately from the suspension, and the gear carrier is installed directly on the body with the suspension member and the differential mounting member through four rubber insulators

Coil springs are mounted between the suspension arms and body. The upper end of spring is installed on the body through rubber cushion, and the suspension arm is installed on suspension member with rubber cushion.

The rear wheel bearing housing and shock absorber lower bracket are welded to the trailing end of the suspension arm.

Driving power is transmitted to the rear axle shaft with the freely extensible drive shaft through flange yoke on both ends of the differential gear carrier. The rear axle shaft is supported with two ball bearings in the rear wheel bearing housing

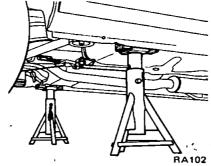
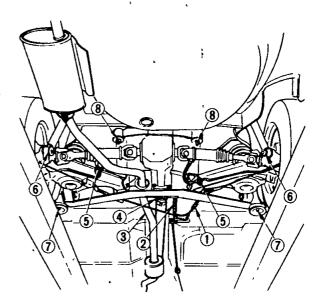



Fig RA-21 Support points

- 2 Remove rear wheels
- 3 Disconnect hand brake cables by removing adjusting nut at adjuster ①, and return spring ② See Figure RA-22

- 4 Remove rear exhaust tube and muffler 3
- 5 Mark rear flange of propeller shaft and pinion flange of differential gear carrier for proper reassembly, then disconnect rear flange from pinion flange by removing four bolts
- Remove propeller shaft assembly
- 6 Disconnect rear brake hoses (5) at suspension arms on both sides Cover brake hoses and pipe openings to prevent entrance of dirt
- 7 Position jack under suspension arm and raise jack slightly to relieve tension on shock absorber Disconnect shock absorbers at lower end (6) Carefully lower jack under suspension arm

RA265

Fig RA-22 Rear suspension removal points

REAR AXLE & SUSPENSION ASSEMBLY REMOVAL

It is not necessary to remove rear axle and suspension assembly for any normal repairs. However, if the rear suspension member is damaged, the rear axle and the suspension member assembly may be removed and installed using the following procedure.

1 Raise the rear of car high enough to permit working underneath, and support it on stands Place stands solidly under body member on both sides

- 8 Support under center of suspension member and differential gear carrier with a jack
- 9 Disconnect suspension member from body by removing two nuts ? at both ends of member
- 10 Disconnect differential mounting member by removing two nuts (8) at both ends of member
- 11 Carefully lower jack with suspension assembly, and it out from under car Support suspension so that it does not tilt and fall off jack

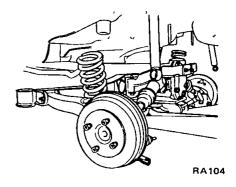


Fig RA-23 Removing rear axle and suspension assembly

INSPECTION AND REPAIR

When the rear suspension has been removed, examine all parts for wear or damage Particular attention should be given to bushing in suspension arms and bound bumper rubbers Also check the condition of rubber insulators in the suspension member and the differential mounting member

Any of these components, if worn, can result noisy and vibration to the interior of car

Replace rubber insulators of the suspension member using Rear Suspension Member Insulator Replacer ST38290000

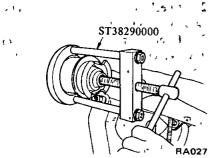


Fig RA-24 Removing insulator from suspension member

Replace rubber insulators of the differential mounting member using Differential Mounting Insulator Drift ST33300010 (for removal) and ST3330020 (for installation)

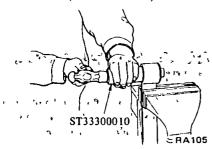


Fig RA-25 Removing insulator from differential mounting member

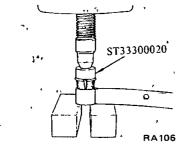


Fig RA-26 Installing insulator to 'differential mounting member

INSTALLATION

Install the rear axle and the suspension assembly in the reverse order of removal, noting the following points

1 Ensure suspension member and differential mounting member are correctly lined up

- 2 Rubber insulators should be correctly lined up as shown in Figure RA-27 and inserted from the underside of member
- 3 Do not use lesser quality or substitute design parts
- 4 Tightening torque values must be used as specified during reassembly to assure proper retention of parts

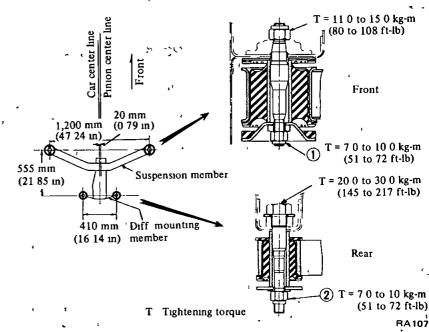


Fig RA-27 Insulator

Tightening torque
Suspension member
mounting nut (1)
7 to 10 kg-m
(51 to 72 ft-lb)
Differential mounting
member mounting nut (2)
7 to 10 kg-m
(51 to 72 ft-lb)
Shock absorber lower
end fixing bolt
1 6 to 2 2 kg-m
(12 to 16 ft-lb)

SUSPENSION MEMBER REMOVAL

- 1 Remove rear suspension assembly (See Rear Axle & Suspension, Assembly Removal)
- 2 Disconnect differential gear carrier by removing four bolts (1) at

center of suspension member See Figure RA-28

3 Disconnect suspension arms by removing suspension arm pins 2

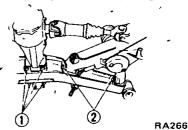


Fig RA-28 Removing suspension member

INSTALLATION

Install the rear suspension member in the reverse order of removal

Note Car weight must be on rear wheels when tightening suspension arm pins in order to clamp rubber bushings in a neutral on unloaded position

Tightening torque
Differential gear carrier
fitting bolt 5 to 7 kg-m
(36 to 51 ft-lb)
Suspension arm pin

/8 to 10 kg·m (58 to 72 ft·lb)

SUSPENSION COIL SPRING

REMOVAL

- 1 Raise the rear of car and support it on stands Place stands solidly under body member on both sides
- 2 Remove rear wheels
- 3 Disconnect hand brake cables by removing adjusting nut at adjuster (1), and return spring (2) See Figure RA-29
- 4 Remove drive shaft flange nuts
 3 on the wheel side, and bound rubber fixing nut 4
- 5 Disconnect rear brake hose (5) at suspension arm
- 6 Position jack under suspension arm and raise jack slightly to relieve tension on shock absorber Disconnect shock absorbers at lower end
- 7 Carefully lower jack to fully extend spring after disconnecting shock absorber and remove spring, spring seat and bound rubber

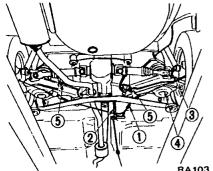


Fig RA-29 Suspension coil spring removal points

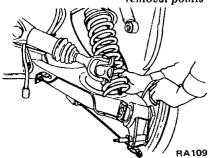


Fig RA-30 Removing coil spring

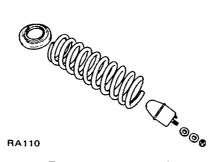


Fig RA-31 Spring and rubbers

INSPECTION AND REPAIR

- 1 Check coil spring for yield, deformation or cracks
- 2 Test spring and compare with the specifications given in Service Data and Specifications
- 3 Check all rubber parts for wear, damage and deformation Replace if necessary

INSTALLATION

Install coil spring in the reverse order of removal, noting the following points

- I Install spring seat on top of spring and bound rubber in spring, and ensure that coil spring is correctly in position (flat face of spring is top)
- 2 Tightening torque values must be used as follows

Shock absorber lower end fixing bolt

1 6 to 2 2 kg-m (12 to 16 ft-lb)

Bound rubber nut

1 6 to 2 2 kg-m

(12 to 16 ft-lb)

Drive shaft flange bolt

5 to 6 kg-m (36 to 43 ft-lb)

SHOCK ABSORBER

REMOVAL

- I Open the trunk and remove trunk finisher assembly
- 2 Remove double nuts which fasten the upper end of rear shock absober to body
- 3 Disconnect shock absorber by removing bolt at suspension arm

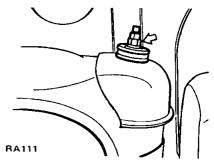


Fig RA-32 Installation of rear shock absorber upper end

INSPECTION

- 1 Test shock absorber and compare with the specification given in Service Data and Specifications Replace if necessary
- 2 Check for oil leakage and cracks Also check shaft for straightness
- 3 Inspect rubber bushings for damage, cracks and deformation Replace parts if necessary

INSTALLATION

Installation of shock absorber is the reverse order of removal

Note Car weight must be on rear wheels when tightening shock absorber lower end in order to clamp rubber bushings in a neutral or unloaded position

REAR SUSPENSION ARM

The rear axle shaft housing and shock absorber lower mounting bracket are welded suspension arm

REMOVAL

- 1 Raise the rear of car and support under body member on stands
- 2 Remove rear wheel and brake drum
- 3 Disconnect drive shaft from axle shaft
- 4 Disconnect hand brake cable from lever attached to wheel cylinder
- 5 Disconnect brake hose from brake tube by removing lock spring and draw out through connector

Note Cover brake hose and tube opening to prevent entrance of

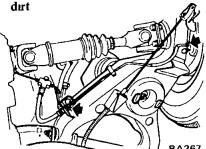


Fig RA-33 Removing brake hose and tube

- 6 Remove wheel bearing lock nut
- 7 Remove rear axle shaft, wheel bearings and oil seal
- 8 Remove rear brake, assembly from suspension arm

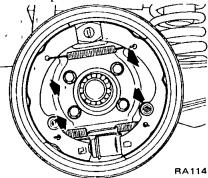


Fig RA-34 Removing rear brake assembly

- 8 After remove bound rubber fixing nut, position jack under suspension arm and raise jack slightly to relieve tension on shock absorber Disconnect shock absorber at lower end
- 9 Carefully lower jack to fully extend spring after disconnecting shock absorber and remove spring, spring seat and bound rubber
- 10 Disconnect suspension arm by removing suspension arm pins securing suspension arm to suspension member

Fig RA-35 Removing suspension arm

11 Draw out rubber bushings from suspension arm using Rear Suspension Arm Bush Remover ST38280000

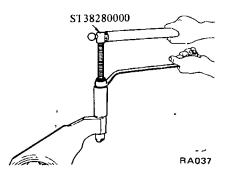


Fig RA-36 Removing rubber bushing

INSPECTION

- I Examine suspension aims to ensure they are not deformed or cracked
- 2 Check rubber bushings for wear, damage and separation Replace if necessary

INSTALLATION

position

Install in the reverse order of removal, noting the following points I Car weight must be on rear wheels when tightening suspension arm pins in order to claim rubber bushings in a neutral on unloaded

2 Change self locking nuts at each overhaul

REAR AXLE SHAFT, WHEEL BEARINGS

REMOVAL AND DISASSEMBLY

AND SEALS

- 1 Raise the rear of car and support under body member on stands
- 2 Remove rear wheel and brake drum
- 3 Disconnect drive shaft from axle shaft
- 4 Remove wheel bearing lock nut
- 5 Draw out axle shaft assembly using Rear Axle Stand KV40101000 and Sliding Hammer ST36230000 Remove rear axle flange

RA351
Fig RA-37 Removing rear axle
shaft

6 Remove oil seal and inner bearing using Rear Axle Shaft Bearing Dift ST37750000

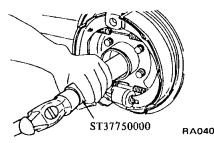


Fig RA-38 Removing oil seal and inner bearing

- 7 Remove grease catcher
- 8 Withdraw outer bearing from rear axle shaft using a standard bearing puller

Note Do not reuse bearing which has been pulled out

INSPECTION

Inspect the following parts Replace or repair if necessary

- 1 Check axle shaft for straightness, cracks, wear and distortion
- 2 Check bearing for excessive wear and damage Replace if necessary

ASSEMBLY AND INSTALLATION

Install in the reverse order of removal, noting the following points

- 1 Clean wheel bearings, oil seal and the inside of axle shaft housing
- Wheel bearings are scaled type When installing ensure that the sealed side of outer bearing faces the wheel and that the sealed side of inner bearing faces the differential

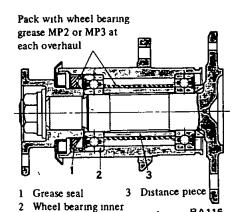
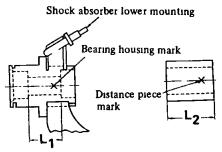



Fig RA-39 Sectional view of rear axle

3 When replacing suspension arm, measure the dimensions L1 and L2 See Figure RA40

The length of distance piece is 0.05 mm (0.0020 in) shorter than the length of housing Example When an axle housing is coded "B", select "B" coded distance piece

AXLE HOUSING

DISTANCE PIECE

Fig RA-40 Dimension of distance piece and housing

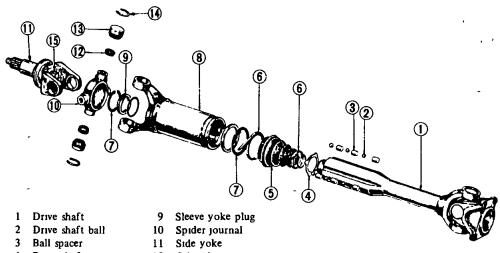
Rear axle shaft housing mm (in)		Rear wheel bearing distance piece mm (in)	
Mark	L ₁ length	Mark	L ₂ length
A	59 05 to 59 15 (2 3248 to 2 3287)	A	59 02 to 59 08 (2 3236 to 2.3260)
В	58 59 to 59 05 (2 3067 to 2 3248)	В	58 92 to 58 98 (2 3197 to 2 3220)
С	58 85 to 58 95 (2 3169 to 2 3209)	С	58 82 to 58 88 (2 3157 to 2 3181)

4 Replace wheel bearing grease periodically

Pack wheel bearings with MP2 or MP3 grease as shown in Figure RA-39 Apply grease to lip seal and wheel bearing

Notes

- a Change lock nut and oil seal at each overhaul
- b Reuse of an oil seal must not be allowed Install oil seal by Rear Axle Grease Seal Drift ST37710000


WHEEL BEARING ADJUSTMENT

1 After tightening lock nut to specified torque 25 to 33 kg-m (181 to 239 ft-lb), check the rear axle shaft end play It should be 0 to 0 15 mm (0 to 0 0059 in) and should have a turning torque less than 4 5 kg-cm (3 9 in-lb) or 0 8 kg (1 8 lb) at hub bolt

2 Lock nut using a punch

3 If the correct end play or turning torque cannot be obtained, disassemble again and replace distance piece

DRIVE SHAFT

- 4 Drive shaft stopper
- 5 Rubber boot
- 6 Boot band
- 7 Snap ring
- 8 Sleeve yoke
- 12 Oil seal
- 13 Needle bearing
- 14 Snap ring
- 15 Side yoke fitting bolt

RA269

Fig RA-41 Drive shaft

REMOVAL

- 1 Jack up rear of car and support on safety stands
- 2 Disconnect drive shafts ① on the wheel side See Figure RA-42

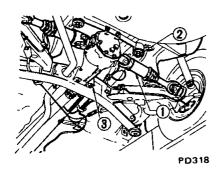


Fig RA-42 Under view

3 Remove side yoke fitting bolts, and extract side yokes together with drive shafts See Figure RA-43

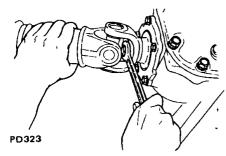
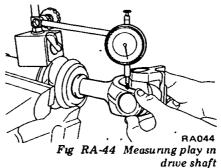


Fig RA-43 Removing side yoke fitting bolt

DISASSEMBLY

Disassembly should be done only to , lubricate ball spline


- 1 Remove universal joint spider located at the differential side Refer to the section covering propeller shaft
- 2 Remove bolt together with Oring, plain washer and spring washer securing drive shaft yoke to the differential
- 3 Remove snap ring which secures sleeve yoke plug and remove plug Compress drive shaft and remove snap ring securing stopper (Figure RA-41,
- 4 Disconnect boot and split drive shaft taking care not to lose balls and spacers

INSPECTION

1 Replace boot, O-ring of sleeve yoke plug and O-ring of side yoke, if damaged

- 2 Check drive shaft for straightness, cracks, damage, wear and distortion Replace drive shaft assembly if necessary
- 3 Check steel balls and sleeve yoke for damage, wear and distortion Replace drive shaft assembly if faulty parts are found
- 4 If any abnormal condition is found in universal joints, replace joint
- 5 Wash out old grease from sleeve yoke, drive shaft ball rolling groove and oil groove
- 6 Check the play in drive shaft as shown in Figure RA-44 If the play exceeds 0.1 mm (0.004 in) replace drive shaft assembly

Note The measurement should be taken with drive shaft fully compressed

ASSEMBLY

Assemble in the reverse order of disassembly, noting the following points

- 1 Align the yokes and ensure that steel balls and spacers are fitted in the correct sequence
- 2 Use related snap rings of the same thickness and be sure that play is below 0.02 mm (0.0008 in) Snap rings are available in four different thickness

Universal joint snap ring

Thickness mm (in)
1 49 (0 0587)
1 52 (0 0598)
1 55 (0 0610)
1 58 (0 0622)

3 Apply an adequate quantity of multi-purpose grease to the ball rolling groove and oil groove, approximately 10 g (0 35 oz) In addition, apply 35 g (1 23 oz) of grease to the area shown in Figure RA-45

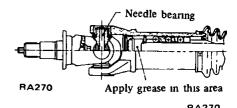


Fig RA-45 Sectional view of drive shaft

Note Component parts of drive shaft are not available except as an assembly Therefore, if any wear or damage exists in a certain part, drive shaft assembly will have to be replaced

INSTALLATION

I Install side yoke together with drive shafts to differential gear carrier assembly, and tighten side yoke fitting bolts to specified torque using torque wrench See Figure RA-46

Tightening torque
3 2 to 4 3 kg-m
(23 to 31 ft-lb)

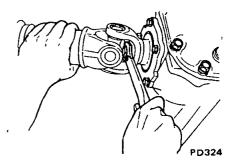


Fig RA-46 Tightening side yoke fitting bolt

Note Be careful not to damage side yoke and oil seal when installing

2 Join drive shafts with companion flanges of rear axle shaft and tighten connecting bolts to specified torque

Tightening torque 5 to 6 kg-m (36 to 43 ft-lb)

SERVICE DATA AND SPECIFICATIONS

-RIGID AXLE (Station Wagon)

Axle type Semi-floating, banjo
Suspension type Semi-elliptic leaf spring

Shock absorber type Telescopic double acting

Leaf spring

Dimension

 $\begin{array}{c}
6-1 \\
12-1 \\
(47 24 \times 2 36 \times 0 28 - 2)
\end{array}$

 $\begin{array}{c} 0 \ 24 - 1 \\ 0 \ 47 - 1 \end{array}$

Free camber mm (in) 126 (4 96)
Laden camber mm/kg (in/lb) 15/320 (0 59/706)

Shock absorber

Stroke \times Max length mm (in) 205 \times 510 (8 07 \times 20 08)

Damping force at 0 3 m/sec (1 0 ft/sec)

Expansion kg (lb) 110 (243)
Compression kg (lb) 41 (90)

Rear axle shaft

End play mm (m) 0 10 to 0 45 (0 0039 to 0 0177)

Thickness of rear axle case end shim mm (in) 0 075 (0 0030)

Tightening torque kg-m (ft-lb)

Shock absorber upper end bolt 0 9 to 1 2 (7 to 9)
Shock absorber lower end nut 3 6 to 4 8 (26 to 35)

Shock absorber lower end nut

3 6 to 4 8 (26 to 35)

Rear spring U-bolt (clip)

6 0 to 6 5 (43 to 47)

Spring front pin bolt and nut 6 0 to 6 5 (43 to 47)

Spring shackle nut 6 0 to 6 5 (43 to 47)

Leaf spring front bracket fixing nut 6 0 to 6 5 (43 to 47)

Brake disc (back plate) fixing nut 2 2 to 2 7 (16 to 20)

Differential gear carrier-to-axle case nut 2 0 to 2 5 (14 to 18)

Propeller shaft flange bolt 2 4 to 3 3 (17 to 24)

Bumper rubber fixing nut 0 9 to 1 2 (7 to 9)

Drain and filler plug 4 2 to 6 9 (30 to 50)
Wheel nut 8 to 9 (58 to 65)

-INDEPENDENT REAR SUSPENSION (Sedan and Hardtop)

Axle type

Suspension type

Shock absorber type

Independent

Semi-trailing arms, coil spring

Telescopic double acting

Coil spring and shock absrober

	Sedan		Hardtop	
• ,	R H spring	LH spring	R H spring	LH spring
Coil spring	222/522		2201/02	
Installed height/load mm/kg (in/lb)	229/602 (9 02/1,327)	215/602 (8 46/1,327)	229/602 (9 02/1,327)	222/602 (8 74/1,327
Spring constant kg/mm (lb/in)	6 56 (367 4)	6 56 (367 4)	7 82 (437 9)	7 82 (437 9)
Shock absorber Stroke x Max length mm (in)	211 × 585 (8 31 × 23 03)			
Damping force at 0 3 m/sec (1 0 ft/sec)				
Expansion , kg (lb)	61 (135)			
Compression kg (lb)		39 (8	6)	- ,

Items	Applied models	Sedan	Hardtop
Wheel alignment (Unladen) mm (ın)	4 to 14 (0 16 to 0 55)	2 to 12 (0 08 to 0 47)
Camber	Degree	1°5' to 2°35'	20' to 1°55'

Rear Axle & Rear Suspension

Drive shaft and journal		
Sliding resistance	kg (lb)	Less than 20 (44)
Radial play of ball spline	mm (in)	Less than 0 1 (0 004)
Axial play of spider journal	mm (ın)	. Less than 0 02 (0 0008)
Journal swinging torque	kg-cm (ın-lb)	Less than 10 (8 7)
Rear axle shaft		,
Turning torque	kg-cm (ın-lb)	Less than 4 5 (3 9)
	kg (lb)	[0 8 (1 8) at hub bolt]
End play	mm (ın)	. Less than 0 15 (0 0059)
Tightening torque		kg-m (ft-lb)
Rear wheel bearing lock nut		13 to 17 (94 to 123)
Brake disc (back plate) fixing bo	olt .	2 7 to 3 7 (20 to 27)
Shock absorber upper end nut	,	Securely tighten under side nuts of double nuts until they will no longer go
Shock absorber lower end nut	•	1 6 to 2 2 (12 to 16)
Drive shaft flange bolt		5 to 6 (36 to 43)
Drive shaft side yoke bolt		3 2 to 4 3 (23 to 31)
Bumper rubber fixing nut		1 6 to 2 2 (12 to 16)
Rear suspension member mount	ing nut	8 to 10 (58 to 72)
Differential mounting member i	nut .	7 to 10 (51 to 72)
Suspension arm-to-suspension m	nember fixing pin	7 to 10 (51 to 72)
Diff -to-suspension member fixi	ng bolt	5 to 7 (36 to 51)
Diff -to-diff mounting member	fixing nut	6 to 8 (43 to 58)
Rear suspension mounting bolt	(front)	11 to 15 (80 to 108)
Rear suspension mounting bolt	(rear)	20 to 30 (145 to 217)
Propeller shaft flange bolt		2 0 to 2 7 (14 to 20)
Wheel nut		. 8 to 9 (58 to 65)
Drive shaft to differential bolt		3 2 to 4.3 (23 to 31)

TROUBLE DIAGNOSES AND CORRECTIONS

When rear axle and suspension are suspected of being noisy, it is advisable to make thorough test to determine whether the noise originates in the tires, road surface, exhaust, propeller shaft, engine, transmission, universal joint, wheel bearings or suspension

Noise which originates in other places cannot be corrected by adjustment or replacement of parts in the

rear axle and rear suspension

In case of oil leak, first check to see if there is any damage or restriction in breather

Condition	.Probable cause	Corrective action		
Noise	Loose wheel nuts	Tighten wheel nuts		
•	Loose securing bolts '	Tighten to the specified torque		
	Lack of lubricating oil or grease	Lubricate as required		
	Damaged shock absorber	Replace		
-	Incorrect adjustment of rear axle shaft end play	Adjust		
	Damaged or worn wheel bearing	Replace		
	Worn spline portion of rear axle shaft	Replace if necessary		
	Broken leaf spring	Replace		
,	Loose journal, connections or so on	Tighten to the given torque		
,	Imbalance of wheel and tire	Balance wheel and tire		
	Damage to rubber parts such as leaf spring bush, suspension arm bush, shock absorber mounting bush	Replace parts as required		
	Deformed differential mounting member	Replace		
	Damaged universal joints	Adjust or replace		
	Worn or damaged rear suspension member mounting insulator	Replace suspension member mounting in sulators on both sides		
	Worn or seized sliding portion of drive shaft ball spline	Replace drive shaft assembly		
	Breakage of coal spring	Replace coil spring		
nstability in driving	Loose wheel nuts	Tighten to the given torque.		
	Damaged rear suspension arm rubber bushes	Replace the rubber bushes		
	Worn shock absorber	Replace worn shock absorber		
	Faulty wheel alignment			
,	Spring wear Worn out spline portion of drive shaft ball spline	Replace spring Replace drive shaft assembly.		
Oil leakage	Damaged or restricted air breather	Clean or replace air breather		
	Damaged oil seal on rear axle shaft	Replace the damaged oil seal		
	Oil leakage from the differential carrier	Replace as required		
	Damaged dust cover of drive shaft	Replace dust cover		
	Damaged grease seal of rear axle shaft	Replace dust cover		

SPECIAL SERVICE TOOLS

Vo	Tool number & tool name	Description Unit mm (in)			Reference page or Figure No
1	KV40101000 Rear axle stand	A	This stand is used together with the sliding hammer (ST36230000) in taking rear axle shaft out of place. The stand is also used to hold the removed rear axle shaft assembly with the vise in taking bearing out of the assembly.	All models	Fig RA-7 Fig RA-37
		SE402			
2	Diff mounting insulator drift	SE223	(1) Drift O D 39 mm (1 54 in) (ST33300010) To take insulator out of place, use drift (2) Drift O D 52 mm (2 05 in) (ST33300020) To push insulator into place, use this drift together with a press	610 K610 K710 GC110 KC130	Fig RA-25 Fig RA-26
3	ST36230000	•		_	
	Sliding hammer	830 (32 68)	This hammer is used together with rear axle stand in driving axle shaft out of place	All models	Fig RA-7 Fig RA-37
1	· HT72480000	SE059			
	Rear axle shaft bearing puller	310 (12 20)	This puller is designed so as to drive out rear axle shaft bearing	All rigid axle models	Fig RA-9
		SE265			o

No	Tool number & tool name	Description Unit mm (in)			Reference page or Figure No
5	ST37710000		This drift is used to set oil seal in	610 K610	
	Rear axle grease seal drift	60 (2 36) dia 77 (3 03) SE065	its correct position without marring seal	K710 GC110 KC130	Page RA-14
6	KV40100300				
	Rear axle oıl seal drıft	71 9 (2 831) 16 5 (0 650) SE388	This drift is used to install oil seal into rear axle tube end	W610 V610 B210 710 C110 VC110 C130	Page RA-5
7	ST37840000				
	Rear axle shaft guide	72 (2 83) dia 32 (1 26) dia	This tool is used to insert rear axle shaft to rear axle case	W610 V610 B210 710 C110 VC110 C130	Page RA-5 -Fig RA-11
8	ST37750000				
	Rear axle shaft bearing drift	165 (6 54)	This drift is used to install wheel bearing onto rear axle shaft or to install inner bearing in bearing housing or to take out of the housing	610 K610 K710 GC110 KC130	Fig RA-38
		SE066			

Rear Axle & Rear Suspension

No	Tool number & tool name	Description Unit mm (in)			Reference page or Figure No
9	Rear axle shaft bearing collar press stand	\$5 (2 17) \$5 (2 17) 120 (4 72) SE226	This tool is used together with a hydraulic press in driving bearing collar (new) into place	W610 V610 B210 710 C110 VC110 C130	Fig RA-10
10	ST38280000 Rear suspension arm bush remover	200 (7 87) 312 (12 28) SE067	This tool is used to remove rear suspension arm bushing	610 K610 K710 GC110 KC130	Fig RA-36
11	ST38290000 Rear suspension member insulator replacer	200 (7 87) 10 (0 39) d1a (3 39) d1a (14 57) (14 57) (14 57) SE068	This tool is used to install or remove rear suspension member insulator	610 K610 K710 GC110 KC130	Fig RA-24

DATSUN MODEL 610 SERIES

SECTION BR

BRAKE SYSTEM

ΒR

BRAKES	BR- 2
FRONT BRAKE	BR-10
REAR BRAKE	BR-14
MASTER-VAC	BR-16
SERVICE DATA AND SPECIFICATIONS	BR-21
TROUBLE DIAGNOSES AND CORRECTIONS	BR-23
SPECIAL SERVICE TOOLS	BR-24

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

BRAKES

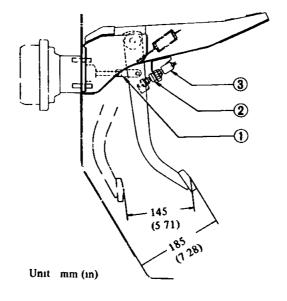
CONTENTS

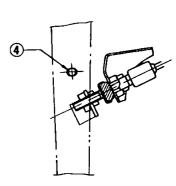
DESCRIPTION	BR- 2	Inspection	BR- 7
ADJUSTMENT	BR- 2	Assembly	BR- 7
Brake pedal	BR- 2	Installation	BR- 7
Front disc brake	BR- 3	BRAKE LINE	BR- 7
		Removal	BR- 8
Rear brake	BR- 3	Inspection	BR- 8
Hand brake	BR- 3	Installation	BR- 8
Brake warning light	BR- 4	NP-valve	BR- 8
Bleeding hydraulic system	BR- 4		
BRAKE PEDAL	BR- 4		
Removal	BR- 4	HAND BRAKE	BR- 9
Inspection	BR- 4	Removal	BR- 9
Installation	BR- 4	Front cable	BR- 9
MASTER CYLINDER	BR- 5	Inspection	BR-10
Removal	BR- 6	Installation	BR-10
Disassembly	BR- 6		

DESCRIPTION

The front wheels use the model Annette type disc brakes with a rotor of 245 mm (9 65 in) in diameter and the rear wheels use drum brakes of 228 6 mm (9 in) inner diameter

The NP-valve and brake fluid warning lamp are installed on the car equipped with the disc brakes. The brake fluid warning lamp is operated on the amount of the brake fluid in the reservoir of the master cylinder.


Tandem master cylinder is used on all models. The diameter of the master cylinder is 19 05 mm (¾ in)


The Master-Vac with a diaphragm of 1143 mm (4 ½ in) in diameter (18 L Deluxe model) and 1524 mm (6 in) in diameter (18 L SSS model) is installed on the car equipped with disc brakes

The hand brake is of a mechanical type, which serves to brake the rear wheels it is applied or released through the stick-type lever in the driver's compartment. As these brakes are applied, the brake warning lamp, located on the instrument panel, will come on to indicate that the hand brake is in "applied" condition

ADJUSTMENT

Brake pedal

- 1 Push rod adjusting screw
- 2 Pedal stopper
- 3 Brake lamp switch
- 4 Clevis pin

BR241

Fig BR-1 Adjusting brake pedal

1 Adjust brake lamp switch bolt Then, tighten lock nut securely

Tightening torque 1 6 to 2 2 kg-m (12 to 16 ft-lb)

2 Adjust pedal stopper until pedal pad is positioned 185 mm (7 28 m) above the floor Then, lock pedal stopper with lock nut

Tightening torque 0 8 to 1 1 kg-m (6 to 8 ft-lb)

3 Adjust the length of push rod until a pedal free play of 1 to 5 mm (0 04 to 0 20 in) is obtained at the pedal pad Then, tighten lock nut securely

Tightening torque 1 6 to 2 2 kg-m (12 to 16 ft-lb)

Note Use care not to allow the push rod getting into master cylinder

4 After adjustment is made, depress and release brake pedal several times to insure that it travels over its entire stroke [145 mm (5 71 in)] smoothly without showing squeak noise, twisting or interference

Front disc brake

Adjustment is not necessary under normal condition since pad-to-rotor clearance is automatically compensated by elasticity of piston seal

Rear brake

- 1 Make sure that each wheel cylinder lever of parking brake is properly returned to its original position
- 2 Depress brake pedal several times so that brake shoes are settled down in normal positions
- 3 Rotate adjusting cam in the same direction as car drives forward until shoes drag against brake drum

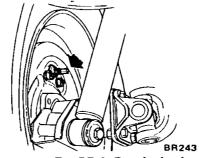


Fig BR-3 Rear brake shoe adjusting cam (Sedan and Hardtop)

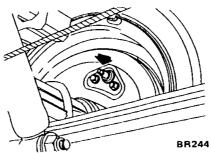


Fig BR-4 Rear brake shoe adjusting cam (Station Wagon)

4 Turn out cam a little at a time until brake drum is free from shoe grab

Hand brake

when adjusted

- 1 Adjust rear brake shoe to drum clearance before adjusting hand brake 2 Take up all slack in rear cable, tighten lock nut firmly
- Note Any slightest pull on wheel cylinder lever cannot be tolerated

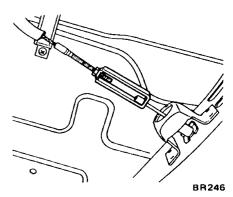
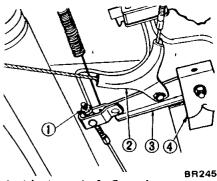



Fig BR-5 Rear cable adjuster

3 Adjust front cable so that, when hand brake control lever is pulled by a force of 20 kg (44 lb), a lever stroke of 90 to 100 mm (3 54 to 3 94 in) is obtained Then, tighten lock nut securely

- Adjusting nut 3 Center lever
- Equalizer 4 Center lever bracket

Fig BR-6 Center lever

4 Ascertain that each wheel cylinder lever is returned to its original position with hand brake control lever moved back

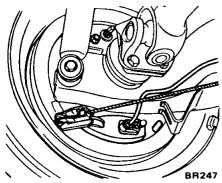


Fig BR-7 Adjusting hand brake

5 Replace front and rear cables if adjustment is no longer effective on their threaded ends

After adjustment

- 1. Make sure that each wheel cylinder lever is returned to its original position as hand brake lever is moved back Also check to be sure that inner cable is not slackened excessively
- 2 Make sure that ratchet is applied positively as hand brake control lever is pulled back. This lever should be released and automatically return to its original position when lever is rotated 60°. It should not show any evidence of bind or noise.

Brake warning light

Bend down hand brake warning lamp switch plate so that brake warning light comes on when ratchet at hand brake control lever is moved back one notch and goes out when returned to original position

Bleeding hydraulic system

Hydraulic brake system must be bled whenever any line has been disconnected or air has in some way entered this system.

When pedal feeling was "spongy" pedal action, it is an indication that air has entered in the system

Bleeding hydraulic system deserves much attention as it is an essential factor for regular brake service operation

1 Clean all dirt around master cylinder reservoir, remove cylinder

cover and top up reservoir with recommended brake fluid

2. Thoroughly clean mud or dust from bleeder valve so that outlet hole is free from any foreign material Install a bleeder hose to bleeder valve

Dir the other end of hose in a container filled with brake fluid.

- 3. Depress brake pedal two or three times and keep pedal fully depressed.
- 4 With brake pedal fully depressed, open bleeder valve to exhaust air

Notes

- Carefully monitor brake fluid level at master cylinder during bleeding operation.
- b Do not re-use brake fluid drained during bleeding operation.
- Bleed air in the following sequence.
 Rear wheel Front wheel
- d Exercise care not to splash brake fluid on painted portions
- 5 Close bleeder valve quickly as brake pedal is on down stroke
- 6 Allow brake pedal to return slowly with bleeder screw closed
- 7. Repeat bleeding operations until no air bubbles show in hose

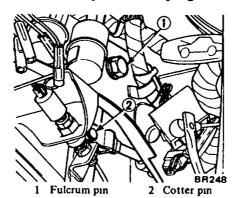
Notes

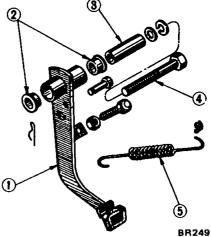
- a Brake fluid containing air is white and contains air bubbles
- b Brake fluid containing no air runs out of bleeder valve in a solid stream free of air bubbles
- 8 Repeat above steps on the remaining brake line to expel air

BRAKE PEDAL

Removal

1 Remove pedal return spring




Fig BR-8 Brake pedal mounting

- 2. Remove cotter pin from clevis pin, and separate pedal from Master-Vac push rod.
- 3 Remove fulcrum pin and pedal

Note Turn fulcrum pin clockwise to loosen it

Inspection

Check brake pedal for the following items, servicing as necessary

- 1 Brake pedal
- 4 Fulcrum pin
- 2 Pedal bushing
- 5 Return spring
- 3 Pedal shaft sleeve

Fig BR-9 Brake pedal

- 1 Check pedal bushing for wear, deformation or damage
- 2 Check pedal shaft sleeve for wear or roughness
- 3 Check for bent brake pedal
- 4 Check for fatigued return spring

Installation

Install brake pedal in the reverse sequence of removal, paying attention to the following instructions

- 1 Install fulcrum pin from the right side
- 2 Install clevis pin from the right side
- 3 Install return spring with the longer hook toward pedal arm
- 4 Apply a coating of recommended multipurpose grease the inner and outer faces of pedal bushing, clevis pin, and hooks of return spring Charge the clearances in bushings with grease.

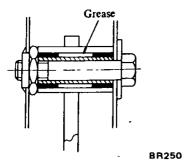


Fig BR-10 Greasing place

5 Adjust the brake pedal after installation (Refer to the instructions under "Adjustment.")

Tightening torque
Fulcrum pin
3 6 to 4 2 kg-m
(26 to 30 ft-lb)

Pedal stopper lock nut 0.8 to 1 1 kg m (6 to 8 ft-lb)

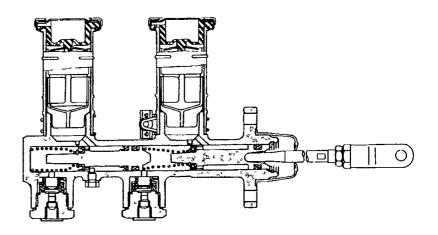
MASTER CYLINDER

The master cylinders are of a tandem type, which actuates on the front and rear brake lines independently

Braking force is constantly maintained when failure occurs in either the front brake system or the rear brake system. Failure in the front brake system will leave the rear brake still operative or failure in the rear

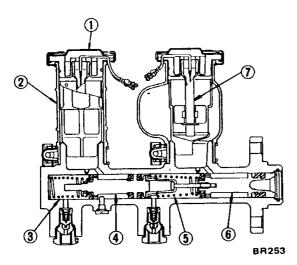
brake system will leave the front brake system still operative

The brake fluid level gauge is available as an standard equipment for model SSS


The brake warning light (BRAKE) located on the instrument panel comes on to indicate that the brake fluid level in the cylinder is lower than the minimum allowable level

Two types of master cylinder are used, one for disc brake and the other for drum brake. They differ from each other in the reservoir capacity and check valve

	Disc brake
Reservoir capacity	110 cc (6.71 cu m)
Brake warning light goes on when remaining fluid in reservoir reaches the amount of	60 cc (3 66 cu in)


The reservoir is equipped with a retention cap To remove this cup, proceed as follows

- 1 Turn retention ring fully in the REMOVE direction
- 2 Pull out retention cap To install it, proceed as follows
- 1. Turn retention ring (used in the retention cap) fully in the REMOVE direction
- 2 Align the projection in retention ring with the slit in the reservoir tank and push retention cap in the tank
- 3 Turn retention ring fully in the TIGHTEN direction

BR252

Fig BR-11 Cross-sectional view of drum brake master cylinder (Made by Tokico)

- 1 Reservoir cap
- 2 Reservoir tank
- 3 Secondary piston return spring
- 4 Secondary piston
- 5 Primary piston return spring
- 6 Primary piston
- 7 Level gauge

Fig BR-12 Cross-sectional view of disc brake master cylinder with level gauge (Made by Nabco)

Removal

On the car not equipped with the Master-Vac

- 1 Pull out clevis pin, and separate brake pedal from master cylinder push rod
- 2 Disconnect brake tube from master cylinder

3 Remove master cylinder securing nuts, and withdraw master cylinder from engine room side

Note Before disconnecting brake tube, be sure to use a container that receives draining brake fluid Use of a rag is also suggested to keep adjacent parts and place clean at all times

Disassembly

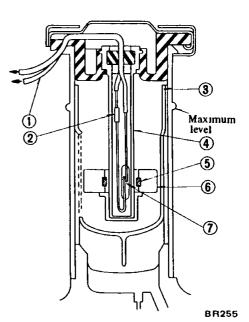
Stopper

Frimary piston assembly

BR254

- 1 Reservoir cap
- 2 Filter
- 3 Stopper ring
- 4 Stopper screw
- 7 Primary piston return spring
- 8 Secondary piston assembly
- 9 Secondary piston return spring
- 10 Plug
- 11 Check valve
- 12 Reservoir

Fig BR-13 Master cylinder


- 1 Remove reservoir cap and filter and drain out brake fluid.
- 2 Pry off stopper ring, using a screwdriver
- 3 Remove stopper screw and take out stopper, primary piston assembly, spring, and secondary piston assembly, in the order shown

Note Discard cup if it is removed from piston assembly and use a new one

4 Unscrew plug to gain accessibility of check valve for disassembling

Note Never detach reservoir tank If it is removed for any reason, discard it and install a new one Do not remove or disassemble brake fluid level gauge

Brake fluid level gauge

- 1 Lead wire
- 5 Magnet
- 2 Resistor
- 6 Float
- 3 Filter
- Reed switch
- 4 Case
- / Reed Switch

Fig BR-14 Brake fluid level gauge

Operation The float lowers as level of brake fluid becomes low

As the magnet is close to the reed switch, switch contacts are closed to light the brake warning light

Checking method Raise cap, and ascertain that brake warning light goes on when float comes into contact with stopper

Inspection

Thoroughly clean all parts in a suitable solvent, and check for worn or damaged parts Replace any part that is faulty

Note Do not clean rubber parts with mineral oil, since this will be the sure way of deteriorating parts. Use brake fluid or alcohol When alcohol is used for cleaning these parts, do not immerse them in it longer than 30 seconds. After parts are cleaned, dry with compressed air

- 1 Check cylinder and piston for evidence of abnormal wear or damage Replace if found defective.
- 2 Check piston-to-cylinder clearance If it is more than 0.15 mm (0.0059 in), replace either piston or cylinder
- 3 Check for weakened, fatigued or damaged springs, replacing as necessary

Return spi	ring	Primary side		Secondary side	
Maker		Tokico	Nabco	Tokico	Nabco
Free length	mm (ın)	55 (2 17)	,	54 5 (2 146)	50 5 (1 988)
Installed load	kg (lb)	1 8 to 2 2 (4 0 to 4 9)	Do not disassemble	3 6 to 4 4 (7 9 to 9 7)	2 5 to 3 l (5 5 to 6 8)
Length	mm (ın)	35 7 (1 406)		34 5 (1 358)	33 1 (1 303)

- 4 When master cylinder is disassembled, be sure to discard cups and valves Replace any other parts which show evidence of deformatin, wear or otherwise damage
- 5 Replace damaged oil reservoirs and caps

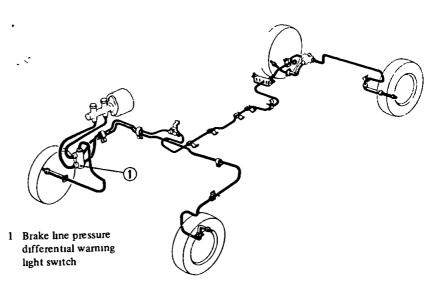
Assembly

Assemble master cylinder in the reverse sequence of disassembly, paying particular attention to the following notes

Notes

- a Replace gaskets and packings with new ones.
- b Apply brake fluid or rubber grease to sliding contact surfaces of parts to facilitate assembly of master cylinder

Installation


Install master cylinder in the reverse sequence of removal

Bleed air out of master cylinder after it is installed in its original position

Tightening torque
Brake master cylinder
attaching nut
0 8 to 1 1 kg-m
(6 to 8 ft-lb)

Brake tube connector 1 5 to 1 8 kg-m (11 to 13 ft-lb)

BRAKE LINE

BR855 Fig BR-15 Brake line

Removal

- 1 Removing flare nuts on both ends and clips effects the removal of brake tube and brake hose
- 2 Rear brake hose can be removed by disconnecting the tube and then turning round the hose

Inspection

Check brake lines (tubes and hoses) for any evidence of crack, deterioration or other damage Replace parts which are faulty

If leakage occurs at and around joints, retighten or, if necessary, replace faulty parts

Installation

Pay particular attentions to the following instructions when installing brake lines

- 1. Leave a sufficient space between brake lines and adjacent parts so that brake lines are completely imparted from vibration during driving
- 2 Exercise care not to warp nor twist brake hoses

Extreme care should be taken of brake hoses so that they are kept away from tires and suspension system components

3 Using Flare Nut Torque Wrench GG94310000, tighten each connector to the specified torque

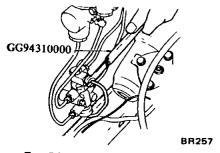


Fig BR-16 Tightening brake tube

Tightening torque
Brake tube and hose connector
1 5 to 1.8 kg-m
(11 to 13 ft-lb)
Connector mounting bolt

6 mm diameter bolt 0 5 to 0 7 kg-m (4 to 5 ft-lb) 8 mm diameter bolt 0 8 to 1 1 kg-m (6 to 8 ft-lb)

4 Upon completion of installation of brake lines, bleed air out of brake lines

Front brake hose

Installing the front brake hose requires the following special cares

- 1 Keep the car in straight ahead position and raise the right and left front wheels from ground by placing a jack under crossmember
- 2 Connect brake hose to brake tube at the bracket on front strut and secure with lock spring

Tightening torque 1 7 to 2 0 kg-m (12 to 14 ft-lb)

3. Install hose to bracket on the body side, and secure with lock spring Do not twist hose when installing

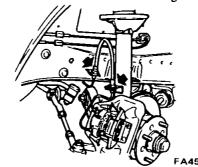


Fig BR-17 Installing front brake hose

Note When replacing hose, always renew copper gasket Do not allow dirt and water to get into brake hose and tube

4 The standard assembly clearance is as follows

Body-to-hose clearance (Full bound at maximum turn of steering handle) Approximately 25 mm (0 98 in)

NP-valve

The NP-valve completely separates the front and rear brake lines, allowing them to function independently, and preventing the rear brakes from locking before the front brakes Consequently, even in emergency braking, the brakes operate safely and effectively Problem, such as brake line leakage, in either the front or rear brake system will not affect the normal operation of the unaffected system

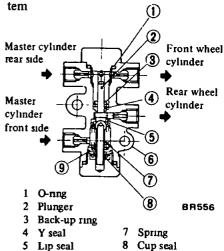
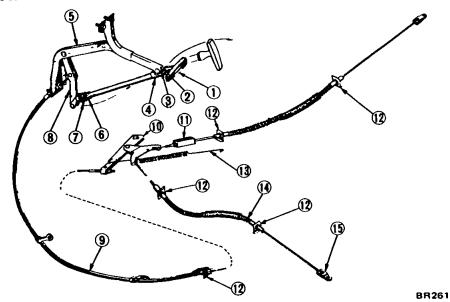


Fig BR-18 Cross-sectional view of NP-valve

9 Spring retainer

Operating test


6 Valve body

Conduct following periodic test every scheduled maintenance period

At the test, place the car on dry concrete road with no more than a driver laden and apply a sudden brake at 50 km/h (30 miles/h)

- l NP-valve functions normally when rear wheels lock simultaneously with front wheels or when front wheels lock ahead of rear wheels
- 2 If the rear, instead of front, wheels has locked in advance, it may be attributable to malfunctioning of NP-valve Replace NP-valve with a new one as an assembly.

HAND BRAKE

- 1 Control stem
- 2 Control ratchet spring
- 3 Control ratchet
- 4 Control guide
- 5 Control bracket
- 6 Control yoke
- 7 Lever spring
- 8 Control lever
- 9 Front cable
- 10 Center lever
- 11 Rear cable adjuster
- 12 Cable lock plate
- 13 Return spring
- 14 Rear cable
- 15 Clevis

Fig. BR-20 Hand brake linkage

Removal

Control stem

- Disconnect terminal from hand brake warning switch
- Remove nuts securing control bracket in place on dash panel
- Pull out lock pin and cotter pin, and then remove control stem assembly.

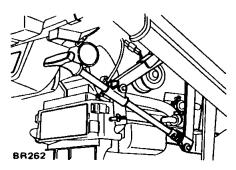


Fig BR-21 Control stem

Front cable

- Remove return spring, and loosen adjuster lock nut Separate front cable from control stem
- 2. Remove nuts securing cable to dash panel, and remove cable from the engine compartment side

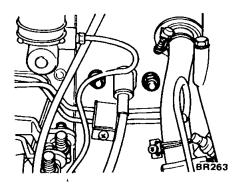
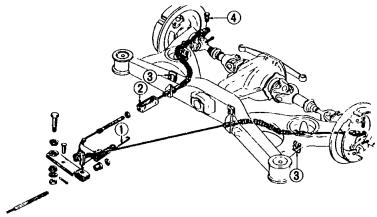



Fig BR-22 Front cable attaching nut

Rear cable (Sedan and Hardtop)

- 1 Return spring
- Cable adjuster
- Disconnect rear cable at adjuster Unfasten return spring from center lever
- 2 Remove cable lock plates from rear suspension
- Remove clevis from wire attaching to rear wheel cylinder

Rear cable (Station Wagon and Van)

Unfasten pull spring Remove clevis pin on the balance lever side and on the wheel side, and detach cross rod

- 3 Lock plate
- 4 Clevis pin

Fig BR-23 Rear cable

BR264

Remove nut securing cross rod balance lever, and detach balance lever from rear axle housing

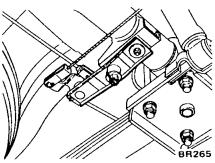


Fig BR-24 Balance lever

Inspection

- Check control stem and ratchet for evidence of wear or other damages Replace parts which are faulty
- Replace worn or fatigued springs
- Check wires for evidence of discontinuity or other deterioration Replace if necessary
- Replace faulty warning light and/ or switch
- Check parts at each connection and, if found deformed or damaged. replace

Installation

Install hand brake assembly in the reverse sequence of removal by closely observing the following instructions

- When installing, apply a coating of grease to sliding contact surfaces Make sure that each sliding part functions smoothly without bind
- Upon completion of installation of hand brake assembly, adjust the entire system as per instructions described under topic "ADJUSTMENT"
- Make sure that each cable is not interfered with by any adjacent parts Do not apply an undue stress to cables

FRONT BRAKE

CONTENTS

DISC BRAKE Removal and installation BR-10 BR-12 Description **BR-10** Disassembly and assembly **BR-12** Pad replacement **BR-11** Inspection BR-13

DISC BRAKE

Description

The Annette type disc brake has two pistons on one side of the brake rotor

With the aid of the yoke, the pads clutch the rotor equally from both sides Brake adjustment is not necessary because pad clearance is automatically adjusted due to the elasticity of the piston seal

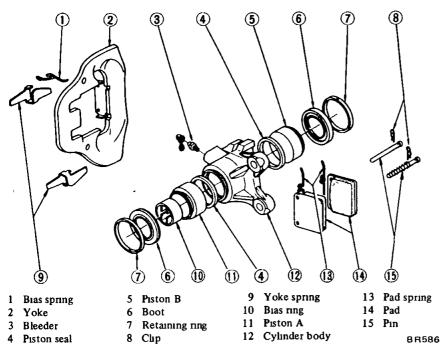


Fig BR-30 Exploded view of Annette type disc brake

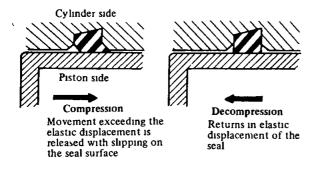


Fig BR-31 Piston seal automatic adjusting operation

Pad replacement

Removal

To remove the brake pads, proceed

- 1 Jack up front of car and support it with safety stands Remove front wheels
- 2 Remove clips, and pull out pins, extracting coil spring and pad springs by hand

Note Check to ensure that pad springs rebound easily

3 Detach pads from caliper assembly with phers

Note. After removing pads, do not

depress brake pedal since piston will jump out

BR055

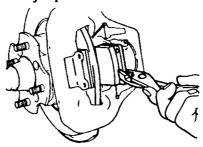


Fig BR-32 Removing pad

- 4 To install brake pads, proceed as follows
- (1) Clean and apply P B C grease on yoke guide groove of cylinder body, sliding contact portions of yoke, and end surface of piston

Notes

- a Do not use common brake grease
- b Be careful not to get brake grease on rotor and pads
- (2) Loosen air bleeder and push piston B (outer piston) in cylinder until the end surface of piston B coincides with the end surface of retaining ring on boot Then inner pad can be installed

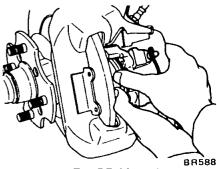


Fig BR-33 Pushing piston

Note Piston can be easily pushed in by hand, but if pushed too far, groove of piston will go inside of piston seal as shown in Figure BR-34 At this point, if piston is pressured or moved, piston seal will be damaged If piston has been pushed in too far, remove brake assembly and disassemble it Then, push piston out in the direction shown by arrow

Assemble it again, referring to following section

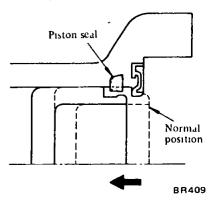


Fig BR-34 Position for pushing piston

(3) Push piston A (inner piston) in cylinder by pulling yoke as shown in Figure BR-35 The outer pad can then be installed

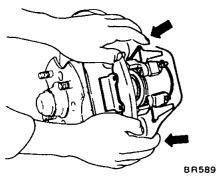


Fig BR-35 Pulling in piston A

5 After installing pads, depress brake pedal several times, and pads will settle into proper position

Note When worn out pads are replaced with new ones, brake fluid may overflow reservoir While replacing pads keep loosening bleeder to release brake fluid

6 Install wheels and lower car to ground

Inspection

Because clearance between pad and rotor is adjusted automatically, pad wear should be checked periodically

1 Clean pads

Note Do not use mineral oil to clean pads

- 2 If pads are incompletely seated, soiled, greasy, or deteriorated from overheating, replace them
- 3 If pads are worn to less than 2 0 mm (0 79 in) in thickness (not including metal backing plate), replace all four pads at the same time

Note Always replace pads in full set of four, using genuine parts

4 Check rotor, referring to following section "Inspection"

Removal and installation

Removal

l Remove pads Refer to "Pad Replacement"

2 Remove brake tube from caliper assembly

Notes

- a When removing brake tube, use suitable tube wrench Never use open end or adjustable wrench
- b Plug up hole in the caliper so that brake fluid does not flow out from cylinder body
- 3 Loosen bolts securing cylinder body to knuckle spindle and remove caliper assembly from strut

Fy BR-36 Detaching brake caliper assembly

- 4 If necessary, remove disc rotor as follows
- (1) Remove hub cap and cotter pin
- (2) Loosen bearing lock nut and remove wheel hub with disc rotor
- (3) Secure wheel hub in a vise, loosen bolts and remove rotor from wheel hub

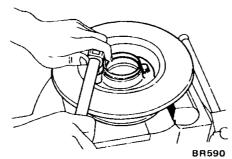


Fig BR-37 Removing rotor

Installation

I Install disc brake assembly and disc rotor in reverse procedure of removal

Note When installing wheel hub to knuckle spindle, refer to Section FA for "Wheel Bearing Adjustment" 2 Tightening torques are as follows

Disc rotor securing bolts 3 9 to 5 3 kg-m (28 to 38 ft-lb) Caliper securing bolts 7 3 to 9 9 kg-m (53 to 72 ft-lb)

Brake tube flare nuts 1 5 to 1 8 kg-m

(11 to 13 ft-lb)

Note When installing brake tube, use Pipe Torque Wrench GG94310000

3 After installing pad, bleed air from system

Disassembly and assembly

Disassembly

- 1 Drain brake fluid from top hole of cylinder body
- 2 Remove air bleeder valve
- 3 Push both pistons A and B into cylinder Refer to previous section "Pad Replacement"
- 4 Place yoke in a vise as sketched below, and tap the top of yoke lightly with a hammer The cylinder will then separate from yoke See Figure BR-38

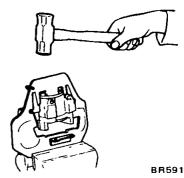
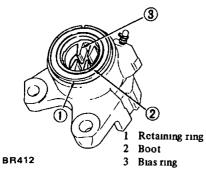


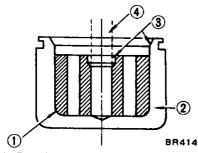
Fig BR-38 Tapping yoke

- 5 Remove bias ring from piston A
- 6 Remove retaining rings and boots at the end of both pistons A and B
- 7 Push out pistons in one direction
- Remove piston seals

Note Be careful not to damage piston and cylinder body

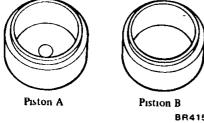
Remove yoke spring from yoke




Fig BR-39 Cylinder body and piston

Assembly

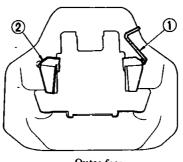
- 1 Apply rubber grease to cylinder bore and install piston seal
- 2 Insert bias ring into piston A so that the roundish portion of it faces the bottom of piston A bore See Figures BR-40 and BR-41


Notes

- a Be careful not to mistake piston B for piston A
- b Pistons A and B are distinguished from each other by a dent at the inner bottom of piston A

- 1 Roundish portion
- 3 Chamfer
- 2 Piston A
- 4 Yoke

Fig BR-40 Assembly of bias ring to piston A


BR415
Fig BR-41 Pistons A and B


Note Bus ring must be installed on the original position

3 Apply rubber grease lightly to the sliding portions of pistons and insert into cylinder

Notes

- a When inserting pistons, be careful not to insert too far Refer to "Pad Replacement"
- b. Install piston A so that the yoke groove of bias ring of piston A coincides with the yoke groove of cylinder
- 4 Install boot and retaining ring
- Install yoke springs on yoke

Inner face BR416
1 Bias spring

Yoke spring

Fig BR-42 Yoke with yoke spring and bias spring

- 6 Install bias spring to yoke
- 7 Apply PBC grease to the yoke sliding part of cylinder Then reposition the bias ring so that the groove of bias ring coincides with yoke
- 8 Leaving yoke springs inserted lightly into cylinder groove, assemble cylinder body and yoke by tapping yoke lightly See Figure BR-43

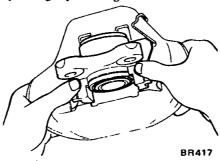


Fig BR-43 Assembling yoke and cylinder

9 Install air bleeder valve on caliper

Inspection

Caliper, pad and piston

Clean all parts and check for following

Note Clean rubber pads with alcohol or brake fluid, not with mineral oil

- 1 Cylinder body
- (1) Check inside surface of cylinder for score, rust, wear, damage and attached foreign substances If any surface fault is detected, replace cylinder body
- (2) Minor damage from rust of foreign substances may be eliminated by polishing the surface with a fine emery cloth If the damage is major, the cylinder assembly must be replaced
- 2 Check piston for score, rust, wear damage and attached foreign substances, replace if any fault is detected.

Note Do not use emery cloth on the piston surface because it is plated

3 Check the sliding portions of yoke for wear and deformation, replace if necessary

Note As a rule, replace piston seals, dust covers and bias ring each disassembly

Piston seal

If brake fluid leakage is found only on piston seal, or pad does not return properly, replace piston seal with a new one in the manner described in previous section "Disassembly and Assembly" Keep component parts clean while disassembling

Rotor

After disc brake assembly has been removed, inspect rotor as follows

1 Check rotor for score and damages If excessive, machine reconditioning will be required

2 Measure run-out of either rotor face

If it exceeds the limited value, machine reconditioning or replacement is required

Limit of reconditioning in thickness is 8.4 mm (0.331 in) Standard rotor thickness is 10 mm (0.39 in)

Run-out of rotor should be less than 0 12 mm (0 0047 in) at total indicator reading

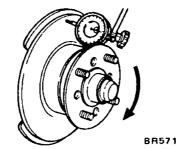
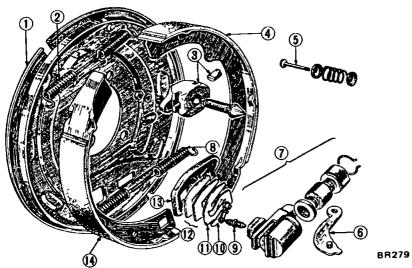


Fig BR-44 Measuring run out of rotor

- 3 Measure thickness of rotor, using a micrometer
- 4 If thickness of rotor is beyond wear limit 8 4 mm (0 331 in), replace rotor

REAR BRAKE

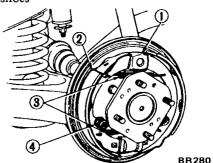

CONTENTS

DESCRPIPTION	BR-14	Brake assembly	BR-15
REMOVAL	BR-14	Wheel cylinder	BR-16
Disassembly of wheel cylinder	BR-15	ASSEMBLY AND INSTALLATION	BR-16
INSPECTION	BR-15	Wheel cylinder	BR-16
Brake drum	BR-15	Brake drum	BR-16

DESCRIPTION

The rear brake is of a leading-trailing type Brake shoe clearance can

be adjusted by turning the end of the adjuster wedge

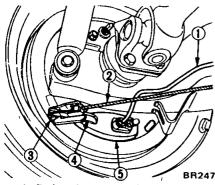


- 1 Brake disc
- 2 Return spring adjuster side
- 3 Brake shoe adjuster
- 4 Brake shoe assembly-fore
- 5 Anti-rattle pin
- 6 Lever
- 7 Rear wheel cylinder
- 8 Return spring cylinder side
- 9 Bleeder
- 10 Lock plate A
- 11 Lock plate B
- 12 Lock plate C and D
- 13 Dust cover
- 14 Brake shoe assembly-after

Fig BR-45 Rear brake

REMOVAL

- 1 Jack up the rear of car, and remove tire and brake drum If brake drum is hard to remove, use bolts (8 mm diameter, 1 25 mm pitch) to drive it out
- 2 Turn pin 90°, and remove antirattle spring
- 3 Remove return springs and brake shoes



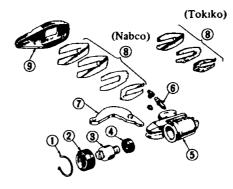
- 1 Brake shoe adjuster 3 Return spring
- 2 Brake shoe assembly 4 Anti-rattle pin

Fig BR-46 Remove shoe assembly

- 4 Remove bolts securing adjuster, and detach adjuster
- Disconnect brake tube
- 6 Pull out clevis pin to separate hand brake cable and lever

- 7 Remove dust cover, adjusting shims and lock plates, wheel cylinder can then be removed easily
- 8 Remove and reinstall the brake disc as outlined under "REAR AXLE"

- 1 Brake tube
- 4 Lever
- 2 Hand brake cable
- 5 Dust cover
- 3 Clevis pin


Fig BR-47 Remove wheel cylinder

Disassembly of wheel cylinder

- 1 The wheel cylinder can be disassembled in its mounted condition Do not remove it unless replacement of the entire master assembly is necessary
- 2 To disassemble, remove snap ring, dust cover, piston, and piston cup, in the order enumerated

Note Exercise care not to give scratches to sliding contact sur-

faces of cylinder and piston, and piston cup

- Snap ring
- 2 Dust cover
- 3 Piston
- 4 Piston cup
- 5 Cylinder
- 6 Breeder
- 7 Hand brake lever
- 8 Lock plates
- 9 Dust cover

Fig BR-48 Wheel cylinder

INSPECTION

Brake drum

BR282

1 Replace brake drum whose diameter is beyond the limit of 1 4 mm (0 055 in) with respect to the standard inner diameter of 228 6 mm (9 in)

- 2 The allowable maximum "outof-round" of brake drum is 0 02 mm (0 0008 in) Re-condition or replace brake drum if specified limit is exceeded
- 3 Measure for tapered brake drum If specified limit of 0 02 mm (0 0008 in) is exceeded as measured at a position where the distance of 40 mm (1 57 in) is kept away from inlet, re-condition or replace brake drum
- 4 Contact surface with which linings come into contact should be finished to such an extent that it is ground by a No 120 to 150 sandpaper
- 5 Using a drum racer, finish brake drum by machining if it shows any sign of score marks, partial or stepped wear on its contact surface

Note After brake drum is completely re-conditioned or replaced, check drum and shoes for proper contact pattern

Brake assembly

- 1 Replace linings which are cracked, worn or oil-stained.
- 2 Replace linings if their thicknesses are worn down to less than 1.5 mm (0.059 in)
- 3 Replace shoe return springs which are broken or fatigued
- 4 Replace fatigued anti-rattle springs, damaged pins and/or retainers

Standard dimensions of shoe springs

' Item	Free length mm (in)	Dia of spring mm (in)	O D of coil mm (in)	No of coils	Installed length/load mm/kg (m/lb)
Cylinder side	120 7 (4 75)	2 (0 08)	12 (0 47)	36	131 5/7 to 8 (5 177/15 to 18)
Adjuster side	120 4 (4 74)	2 (0 08)	10 (0 39)	32 5	122 4/13 5 to 16 5 (4 819/ 29 8 to 36 4)
Antı-rattle	20 5 (0 807)	2 (0 08)	18 (0 71)	5	14 9/7 to 8 (0 587/15 to 18)

Wheel cylinder

- 1 Replace any cylinder or piston which is scratched, scored or worn on its sliding contact surface
- 2 Replace worn parts if piston-tocylinder clearance is beyond 0.15 mm (0.0059 in)
- 3 Replace piston cup which is worn or damaged
- 4 Replace if contacting face of cylinder and shoe is worn locally or in step
- 5 Replace damaged dust cover, fatigued piston spring or damaged threaded parts
- 6 Replace tube connector which is worn on its threaded portion

ASSEMBLY AND INSTALLATION Wheel cylinder

- 1 To assemble, reverse the sequence of disassembly
- 2 Apply rubber grease to rubber parts to facilitate the assembly operation
- 3 To install wheel cylinder, insert hand brake lever into disc, and fit wheel cylinder into position Then drive in the parts A, B, C and D, in the order shown, using a hammer

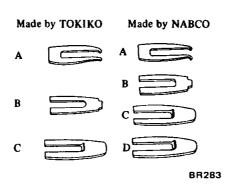


Fig BR-49 Lock plate

Fig BR-50 Points requiring grease

- 3 Measuring wheel cylinder sliding resistance using a spring scale
 - Standard sliding resistance

2 to 7 kg (4 to 15 lb)

Adjuster mounting nut tightening torque

1 4 to 1 8 kg-m (10 to 13 ft-lb)

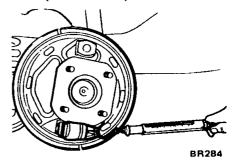


Fig BR-51 Measuring wheel cylinder sliding resistance

Brake drum

- 1 To install, reverse the sequence of removal Note the following instructions
- 2 Apply a coating of brake grease to the parts indicated in Figure BR-50, wheel cylinder-to-disc sliding surfaces, cylinder lever pivot, adjuster wedge surface and periphery of tappet

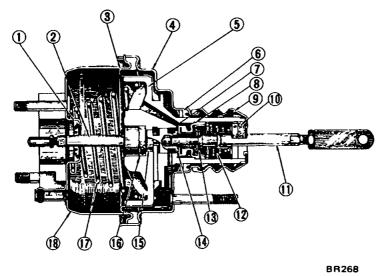
Note Apply a thin coating of grease to shoe-to-disc sliding surfaces (6 places), exercising care not to wet lining with grease

MASTER-VAC

CONTENTS

DESCRIPTION	BR-16	Front shell-seal assembly	BR-20
Inspecting vacuum pressure	BR-17	INSPECTION	BR-20
Inspecting check valve	BR-18	ASSEMBLY AND ADJUSTMENT	BR-20
Operation test	BR-18	Rear shell-seal assembly	BR-20
REMOVAL	BR-18	Diaphragm plate assembly	BR-20
DISASSEMBLY	BR-19	Front shell-seal assembly	BR-20
Rear shell-seal assembly	BR-19	Final assembly	BR-20
Diaphragm plate assembly	BR-19	INSTALLATION	BR-21

DESCRIPTION


A vacuum suspended Master-Vac is installed behind the master cylinder As the brake pedal is depressed, fluid is forced under high pressure through the brake pipes to the wheel cylinders

to retard or stop the car

The Master-Vac has a spring loaded disphragm of 114 3 mm (M45 type, 4½ in) and 152 4 mm (M60 type, 6 in) in diameter It operates on negative

pressure produced in the engine intake manifold

The tandem master cylinder is capable of producing high pressure even if the Master-Vac is faulty

- 1 Plate and seal
- Push rod
- Diaphragm
- Rear shell
- Diaphragm plate
- Seal
- Vacuum valve
- Poppet assembly
- Valve body guard
- 10 Air silencer filter
- 11 Valve operating rod
- Valve return spring
- Poppet return spring
- Exhaust valve
- 15 Valve plunger
- Reaction disc
- 17 Diaphragm return spring
- 18 Front shell

Fig BR-52 Sectional view of Master-Vac

Inspecting vacuum pressure

Connect a vacuum gauge, in the line. between check valve and

Master-Vac, as shown in Figure BR-53.

BR169

- 1 Check valve
- 2 Vacuum gauge

Fig BR-53 Air-tight test set-up

Start engine and increase engine speed Stop engine when vacuum gauge indicates 500 mmHg (19 69 ınHg)

Air-tight test

Fifteen seconds after engine is stopped, observe the rate of drop in air pressure registered by vacuum gauge If a pressure drop of 25 mmHg (0 98 inHg) is exceeded, refer to the following chart to determine the cause of failure

Probable cause	Corrective action
1 Air leakage at check valve	Replace check valve
2 Air leakage at push rod seal.	Replace seal
3 Air leakage between valve body and seal	Repair or replace faulty part(s)
4 Air leakage at valve plunger seat	Repair or replace seat
5 Damaged piping or joints	Repair or replace

2 Fifteen seconds after engine is stopped and brake fully applied, observe the rate of drop in air pressure registered by vacuum gauge If a pressure drop of 25 mmHg (0 98 inHg) is exceeded, refer to the following chart to determine the cause of failure

Probable cause	Corrective action
1 Air leakage at check valve	Replace check valve
2 Damaged diaphragm	Replace
3 Reaction disc dropped off	Reinstall and check push rod for proper turn
4 Air leakage at poppet assembly seat and valve body	Replace faulty part(s)

Note When replacement of any part is required, be sure to renew Master-Vac as an assembly

Inspecting check valve

1 Remove clip and disconnect hoses at connections The check valve can now be removed

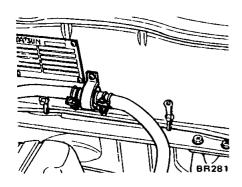
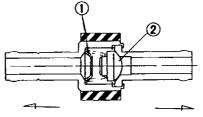



Fig BR-54 Location of check valve

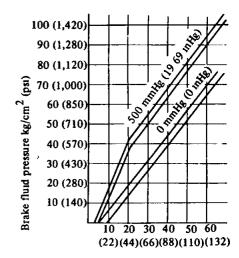
- 2 Using a Master-Vac tester, apply a vacuum pressure of 500 mmHg (19 69 inHg) to the port of check valve on the Master-Vac side If a pressure drop of 10 mmHg (0 39 inHg) is exceeded in 15 seconds, replace check valve with a new one
- 3. When pressure is applied to the Master-Vac side of check valve and valve does not open, replace check valve with a new one

Manifold side

Master-Vac side

1 Spring 2 Valve

Fig BR-55 Cross-sectional view of check valve


Operation test

- 1 Connect an oil pressure gauge, in brake line, at connection on master cylinder
- 2 Install a spring scale on brake pedal
- 3 Start engine, and increase engine speed until a vacuum pressure of 500 mmHg (19 69 inHg) is registered on vacuum pressure gauge With a vacuum pressure of 500 mmHg (19 69 inHg) held, measure an oil pressure with respect to each pedal operating force

Relationship between oil pressure and pedal operating force is illustrated in Figure BR-56 for M45 and in Figure BR-57 for M60 If test results are not as specified in Figure BR-56 or BR-57, check Master-Vac for condition in a manner as described under "Inspection", before removal of this unit

Also check brake line for evidence of fluid leakage

Note Determine as to whether a malfunction occurs either in Master-Vac or check valve Always inspect check valve first

BR285

Pedal operating force kg (lb)

Fig BR-56 Performance curves of Master-Vac (M45)

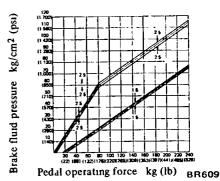


Fig BR-57 Performance curves of Master-Vac (M60)

REMOVAL

Referring to Figure BR-58, remove parts in numerical order enumerated.

Install these parts in the reverse sequence of removal

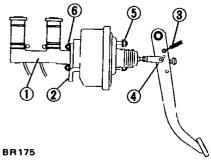


Fig BR-58 Removal method of Master-Vac

Note After Master-Vac is properly installed on car, be sure to conduct an air-tight test and operation test described previously in this Section

DISASSEMBLY

When disassembling Master-Vac, observe the following instructions

- a) Thoroughly clean mud or dust from Master-Vac
- b) Extreme care should be taken not to allow dirt, dust, water or any other foreign matter to get into any component-parts
 - Be sure to select a clean place before disassembly or assembly
- c) Mark mating joints so that they may be installed exactly in their original positions
- d) Keep all disassembled parts arranged properly so that they may readily be assembled at any time
- e) Clean rubber parts and synthetic resin parts in alcohol
- f) After all disassembled parts are cleaned in an approved solvent, place on a clean work bench Use care not to allow dirt and dust to come into contact with these parts
- Install spacer on rear shell spacer temporarily Place Master-Vac in a vise Use of soft jaws in suggested
- Remove clevis and lock nut Detach valve body guard

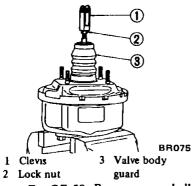


Fig BR-59 Remove rear shell

Identify front shell and rear shell clearly so that they may be reassembled in their original positions from which they were withdrawn (Bolts to be attached on dashboard are not the same in pitch)

Using special tool "Master-Vac Wrench ST08080000," remove rear shell-seal assembly, and disassemble diaphragm plate assembly, front shell assembly, diaphragm spring and push rod assembly

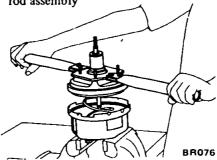


Fig BR-60 Removing rear shell

Rear shell-seal assembly

Pry off retainer with use of a screwdriver as shown and detach bearing and seal

Note. Do not disassemble seal assembly unless absolutely necessary Whenever this is to be removed, use care not to damage it.

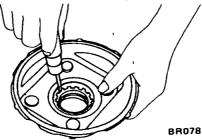


Fig BR-61 Removing retainer

Diaphragm plate assembly

Place diaphragm plate assembly on a clean work bench Detach diaphragm from groove in plate as

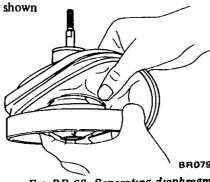


Fig BR-62 Separating diaphragm

Using a screwdriver as shown, evenly pry air silencer retainer until it is detached from diaphragm plate assembly

Note Never use a hammer to remove this retainer, since this will be the sure way of damaging it

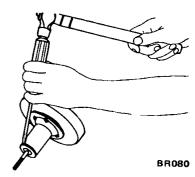


Fig BR-63 Removing air silencer retainer

Pull out valve plunger stop key and withdraw silencer and plunger assembly

Note To remove valve plunger stop key properly, proceed as follows. With key hole facing down, lightly push valve operating rod sımultaneously while applying vibration to it

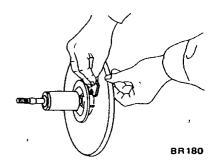


Fig BR-64 Pulling out stop key

Fig BR-65 Removing value operating rod assembly

4 Withdraw reaction disc

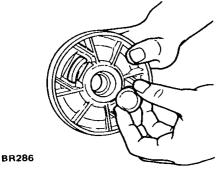
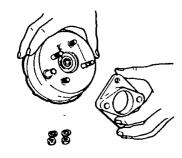



Fig BR-66 Removing reaction disc

Front shell-seal assembly

Detach flange from front shell assembly

BR287

Fig BR-67 Removing flange

2 Withdraw front seal assembly

INSPECTION

- 1 Check poppet assembly for condition If it shows evidence of wear or damage, replace it and valve operating rod assembly
- 2 Check other component-parts for condition If any part shows evidence of wear or damage, replace it with a new one

ASSEMBLY AND ADJUSTMENT

Assemble in the reverse sequence of disassembly

Rear shell-seal assembly

1 Apply a coating of Master-Vac grease to the sealing surface and lip

of seal, and install that seal in rear shell with the use of special tool "Master-Vac Oil Seal Retainer Drift ST08060000"

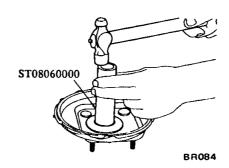


Fig BR-68 Installing oil seal

Note Referring to Figure BR-69, install seal in place by properly aligning the pawl of special tool with seal hole Adjustment is correct when specified length at "A" is obtained

Lenght "A"
6.7 to 7 0 mm
(0 264 to 0 276 in)

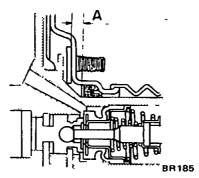


Fig BR-69 Length at "A"

Diaphragm plate assembly

l Apply a thin coating of grease to the sliding contact portion on the periphery of plunger assembly

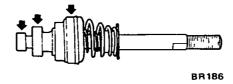


Fig BR-70 Requiring grease place

2 Install plunger assembly and silencer in diaphragm plate, and lightly push plunger stop key in place

Note Diaphragm plate is made of bakelite Exercise care in installing plunger assembly not to damage diaphragm plate

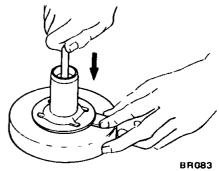


Fig BR-71 Inserting stop key

- 3 Before installing diaphragm into position, apply a thin coating of mica-power to it except outer diameter and seating portion with which shell comes into contact
- 4. Before installing reaction disc in place on diaphragm plate, apply a thin coating of Master-Vac grease

Front shell-seal assembly

Before installing front shell-seal assembly, apply a coating of Master-Vac grease to the inner wall of seal and front shell with which seal comes into contact

Final assembly

- 1 Apply a thin coating of Master-Vac grease to the outer edges of diaphragm with which rear and front shells come into contact, before installing diaphragm in position
- 2 Before installing push rod assembly in place, apply a coating of Master-Vac grease to the sliding contact surface of diaphragm plate
- 3. Align marks scribed in the rear shell and front shell Carefully turn the special tool "Master-Vac Wrench ST08080000" clockwise until it reaches notch in shell retainer

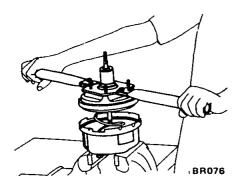


Fig BR-72 Tightening rear shell

4 After assembly, adjust the length of push rod to less than the specified value indicated below Length adjustment of push rod is made at the tip of push rod

Length "B"
9 75 to 10 00 mm
(0 3839 to 0 3937 in)

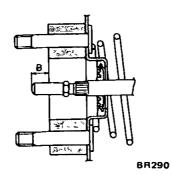


Fig BR-73 Length at "B"

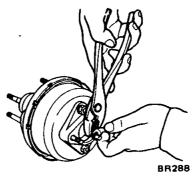


Fig BR-74 Adjusting push rod length

INSTALLATION

Install in the reverse sequence of removal

Note After Master-Vac is properly installed in car, conduct an air-tight and operational tests as previously described.

SERVICE DATA AND SPECIFICATIONS

Brake type			1
Front		• • • •	Model Annette 14/15AL disc brake
Rear . Hand brake			Leading-trailing drum brake Mechanically-operated on rear wheels
Brake pedal		-	
Free height	mm (ın) .		185 (7 28)
Full stroke of pedal head	mm (ın) .		145 (5 71)
Master cylinder			
Inner diameter	mm (ın)		19.05 (¾)
Allowable maximum clearance			
between cylinder and piston	mm (ın) .		0 15 (0.0059) max
Wheel cylinder			
Inner diameter			
Front (disc)	mm (ın) .		51 1 (2 012)
Rear	mm (ın) .		22 22 (%)

Allowable maximum clearance between cylinder and piston Rear wheel cylinder sliding resistance	mm (ın) . kg (lb) .	0 15 (0 0059) max . 2 to 7 (4 to 15)
Brake rotor and drum		
Rotor (disc) outer diameter	mm (ın)	245 (9 65)
Drum brake inner diameter (rear)	mm (m)	228 6 (9)
Rotor (disc) runout	mm (in) ,	0 12 (0 0047) max
Drum inside out-of-round	mm (ın) ' .	0 02 (0 0008) max
Repair limit of rotor in thickness	mm (ın)	8 4 (0.331)
Repair limit of drum in diameter		
(rear)	mm (ın) .	230 (9 06)
Lining		
Pad (disc) Width x thickness x length	mm (in) .	. 41 2 x 10 x 61 4
		$(1 622 \times 0 39 \times 2 417)$
Lining (rear)	nım (ın)	40 × 4 5 × 219 5
Width \times thickness \times length		$(1 57 \times 0 177 \times 8 642)$
Hand brake normal stroke	nım (ın)	90 to 100 (3 54 to 3 94)
Tightening torque		
Brake master cylinder attaching nut	kg-m (ft-lb) .	0 8 to 1 1 (6 to 8)
Brake tube connection	kg-m (ft-lb)	1 5 to 1 8 (11 to 13)
Brake hose connection	kg-m (ft-lb)	1 7 to 2 0 (12 to 14)
Air bleedei valve	kg-m (ft-lv)	. 07 to 09 (5 to 7)
Fulcrum pin of brake pedal	kg-m (ft-lb)	3.6 to 4 2 (26 to 30)
Pedal stopper lock nut	kg-m (ft-lb)	08 to 11 (6 to 8)
Connector mounting bolt		
6 mm diameter bolt	kg-m (ft-lb)	. 0 5 to 0 7 (4 to 5)
8 mm diameter bolt	kg-m (ft-lb) .	0 8 to 1 1 (6 to 8)
Wheel cylinder mounting bolts		
Small	kg-m (ft-lb) .	. 0 5 to 0 7 (4 to 5)
Large	kg-m (ft-lb) .	1 5 to 1 8 (11 to 13)
Caliper fixing bolt	kg-m (ft-lb)	. 7 3 to 9 9 (53 to 72)
Rotor fixing bolt	kg-m (ft-lb)	3 9 to 5 3 (28 to 38)
NP-valve mounting bolt	kg-m (ft-lb)	0 3 to 0 4 (2 to 3)

TROUBLE DIAGNOSES AND CORRECTIONS

Condition -	Probable cause	Corrective action
Spongy pedal	Air in brake lines.	Bleed thoroughly
	Swollen hose due to deterioration or use of poor quality hose	Replace hose and bleed system
	Use of a brake fluid of which boiling point is too low.	Change with specified brake fluid and bleed system
	Reservoir filler cap vent hole clogged (This promotes a vacuum in master cyl- inder that sucks in air through rear seal)	Clean and bleed system
Pedal yields under	Deteriorated check valve	Replace check valve and bleed system
slight pressure	External leaks	Check master cylinder, piping and wheel cylinder for leaks and repair
	Leakage on master cylinder	Overhaul master cylinder
Excessive pedal	Air in system.	Bleed system
travel	Shoes out of adjustment	Adjust shoe-to-drum clearance
	Insufficient fluid in master cylinder	Fill up with specified brake fluid and bleed system.
	Thermal expansion of drums because of excessive overheating	Allow drums to cool off Check brake shoe linings and drums. Replace damaged parts
All brakes drag	Insufficient shoe-to-drum clearance	Adjust clearance
	Weak shoe return springs	Replace.
	Brake shoe return no free travel	Adjust pedal height
	Seized master cylinder piston	Disassemble master cylinder and replace piston Bleed system
One brake drags	Loose or damaged wheel bearings	Adjust or replace as required
'	Weak, broken or unhooked brake shoe return springs	Replace
	Insufficient clearance between brake shoe and drum.	Adjust brakes
Unbalanced brakes	Grease or oil on linings	Clean brake mechanism, check cause of trouble Replace linings
	Seized piston in wheel cylinder	Service wheel cylinder and bleed system
	Improper tire inflation.	Inflate to correct pressure
	Loose wheel bearings	Adjust
	Faulty front suspension	Check and adjust all front suspension parts

Condition	Probable cause	Corrective action
Excessive pedal pressure required, -	Grease, mud or water on brake shoe linings -	Remove drums and clean and dry linings or replace
poor brakes	Full area of linings not contacting drums	Replace shoes
	Scored brake drums	Reface drums and install new linings
Brake chatter,	Dust on drums or oil-stained linings	Remove and clean drums
squeak or squeal	Weak shoe return springs	Check and, if necessary, replace springs
Drum out-of-round		Turn drums on lathe
	Worn linings	Replace

SPECIAL SERVICE TOOLS

No	Tool number & tool name	Description Unit mm (in)		For use on	Reference page or Figure No
1	GG94310000 Brake pipe torque wrench	233 (9 17) 228 (8 98) SE227	This tool is used to tighten and untighten brake tube flared nut A built-in torque limiting wrench is provided to assure torque accuracy	All models	Fig BR-16
2	ST08080000 Master-Vac wrench	SE227	This tool is used to remove rear shell after aligning rear shell stud bolt with the opening in this tool	610 W610 V610 510 230 S30 C30 C10 GC10	Fig BR-60 Fig BR-72
3	ST08060000 Master-Vac oil seal retainer drift	SE115	This tool is used when rear shell seal is driven into position Note Make sure that this tool is pushed in until rear guide of this tool touches rear shell	610 W610 V610 510 230 S30 C30 C10 GC10	Fig BR-68

SERVICE MANUAL

DATSUN MODEL 610 SERIES

SECTION WT

WHEEL AND TIRE

WT

NISSAN

NISSAN MOTOR CO., LTD.

WHEEL AND TIRE
TROUBLE DIAGNOSES AND

WT- 2

TROUBLE DIAGNOSES AND CORRECTIONS

WT - 6

WHEEL AND TIRE

CONTENTS

DESCRIPTION	WT-2	WEAR	WT-4
TIRE USAGE	WT-2	RADIAL TIRE	WT-4
RECOMMENDED INFLATION PRESSURE	WT-3	TIRE ROTATION	WT-4
MAINTENANCE AND SERVICE	WT-3	INSPECTION	WT-5
TIRE INFLATION	WT-3	WHEEL BALANCE	WT-5
TIRE REPAIR	WT-3	WHEEL AND TIRE	WT-5

DESCRIPTION

TIRE USAGE

Car model	Tire size	Wheel size	
180B Sedan 180B Station Wagon	6 45S-13-4PR 165SR-13		
180B Hardtop	165SR-14	4½J x 14	

Remarks

*1 Offset 30 mm (1 18 m)

RECOMMENDED INFLATION PRESSURE

Unit psi

Tire size		Car speed				
		Less than 70 MPH (115 km/h)		More than 70 MPH (115 km/h)		
		Front	Rear	Front	Rear	
6 45S-13 Normal load		24	28	28	32	
-4PR	Maxımum load	28	32	28	32	
165SR-13	Normal load	28	28	28	28	
165SR-14	Maximum load	32	32	32	32	

Notes a The tire inflation pressure should be measured when the tire is cold

b The tubes designed for radial tire should be used exclusively

MAINTENANCE AND SERVICE

TIRE INFLATION

Correct tire pressure is very important to ease of steering and riding

comfort This also reduces driving sound to a minimum, resulting in longer tire life, that is, overinflation or underinflation promotes wear at center tread or shoulder of tire

If all tires are inspected frequently and maintained correct tire pressure, it

is possible to detect sharp material in the tread Also, the above check avoids abnormal wear which invites serious problem If tires indicate abnormal or uneven wear, the cause of problem should be detected and eliminated

After inflating tires, leakage in valve should be checked Without valve caps, leakage will occur due to dirt and water, resulting in underinflation Accordingly, whenever tire pressure is checked, be sure to tighten valve caps firmly by hand

TIRE REPAIR

Tubeless tire

In order to inspect a leak, apply soapy solution to tire or submerge tire and wheel in the water after inflating tire to specified pressure Special inspection for leaks should be carried out around the valve, wheel rim and along the tread Exercise care to bead and rim where leakage occurs Wipe out water from area which leaks air bubbles and then mark the place with chalk

After removing the materials which caused puncture, seal the point. When repairing the puncture, use the tire repair kits which are furnished from tire dealers, following the instructions provided with the kits. In case that a puncture becomes large or there is any other damage on the tire fabric, repair must be carried out by authorized tire dealers.

Tubed tire

In order to inspect a leak, apply soapy solution to tire tube or submerge tire tube in the water after inflating tire tube Special inspection for leaks should be carried out around the valve. Wipe out water from area where air bubbles exist and then mark the place with chalk.

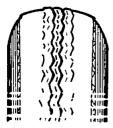
After removing the materials which caused puncture, seal the point. When repair kits furnished from tire dealers, following the instructions provided with the kits. When a puncture becomes large or there is any other damage on the tire fabric, repair must be carried out by an authorized tire dealer.

Wheel repair

Inspect wheel rim flange for a bend or dent If any of the above deterioration is detected, repair should be made to secure complete sealing. The flange should be cleaned by a wire brush when rust is found on the flange. Furthermore, if excessive pitting occurs on the rim, eliminate it with a file.

WEAR

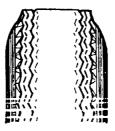
Misalignment


When the front wheels align in excessive toe-in or toe-out condition, tires scrape the tread rubber off The wear of tread appears feathered edge

Center

This wear is caused by overinflation of the tire. The inflation pressure must be kept at the specified value.

Toe-in or toe-out wear


Underinflation wear

Shoulder

The wear may be caused by underinflation, incorrect wheel camber, or
continuous high speed driving on
curves In general, the former two
causes are common Underinflation
wear occurs on both sides of treads,
and on the other hand, camber causes
wear only on one side of treads For
cornering tread wear, the driver must
operate car slowing down on curves

Uneven

Uneven wear is caused by incorrect camber or caster, malfunctioning suspension, unbalanced wheel, out-ofround brake drum, or other mechanical conditions. To repair this abnormal wear, correct the above faulty parts

Overinflation wear

Fig WT 1 Abnormal tire wear

WT004

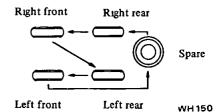
RADIAL TIRE

Tires of radial ply construction will revolve with less camber thrust force and with greater cornering power on turns. This tends to cause local or rapid wear on the treads with excessive toe-in. Exercise special care for front wheel alignment during the life of tires.

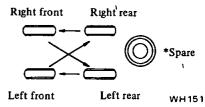
Notes

a Radial ply tires should not be

- mixed with ordinary tires since their characteristics differ from those of ordinary tires
- b The same brand radial ply tires should be installed on all wheels
- c The tubes designed for radial tire should be used exclusively
- d Snow chain should not be fitted because it damages side wall

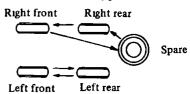

TIRE ROTATION

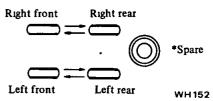
Fires wear unevenly and become unbalanced according to running distance. Uneven tire wear often results in tire noise which is attributed to rear axle gears, bearing, etc. Meanwhile, the front tires tend to wear unevenly because of improperly aligned front wheel.


Accordingly, to equalize tire wear, it is necessary to rotate tires periodically as recommended in the "Periodic Maintenance" See Figure WT-2

Bias and Bias belted tires

1 All the tires including the spare tire are of the same type


2 The spare tire has a different brand from 4 tires on the car


 The spare tire should be used in an emergency only

Radial ply tires

1 All the tires including the spare tire are of the same type

2 The spare tire has a different brand from 4 tires on the car

 Regardless of tire brand the spare tire should be used in an emergency only

Fig WT-2 Tire rotation

The tires are provided with "tread wear indicator" at six places around tire circumference, indicating 1 6 mm χ_{6} in) tread depth When the tires wear and then the marks appear, replace them with new ones See Figure WT-3

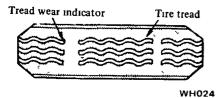


Fig WT-3 Tread wear indicator

To change tire with wheel using a jack in the safe manner, observe the following procedures

- 1 Apply parking brake and block front wheels when rear wheel is being changed
- 2 Remove wheel cover and loosen wheel nuts.
- 3 Place jack at jacking point as described in Section GI for jack up and raise car until wheel clears ground
- 4 Remove wheel nuts and wheel from drum.
- 5 To install wheel, reverse the above steps Tighten wheel nuts in criss-cross fashion to 8 0 to 9 0 kg-m (58 to 65 ft-lb)

Note Never get under the car while it is supported only by the jack Always use safety stands to support the side member of body construction when you must get beneath the car

INSPECTION

WHEEL BALANCE

The wheel and tire assembly should be kept balanced statically and dynamically

Proper tire balance is necessary when driving the car at high speeds Consequently, the wheel and tire assembly should be properly rebalanced whenever puncture is repaired

The wheel and tire assembly becomes out of balance according to uneven tire wear Severe acceleration and braking, or fast cornering is the cause of wear on tire, resulting in unbalance of tire and wheel assembly

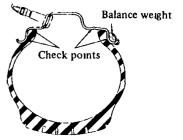
The symptom of unbalance appears as tramp, car shake and steering problems

To correct unbalance, use proper wheel balancer

Maximum allowable unbalance 177 gr-cm (2 46 in-oz) Balance weight

10 to 60 gr (0 35 to 2 12 oz) at 10 gr (0 35 oz) interval

Note Be sure to place the correct balance weights on the inner edge of rim as shown in Figure WT-4 Do not put more than two weights on each side


WHEEL AND TIRE

In order to ensure satisfactory steering condition as well as maximum tire life, proceed as follows 1 Check wheel rim, especially, rim flange and bead seat for rust, distortion, cracks or other faults which might cause air leaks Function of tubeless tire depends on a good seal between tire bead and wheel rim Thoroughly remove rust, dust, oxidized rubber or sand from wheel rim with wire brush, emery cloth or paper Use dial gauge to examine wheel rim for lateral and diametral runout See Figure WT-4

Lateral runout limit

Less than 10 mm (0 039 in)

total indicator reading

WT005

Fig WT-4 Wheel rim run-out check points

Note In replacing tire, take extra care not to damage tire bead, rim-flange and bead seat

Do not use tire irons to force beads away from wheel rim-flange, that is, always use tire replacement device whenever tire is removed

- 2 Discard when any of the following problem occurs
- (1) Broken or damaged bead wire
- (2) Ply or tread separation
- (3) Worn fabric damage on tubeless tire.
- (4) Cracked or damaged side wall, etc

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Wheel wobbles	Improper tire pressure	Measure and adjust
	Damaged tire or distorted wheel rim	Repair or replace
	Unbalanced wheel	Balance
	Loose wheel nuts	Tighten
	Worn or damaged wheel bearing, or excessive play of wheel bearing	Correct play or replace wheel bearing
	Improper front wheel alignment	Align
	Worn or damaged ball joint	Replace
	Excessive steering linkage play or worn steering linkage	Adjust or replace
	Loose steering linkage connection	Tighten nuts to rated torque, or replace worn parts if any
	Broken suspension spring	Replace
	Faulty shock absorber	Replace
Unevenly or	Improper tire rotation	Conduct tire rotation periodically
excessively worn	Improper tire pressure	Measure and adjust
tire	Unbalanced wheel	Balance or replace
	Improperly adjusted brake	Adjust
	Improper wheel alignment	Align
	Excessively distorted or improperly installed suspension link	Repair, replace or, if necessary, reinstall
	High speed on curves	Reduce speed
	Sudden start and improper speed due to rapid acceleration or improper brake application	Follow correct and proper driving manner
Tire squeals	Improper tire pressure	Measure and adjust
	Improper front wheel alignment	Align
	Distorted knuckle or suspension link	Repair or replace

DATSUN MODEL 610 SERIES

SECTION ST

STEERING SYSTEM

ST

STEERING SYSTEM	ST- 2
SERVICE DATA AND SPECIFICATIONS	ST-12
TROUBLE DIAGNOSES AND CORRECTION	ST-13
SPECIAL TOOLS	ST-13

NISSAN MOTOR CO., LTD.

STEERING SYSTEM

CONTENTS

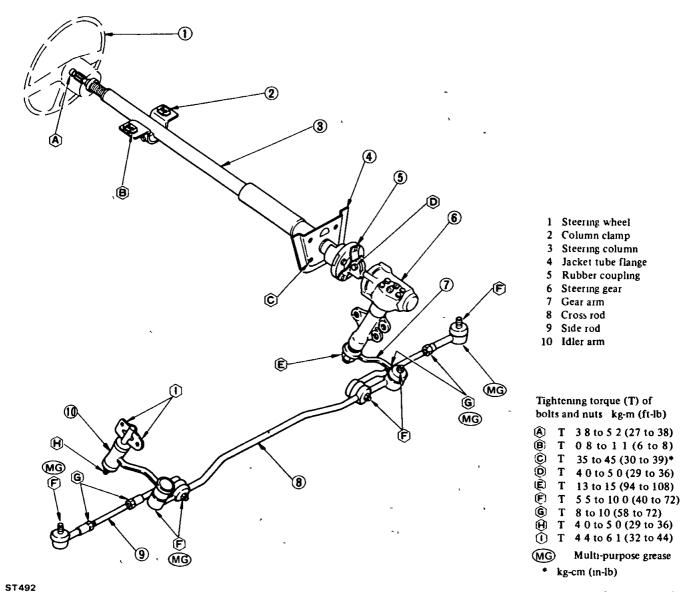
DESCRIPTION	ST- 2	REMOVAL	ST- 8
STEERING WHEEL	ST- 3	DISASSEMBLY	ST- 8
REMOVAL	ST- 3	INSPECTION	ST- 8
INSTALLATION	ST- 4	ASSEMBLY AND ADJUSTMENT	ST- 9
STEERING COLUMN	ST- 4	INSTALLATION	ST-10
REMOVAL	ST- 5	STEERING LINKAGE	ST-10
INSPECTION	ST- 5	REMOVAL	ST-10
INSTALLATION	ST- 6	DISASSEMBLY	ST-10
STEERING LOCK	ST- 7	INSPECTION AND REPAIR	ST-11
REMOVAL	ST- 7	ASSEMBLY AND ADJUSTMENT	*ST-11
INSTALLATION	ST- 7	INSTALLATION	ST-11
STEERING GEAR	ST- 7		

DESCRIPTION

The steering is the type RB47L which is of the recirculating ball type designed especially for easy operation and high durability, and has a center distance of 47 mm (1 85 in) between the sector shaft and worm shaft

The steering linkage is a relay design

The gear arm is connected to one end of the cross rod


The other end of the cross rod is linked to the idler arm whose bracket

is attached to the side member located on the opposite side of the steering gear

The adjustable side rods connect the cross rod to the steering knuckle arms. The rubber coupling, located between the steering column and the steering gear box, prevents road shocks and linkage vibrations from imparting to the steering wheel during operation

The collapsible steering column is standard equipment, which is a steel

ball type and collapses upon impact Thus, if the car should become involved in a head-on collision that throws the driver forward, the steering column will absorb the energy of his forward movement and greatly reduce the possibility of his being injured

STEERING WHEEL

REMOVAL

- 1 Disconnect battery ground cable
- 2. Disconnect horn wiring
- 3 Remove horn pad as follows according to its type
- (1) Two-spoke type

Shding horn pad upward, pull it out See Figure ST-2

(2) Three-spoke type

Pulling up lower spoke first, remove horn pad,

ST493
Fig ST-2 Removing horn pad

- Fig ST-1 Structural view of steering system
 - 4 Remove steering wheel nut
 - 5 Using Steering Wheel Puller ST27180001, install puller anchor screws in threaded holes in steering wheel Turn center bolt of the special tool clockwise to remove steering wheel

See Figure ST-3

Note Do not strike the end of steering column shaft with a hammer Striking shaft will damage bearing or collapsible shaft

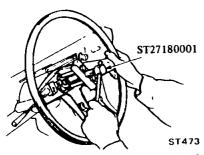
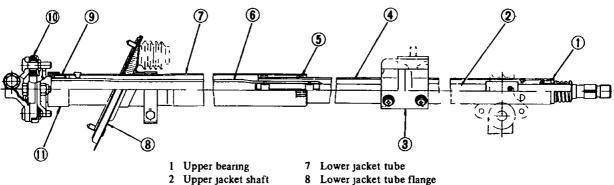


Fig ST-3 Removing steering wheel

INSTALLATION


Install steering wheel in the reverse order of removal Observe the following instructions

- Apply grease to sliding portion of contact plate
- Install steering wheel on column shaft in a straight ahead position after

facing punch mark on the top of upper column shaft in that direction and tighten steering wheel nut to the specified torque

Tightening torque 3 8 to 5 2 kg-m (27 to 38 ft-lb)

STEERING COLUMN

- Upper jacket shaft
- Steering post clamp
- Upper jacket tube
- 5 Steel ball
- Lower jacket shaft
- Lower jacket tube flange
- 9 Lower bearing
- 10 Rubber coupling
- 11 Column dust cover

ST182

Fig ST-4 Sectional view of collapsible type steering

Instructions for handling collapsible steering column

- 1 Never apply an undue stress to steering column in axial direction
- 2 Do not apply bending force to steering column when installing

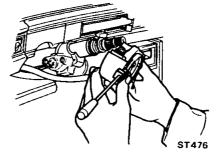


Fig ST-8 Removing turn signal switch assembly

5 Remove four bolts securing jacket tube flange to dash panel See Figure ST-9

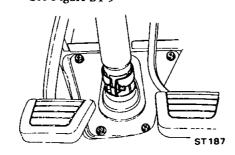


Fig ST-9 Removing jacket tube flange securing bolts

6 Remove four bolts securing column clamp to dash panel See Figure ST-10

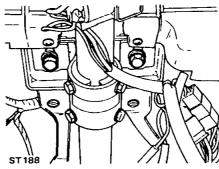


Fig ST-10 Removing column clamp securing bolts

7 Draw out steering column assembly from the room side

See Figure ST-11

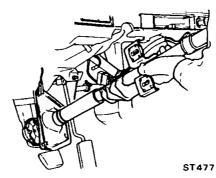
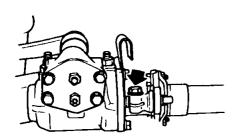



Fig ST-11 Drawing steering column assembly

REMOVAL

1 Remove bolt securing worm shaft and rubber coupling See Figure ST-6

ST474

Fig ST-6 Removing rubber coupling securing bolt

2 Remove steering wheel

Refer to page ST-3 for Removal of Steering Wheel

3 Loosen four sciews, and remove upper and lower steering column shell covers See Figure ST-7

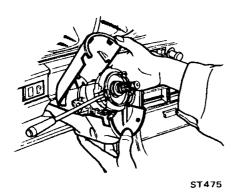


Fig ST-7 Removing column shell

covers

4 Remove turn signal switch assembly by loosening two screws

INSPECTION

tem as follows

1 When steering wheel cannot be rotated smoothly but steering gear, steering linkage and suspension system are normal, check the steering system and replace damaged parts

Note When a head-on collision is encountered, inspect steering sys-

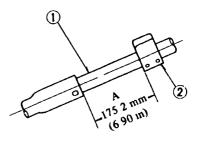
The steering system is very important unit for driving The collapsi-

ble type steering should not be

disassembled, and if necessary, re-

place it as an assembly

(1) Check column bearings for damage or unsmoothness


If so, lubricate with recommended multi-purpose grease or replace steering column assembly

- (2) Check jacket tube for deformation or breakage, and replace if necessary
- (3) Check column spring, and replace if damaged and weakened
- When the car equipped with collapsible steering is involved in a light front collision, check the following parts and replace if necessary
- (1) Jacket tube

Measure the dimension A as shown in Figure ST-12

Standard installed dimension is 183 8 mm (7 24 in)

When jacket tube is crushed, dimension A is reduced

1 Jacket tube

2 Column clamp

Fig ST-12 Standard dimension between column clamp and the top end of lower jacket tube

ST192

(2) Column clamp

Measure dimension B as shown in Figure ST-13

Standard B dimension is 0 mm (0 in) When jacket tube is crushed, dimension B is increased

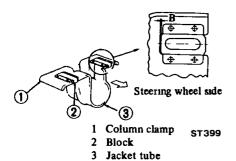


Fig ST-13 Standard dimension B

(3) Steering wheel

Check steering wheel for axial play When steering jacket shaft is crushed, axial play exists See Figure ST-14

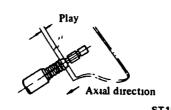


Fig ST-14 Inspecting steering wheel for axial play

(4) Sector shaft

When collision occurs, abnormal strength is applied to gear arm As a result of this, serration of sector shaft is apt to be distorted See Figure ST-1-5

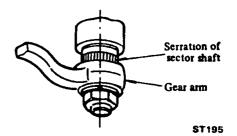
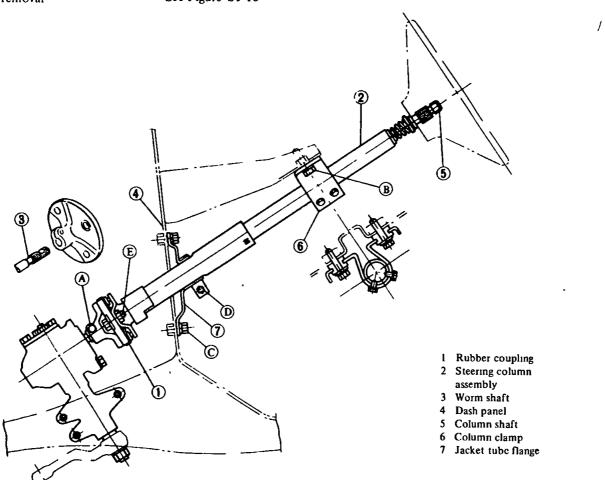



Fig ST-15 Inspecting the serration of sector shaft for deformation

INSTALLATION

Install steering column in the reverse order of removal

Observe the following instructions See Figure ST-16

ST197

Fig ST-16 Installing steering column assembly

- 1 Set the wheel in a straight ahead position
- 2 Fit steering column assembly onto worm shaft serration through dash panel and tighten bolt (A)

Make sure that punch mark at the top end of column shaft is faced up

Tightening torque 4 0 to 5 0 kg-m (29 to 36 ft-lb)

Note Do not apply any undue stress to rubber coupling

3 Install bolts (B) to support the upper side of steering column assembly by means of column clamp

Tightening torque

0 8 to 1 1 kg-m

(6 to 8 ft-lb)

4 Loosen bolt ①, and after sliding jacket tube flange to dash panel, tight-

en four nuts \bigcirc , and then tighten bolt \bigcirc

Tightening torque
35 to 45 kg-cm
(30 to 39 in-lb)

5 After installation, make sure that steering wheel turns smoothly

STEERING LOCK

To provide tamper-proof, self-shear type screws are used and their heads are sheared off, when installed so that the steering lock cannot be removed easily

REMOVAL

- 1 Break two self-shear type screws with a drill or other proper tool
- 2 Remove two screws and dismount steering lock from steering jacket tube See Figure ST-17

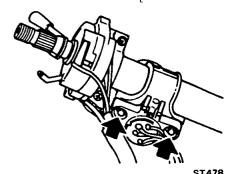


Fig ST-17 Removing steering lock securing screws

INSTALLATION

- 1 Align steering lock hole in jacket tube with the mating portion of steering lock
- 2 Install self-shear type screws and cut off their heads

STEERING GEAR (Type: RB47L)

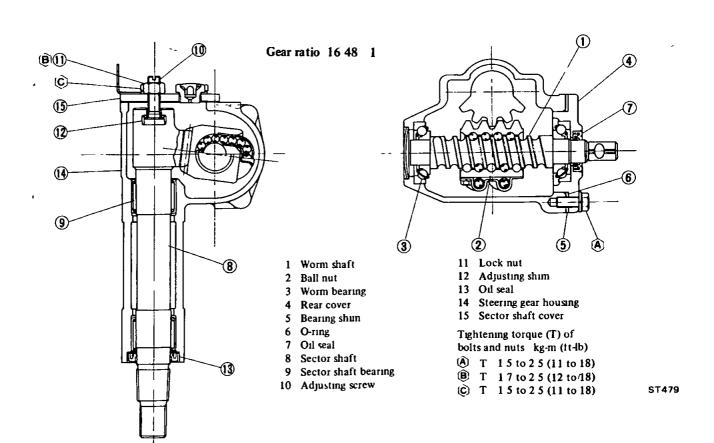


Fig ST-18 Sectional view of steering gear

REMOVAL

Remove bolt securing worm shaft to rubber coupling

See Figure ST-19

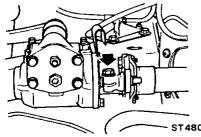


Fig ST 19 Removing rubber coupling securing bolt

Remove nut and lock washer securing gear arm to sector shaft. Using Gear Steering Arm ST29020001, remove steering gear arm from sector shaft See Figure ST-20

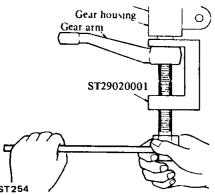


Fig ST-20 Removing steering gear arm

3 Remove three bolts securing steering gear housing to body side member, and withdraw steering gear housing from engine compartment See Figure ST-21

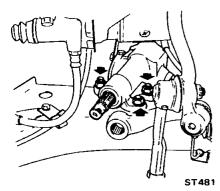


Fig ST-21 Withdrawing steering gear

DISASSEMBLY

- Thoroughly drain steering gear oil by removing filler plug (1) Place steering gear in a vise with Steering Gear Attachment KV48100300 in place
- 2 Loosen lock nut (2) and remove four sector shaft cover attaching bolts 3 After removing sector shaft with cover, remove cover from sector shaft by turning screw clockwise See Figure ST-22

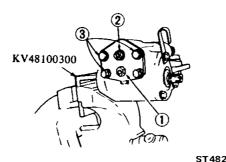


Fig ST-22 Mounting steering gear ın a vise

Turn sector shaft adjusting screw a few turns in clockwise direction and then remove cover and sector shaft See Figure ST-23

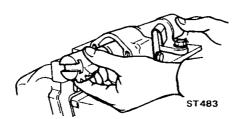


Fig ST-23 Drawing out sector shaft

Remove three rear cover securing bolts and detach rear cover See Figure ST-24

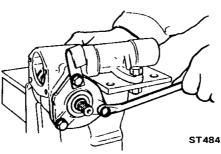


Fig ST-24 Detaching rear cover

Remove bearing adjusting shim(s), and steering worm assembly See Figure ST-25

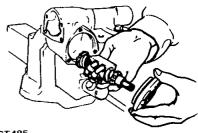


Fig ST-25 Drawing out steering worm assembly

Notes

- a Be careful not to allow ball nut to run down to either end of worm The ends of ball guides will be damaged if nut is rotated until it stops at the end of worm
- b Do not detach ball nut from worm shaft assembly If necessary, replace assembly
- c Do not remove sector shaft needle bearings from steering gear housing If necessary, replace gear housing assembly

INSPECTION

Wash clean all the disassembled parts in solvent and check for condition

Sector shaft

- Check gear tooth surface for pitting, burrs, cracks or any other damage, and replace if necessary
- Check sector shaft for distortion on its serration, and, if necessary, replace Also check gear housing and steering worm assembly for deformation

Steering worm assembly

- Inspect ball nut gear tooth surface, and replace if pitting, burrs, wear or any other damage is found
- Ball nut must rotate smoothly on worm gear If found too tight, assembly should be replaced

Check rotation of ball nut as follows.

(1) Move ball nut to either end of worm gear, and gradually stand worm shaft and ball nut assembly until ball nut moves downward on worm gear under its own weight

(2) If ball nut does not move freely over entire stroke, replace assembly

Note Be careful not to damage ball nut guide tube while check is being made

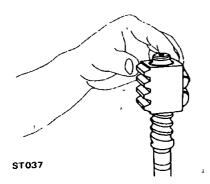


Fig ST-26 Inspecting worm shaft and ball nut assembly

Bearings

- 1 Replace worm shaft needle bearing if pitting, wear or any other damage is present
- 2 If sector shaft needle bearings are found worn or damaged, replace as an assembly of gear housing and bearings

Oil seals

Be sure to use new oil seals at each reassembly

ASSEMBLY AND ADJUSTMENT

Assemble steering gear in the reverse order of disassembly

Observe the following instructions

- 1 Clean all parts
- 2 Lubricate worm bearings, sector shaft bearings, and gear teeth with clean gear oil
- 3 Fill the space between sealing lips of new oil seal with recommended multi-purpose grease, and fit it to gear housing and rear cover

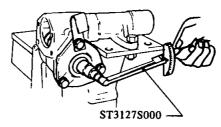
Notes

- a To facilitate installation, coat gear oil to seal contacting face of oil seal
- b Press oil seal into place with its lettered side towards the outside of gear housing

Adjustment of worm bearing preload

4 Place steering worm assembly in position in gear housing with worm bearings Install rear cover on gear housing with O-ring and worm bearing shims

Tightening torque 1 5 to 2 5 kg-m (11 to 18 ft-lb)


Note Be sure to install thicker shims to gear housing side

Standard shim thickness 1 5 mm (0 059 in)

Available worm bearing shims

No	Thickness mm (in)
1	0 762 (0 0300)
2	0 254 (0 0100)
3	0 127 (0 0050)
4	0 050 (0 0020)

5 Adjust the worm bearing preload by selecting suitable bearing shims so that the initial turning torque is 40 to 80 kg-cm (35 to 69 in-lb) Measure the torque using Preload Gauge ST3127S000 and a suitable socket with cloth around the top of the shaft so that the shaft will not slip See Figure ST-27.

· ST560

Fig ST-27 Measuring initial turning torque

Notes:

- a Rotate worm shaft a few turns in both directions to settle down worm bearing and measure the preload
- b. When readjustment is necessary, initial turning torque should be 40 to 80 kg-cm (3 5 to 6 9 in-lb).
- c When adjusting worm bearing preload, add or remove shims until correct adjustment is made

Adjustment of sector shaft and adjusting screw

6 Insert adjusting screw into T-shaped groove at sector shaft head, and adjust the end play between sector shaft and adjusting screw until it is within 0.01 to 0.03 mm (0.0004 to 0.0012 in) by choosing suitable adjusting shims

Available sector shaft adjusting shims

No	Thickness mm (in)			
1	1 575 to 1 600 (0 0620 to 0 0630) 1 550 to 1 575 (0 0610 to 0 0620) 1 525 to 1 550 (0 0600 to 0 0610) 1 500 to 1 525 (0 0591 to 0 0600)			
2	1 550 to 1 575 (0 0610 to 0 0620)			
3	1 525 to 1 550 (0 0600 to 0 0610)			
4	1 500 to 1 525 (0 0591 to 0 0600)			
5	1 450 to 1 475 (0 0571 to 0 0581)			

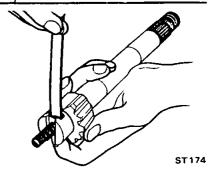


Fig ST-28 Measuring end play between sector shaft and adjusting screw

Rotate worm shaft by hand until ball nut is in the center of travel, then install sector shaft together with adjusting screw in gear housing Ensure that center gear of sector shaft engages with the center gear of the ball nut See Figure ST-29

Note Be careful not to damage sealing lips of oil seal during operation

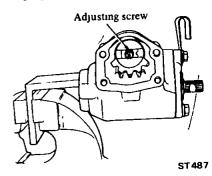


Fig ST-29 Installing sector shaft

8 Install sector shaft cover on gear housing

Be sure to apply sealant to each face of sector shaft cover packing when installing cover

By turning adjusting screw counterclockwise, attach sector shaft cover to gear housing and then temporarily secure it with fixing bolts

- 9 Pull sector shaft toward cover approximately 2 to 3 mm (0 08 to 0 12 in) after turning adjusting screw counterclockwise and tighten sector shaft cover fixing bolts to 1 5 to 2 5 kg-m (11 to 18 ft-lb)
- 10 Push sector shaft against ball nut gear by gradually turning adjusting screw clockwise until sector shaft gear lightly meshes with ball nut gear and then temporarily secure adjusting screw with lock nut
- 11 Install gear arm on sector shaft and move sector shaft several times from the side of gear arm to see that it turns smoothly
- 12 Adjust the backlash at the neutral position of gear arm by turning adjusting screw in or out so that the movement of the gear arm top end is less than 0 1 mm (0 004 in) See Figure ST-30

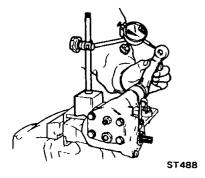


Fig ST-30 Measuring backlash

13 Turn adjusting screw clockwise approximately 1/8 to 1/6 rotation and then tighten lock nut to 1 7 to 2 5 kg-m (12 to 18 ft-lb) after moving sector shaft several times See Figure ST-31

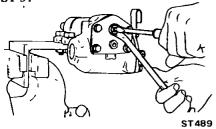


Fig ST-31 Tightening lock nut

14 Fill assembly with recommended gear oil of approximately 0 28 liter (% US pt, ½ Imp pt) through filler hole and install filler plug

Tighten adjusting screw additionally 1/2 to 1/2 turn from fully turned position

Tightening torque
Right-hand drive model
2 to 3 kg-m (14 to 22 ft-lb)
Left-hand drive model

Tighten adjusting screw additionally ¼ to ½ turn from fully turned position

INSTALLATION

Install steering gear in the reverse order of removal

Observe the following instructions

1 Position steering gear and rubber coupling in place, then install and tighten bolts securing steering gear housing to body side member Tighten to 7 to 8 kg-m (51 to 58 ft-lb)

Tighten bolt securing rubber coupling to worm shaft to 4 to 5 kg-m (29 to 36 ft-lb)

Notes

- a Align the groove in worm shaft with the bolt hole in rubber coupling flange yoke, and press coupling bolt through the undercut section of worm shaft
- b Align four grooves of gear arm serrations with four projections of sector shaft serrations, and install and tighten lock washer and nut to the torque of 13 to 15 kg-m (94 to 108 ft-lb)

STEERING LINKAGE

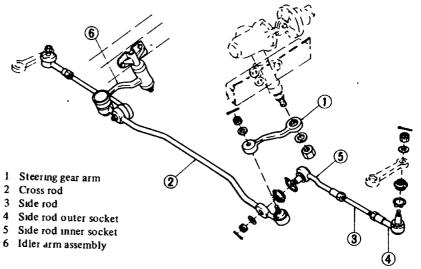


Fig ST-32 Steering linkage

REMOVAL

- 1 Jack up the front of car and support it on safety stands
- 2 Remove cotter pins and nuts fastening side rod ball studs to knuckle arms
- 3 To detach side rod ball studs from knuckle arms, insert Steering Ball Joint Remover ST72520000 between them and strike the top of the tool with a hammer If this operation must be done without the tool, strike knuckle arm boss with a hammer backing up the opposite side of it with a large hammer and ball stud is free from knuckle arm

Note Be careful not to strike the ball stud head, the ball socket of side rod and side rod with a hammer

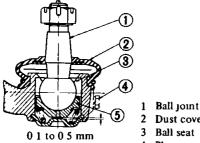
- 4 Remove ball stud of cross rod from gear arm, and remove idler arm from cross rod in the same manner as described in step 3 above
- 5 Remove idler assembly from side member by taking off two fixing bolts

DISASSEMBLY

1 Disconnect both side rods from cross rod, following the procedure for removal of side rod ball joints at knuckle arm sides

Remove idler arm nut and disassemble idler assembly

INSPECTION AND REPAIR


Ball loint

When ball stud is worn and axial play is too excessive, replace

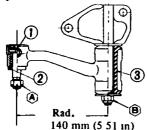
Axial play 0 1 to 0 5 mm (0 004 to 0 020 in) Swing torque 0 5 kg-m (4 ft-lb)

When dust cover is broken or deformed, replace

Note To renew grease, replace plug with a grease nipple, and apply recommended multi-purpose grease to ball joints, as shown in Figure ST-34, through grease nipple until grease is forced out through dust cover-to-joint socket clearance

(0 004 to 0 020 in) ST179

Dust cover Ball seat


Plug

Spring seat

Fig ST-33 Sectional view of ball stud (side rod)

Idler arm assembly

Check nylon bushing of cross rod joint and rubber bushing of idler arm for breakage, wear or play, and if necessary replace

1 Nylon bushing

2 Dust cover 3 Torsion rubber Tightening torque 5 5 to 10 kg-m

(40 to 72 ft-lb)

40 to 50 kg-m ST180 (29 to 36 ft-lb)

> Fig ST-34 Sectional view of idler assembly

Cross rod and side rod

Check side rods and cross rod for breakage, bend or crack, and replace if necessary

ASSEMBLY AND ADJUSTMENT

Assemble steering linkage in the reverse order of disassembly

Observe the following instructions

Ball joints

Before installing a new dust cover, be sure to pack with the recommended multi-purpose grease

Tightening torque Ball stud 5 5 to 10 0 kg-m (40 to 72 ft-lb)

Notes

- a When tightening ball stud, be careful not to allow grease to get on its tapered section
- b Align the cotter pin holes in the tightening directions
- c Be sure to insert new cotter pin in place and bend it securely

Idler arm assembly

When assembling idler assembly, observe the following instructions

Apply soapy water on the outer circumference of bushing

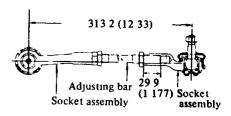
Carefully press bushing into idler body until it protrudes

Tighten idler nut to 4 0 to 5 0 kg-m (29 to 36 ft-lb)

Cross rod and side rods

When side rod sockets and side rod adjusting bar are separated, adjust side rod length correctly

Adjustment should be made between ball stud centers See Figure


Standard distance between inner and outer ball stud centers

313 2 mm (12 33 in)

Notes

- a Be sure to screw adjusting bar in socket properly
- b Make sure that adjusting bar is screwed in socket by 29 9 mm (1 177 in) min
- Tightening torque

Side rod adjusting bar lock nut 8 to 10 kg-m (58 to 72 ft-lb)

Unit mm (in)

ST343

Fig ST-35 Standard side rod length

INSTALLATION

Install steering linkage in the reverse order of removal

Observe the following instructions

Tightening torque

Ball stud

5 5 to 10 0 kg-m (40 to 72 ft-lb) Idler body to frame bolts 4 4 to 6 1 kg-m (32 to 44 ft-lb)

Note Align the cotter pin holes in the tightening directions

Check wheel alignment, and if necessary adjust

See Section FA

SERVICE DATA AND SPECIFICATIONS

Steering gear type Recirculating ball type

Steering angle inner wheel degree 37° to 38°

outer wheel degree . $30^{\circ}40'$ to $32^{\circ}40'$

Turns of steering wheel (lock to lock) 3 6

Ball stud axial play mm (in) 0 1 to 0 5 (0 004 to 0 020)

swing torque kg-m (ft-lb) less than 0 5 (4)

Steering wheel play mm (in) less than 35 (1 38)

at outer circumference of steering

wheel

Worm bearing starting torque

new bearing kg-cm (in-lb) 4 0 to 8 0 (3 5 to 6 9) readjusted bearing kg-cm (in-lb) 4 0 to 8 0 (3 5 to 6 9)

Worm bearing shim

Standard total thickness mm (in) 1 5 (0 059)

Adjusting shim No Thickness mm (in)

No	Thickness mm (in)
1	0 762 (0 0300)
2	0 254 (0 0100)
3	0 127 (0 0050)
4	0 050 (0 0020)

End play between sector shaft and adjusting screw mm (in)

0 01 to 0 03 (0 0004 to 0 0012)

Adjusting shim No Thickness mm (in)

1 1 575 to 1 600 (0 0620 to 0 0630)
2 1 550 to 1 575 (0 0610 to 0 0620)
3 1 525 to 1 550 (0 0600 to 0 0610)
4 1 500 to 1 525 (0 0591 to 0 0600)
5 1 450 to 1 475 (0 0571 to 0 0581)

Gear backlash at gear arm top end mm (in) less than 0 1 (0 004)

Tightening torque kg-m (ft-lb)

Steering gear

 Gear arm nut
 13 to 15 (94 to 108)

 Rear cover bolts
 1 5 to 2 5 (11 to 18)

 Sector shaft cover bolts
 1 5 to 2 5 (11 to 18)

 Sector shaft adjusting screw lock nut
 1 7 to 2 5 (12 to 18)

 Steering gear housing to body bolts
 7 0 to 8 0 (51 to 58)

Steering System

Steering linkage	
Idler arm to frame bolts	4 4 to 6 1 (32 to 44)
Ball stud nuts	5 5 to 10 0 (40 to 72)
Side rod lock nuts	8 to 10 (58 to 72)
Column shaft	
Steering wheel nut	3 8 to 5 2 (27 to 38)
Column clamp bolts	0 8 to 1 1 (61 to 8)
Rubber coupling to worm shaft bolt	4 0 to 5 0 (29 to 36)
Rubber coupling securing bolts	15 to 22 (11 to 16)

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Steering wheel moves heavily	Wheel alignment out of specifications or air pressure in tires too low	Re-align or inflate tires to correct pressure
	Steering linkage out of adjustment	Re-adjust and see relative topic under Front Suspension
	Steering column out of alignment	Repair
Steering wheel returns but sluggishly	Wheels out of alignment or air pressure in thes too low	Repair or inflate tires to correct air pressure
	Faulty steering linkage	Replace and see relative topic under Front Suspension
Car pulls to one side	Wheels out of proper alignment	Re-align
	Wheel bearing out of adjustment	Readjust
	Faulty steering linkage	Replace and see relative topic under Front Suspension

SPECIAL SERVICE TOOLS

No	Tool number & tool name	Description	For use	Reference page or Figure No
1	ST27180001 Steering wheel puller	This tool is used to drive out steering wheel Caution Do not hammer on steering column shaft	B210 610 710	Fig ST-3
		S S	E116	

	· · ·	<u> </u>	,	
No	Tool number & tool name	Description Unit mm (in)	For use on	Reference page or Figure No
2	ST29020001 Steering gear arm puller	This tool is used to remove steering gear arm from steering sector shaft Note Strike the side of the gear arm with double hammer to ease removal 60 (2 36) 90 (3 54) 61 5 (2 421) 60 (2 362) SE117	B210 610 710	Fig ST-20
3	KV48100300 Steering gear attachment	This tool is used to mount steering gear in a vise	B210 610 710	Fig ST-22
4	ST3127S000 Preload gauge 1 GG91030000 Torque wrench 2 HT62940000 Socket adapter 3 HT62900000 Socket adapter	This tool is used to measure worm bearing preload 2 1/4" 四 × 3/8" 凸 3/8" 凹 × 1/2 · 凸	All models	Fig ST-27
5	ST72520000 Steering ball joint remover	This tool is placed between knuckle arm and steering ball joint to facilitate the disengagement of ball-joint section Caution Do not hammer on bolts SE399	B210 610 710	Page ST-11

DATSUN MODEL 610 SERIES

SECTION FE

ENGINE CONTROL, FUEL & EXHAUST SYSTEMS

ENGINE CONTROL SYSTEM FE- 2

FUEL SYSTEM

EXHAUST SYSTEM

FE

FE- 3

FE- 6

NISSAN

NISSAN MOTOR CO., LTD.

ENGINE CONTROL SYSTEM

CONTENTS

ACCELERATOR SYSTEM
DESCRIPTION
REMOVAL AND INSTALLATION

FE-2	INSPECTION
FE-2	ADJUSTMEN?
כבים	

FE-2 FE-2

ACCELERATOR SYSTEM

DESCRIPTION

The accelerator control system is of a linkage type To align the control linkage, adjustable rod(s) are used

Smooth and responsive movement of the linkage is accomplished through the use of nylon ball joints. The ball joint should be lubricated with multipurpose grease at recommended maintenance intervals.

The torsion shaft is supported by bearing which is made from polyacetal resin. The resin bearing and all metal sliding parts should also be lubricated with multi-purpose grease at recommended maintenance intervals.

REMOVAL AND INSTALLATION

Accelerator pedal & pedal arm

- 1 Remove two screws and accelerator pedal
- 2 Disconnect ball joint at the upper end of pedal arm
- 3 Remove snap ring, then remove pedal arm from pedal arm bracket
- 4 To install, reverse the order of removal

Torsion shaft & torsion shaft support

- 1 Remove return spring
- 2 Disconnect connecting rod (ball joint assembly) from torsion shaft
- 3 Remove cotter pin and separate torsion shaft from carburetor throttle lever
- 4 Remove torsion shaft

- 5 Remove two mounting bolts and torsion shaft support
- 6 To install, reverse the order of removal

Beli-crank bracket

- 1 Remove return spring
- 2 Disconnect two connecting rods (two ball joint assemblies) from bellcrank
- 3 Remove three mounting nuts, then remove bell-crank bracket assembly from dash panel
- 4 To install, reverse the order of removal

Notes

- a Ball jointed sections can be separated from each other by lightly pulling apart
- b When removing any parts of accelerator linkage, do not disturb adjusting screw of ball joint assembly to save control linkage adjustment. In case ball joint assembly should be adjusted, refer to page FE-2 or 3 for Adjustment.

INSPECTION

1 Check accelerator rods to ensure that they are neither twisted nor bent

Also check ball joints for cracks or wear Repair or, if necessary, replace 2 Check return spring for fatigue or damage Replace if necessary

ADJUSTMENT

Accelerator linkage

1 To facilitate adjustment, first adjust, according to the specifications, the joint-to-joint length of ball joint assemblies A and B

Unit mm (in)

	Screwed length	Joint-to-joint length
Ball joint assembly-A	10 (0 394)	208 (8 19)
Ball joint assembly-B	8 (0 315)	652 (25 7)

2 Adjust length L to the value shown below

Length "L" 87 mm (3 43 in)

3 Adjust the screw at location Q to the value shown below

Length "M" 84 5 mm (3 33 in)

- 4 Adjust the screw at location D so that the carburetor throttle shaft is set at the "IDLE" position
- 5 After completing the adjustment as outlined in steps 1 through 4, again check to be sure that dimension M is the specified value If necessary, readjust the screw at location Q
- 6 Depress the accelerator pedal With the carburetor throttle valve fully opened, adjust the height of the stopper bolt so that it touches the pedal arm From that position, turn the stopper bolt one full turn and secure the stopper bolt with a lock nut

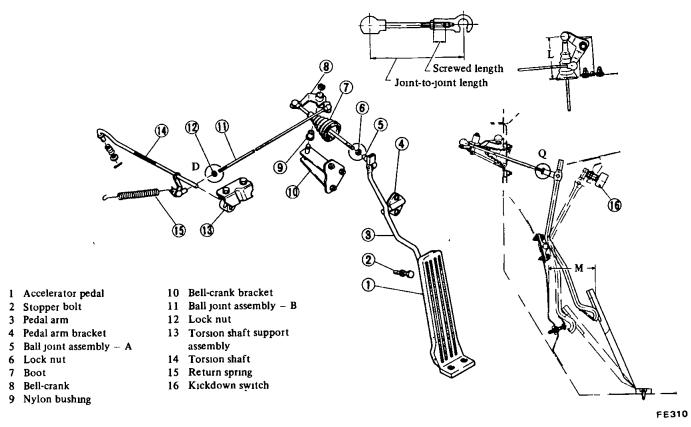


Fig FE-2 Engine control system

Kickdown switch

On automatic transmission models, it is also necessary to adjust kickdown switch Kickdown switch adjustment is correct if kickdown switch is actuated by stopper located on tip end of pedal

arm when accelerator pedal is depressed fully Always tighten lock nut securely when proper adjustment is obtained See Figure FE-2

FUEL SYSTEM

CONTENTS

FE-3

FE-5

FE-5

FE-5

FUEL PIPING

INSPECTION

INSTALLATION

FUEL STRAINER

DESCRIPTION	
REMOVAL	
FUEL TANK	(Sedan and Hardtop)
FUEL TANK	(Station Wagon)

DESCRIPTION

There are two types of fuel tank One type is used on Sedan and Hardtop, and the other used on Station Wagon

The fuel tank for the Sedan and Hardtop models is 55 liters (14 ½ US

gal, 12 1/2 Imp gal) in capacity The tank unit is located to the rear of the seat back and secured in place with a total of four bolts, two on the front and one on each side of the tank

The capacity of the fuel tank for the Station Wagon model is 52 liters (13 % US gal, 11 % Imp gal) This unit is located between the front mounting bracket and the rear crossmember and secured in place with four bolts

FE-6

FE-6

FE-6

FE-6

The fuel strainer is of a nylon, cartridge type

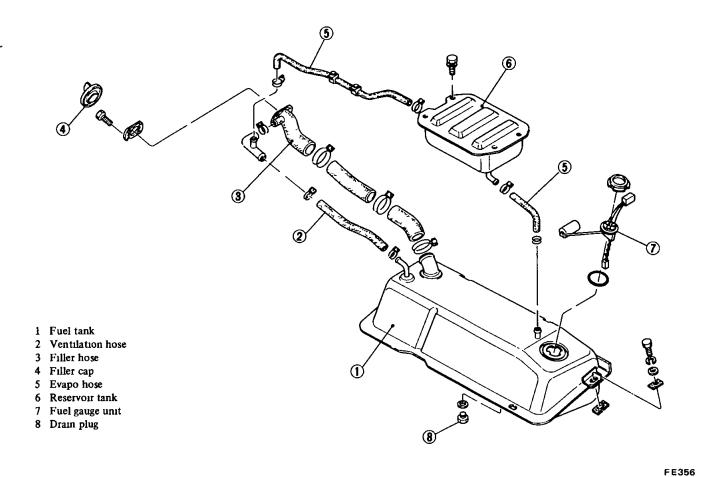
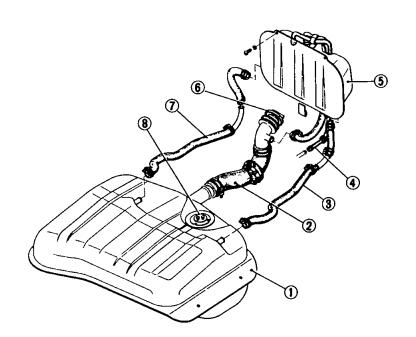



Fig FE-3 Fuel tank (Sedan and Hardtop)

- 1 Fuel tank
- 2 Filler hose
- 3 Ventilation rear hose
- 4 Vapor vent hose
- 5 Reservoir tank
- 6 Filler cap
- 7 Ventilation front hose
- 8 Fuel gauge unit

FE357

Fig FE-4 Fuel tank (Station Wagon)

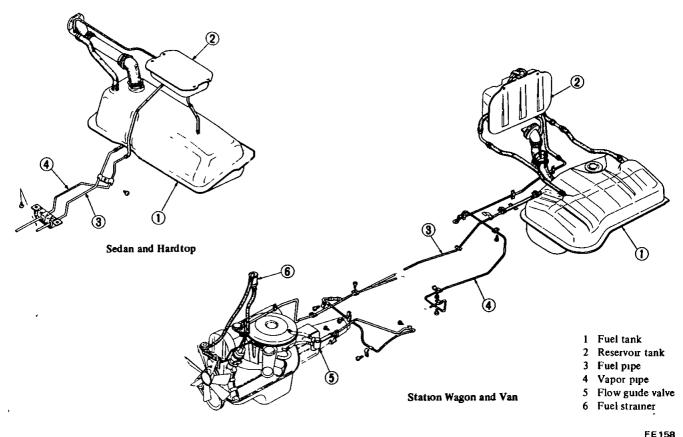


Fig FE-5 Fuel piping

REMOVAL

FUEL TANK (Sedan and Hardtop)

- 1 Remove battery ground cable
- 2 Remove trunk front finisher
- 3 Take out spare tire Place a suitable container under fuel tank drain plug to receive the remaining fuel in tank Remove plug and then drain plug to drain fuel into the container

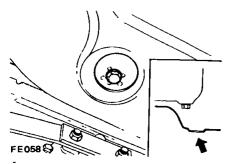


Fig FE-6 Draining fuel

- 4 Disconnect filler hose, ventilation hose, breather hose and outlet hose (tank side)
- 5 Disconnect wires from fuel tank unit gauge

- 6 Detach rear seat cushion and seat back Remove four bolts (two at the front and one on each side) securing fuel tank in place, and take out fuel tank
- 7. The unit gauge is of a bayonet type and can be taken out by turning lock plate counterclockwise with a screwdriver
- 8 Reservoir tank removal

Unfasten trim clip and detach rear parcel shelf finish Disconnect three breather tubes

Loosen four bolts securing reservoir tank, and take out the tank

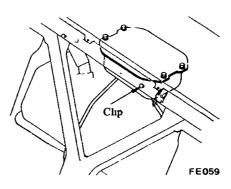


Fig FE-7 Removing reservoir tank

FUEL TANK (Station Wagon)

- Remove battery ground cable
- 2 Remove inspection cover from rear floor Disconnect wires from unit gauge

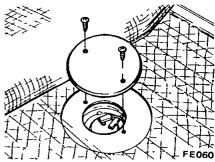


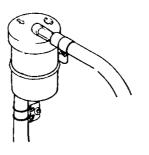
Fig FE-8 Removing inspection cover

- 3. Take out spare tire
- 4 Loosen drain plug and allow fuel to drain into a suitable container
- 5. Disconnect filler hose, ventilation hose and outlet hose (tank side)
- 6 Remove four bolts from fuel tank, and detach fuel tank
- 7 Detach bayonet-type unit gauge by turning lock plate counterclockwise with a screwdriver

- 8 Reservoir tank removal
- (1) Remove trim board from the right side of rear body
- (2) Unfasten three clamps, and disconnect ventilation hoses
- (3) Remove grommet from vapor hose, and disconnect hose
- (4) Remove two screws on the top face of reservoir tank
- (5) Lift up reservoir tank, and unfasten latches at lower flange section Slide out reservoir tank

Notes

- a Use care not to spill fuel over trunk room floor
- b Plug filler opening to prevent entry of dust or dirt


FUEL PIPING

All fuel lines can be easily disconnected by unfastening clamps and clips. Do not disconnect any fuel line unless necessary.

Note Plug hose and tube openings to prevent entry of dust or durt

FUEL STRAINER

- 1 Disconnect fuel hoses from fuel strainer by removing clamps
- 2 Remove fuel strainer

FE221
Fig FE-9 Fuel strainer

INSPECTION

1 Fuel tank

Check fuel tank for cracks or distortion If necessary, replace

2 Fuel hose

Inspect all hoses for cracks, fatigue, sweating or deterioration Replace any hose that is faulty

3 Fuel tube

Replace any fuel tube that is cracked, rusted, collapsed or distorted

4 Fuel strainer

Replace fuel strainer at recommended maintenance intervals or if it becomes clogged or restricted Fuel strainer is of a cartridge type and cannot be cleaned

Always replace with a new one

INSTALLATION

Install any parts of fuel system in the reverse order of removal Observe the following notes

Notes

- a Install hose clamps securely Do not tighten excessively to avoid damaging hose
- b Do not kink or twist hoses and tubes when they are routed
- c Install filler hose after fuel tank has been mounted in place Failure to follow this rule could result in leakage from around hose connections
- d Fuel gauge tank unit
 When installing fuel gauge tank
 unit, align the projection of gauge
 tank unit with the notch in fuel
 tank and tighten it securely Be sure
 to install gauge tank unit with
 O-ring in place
- e Run the engine and check for leakage at connections

EXHAUST SYSTEM

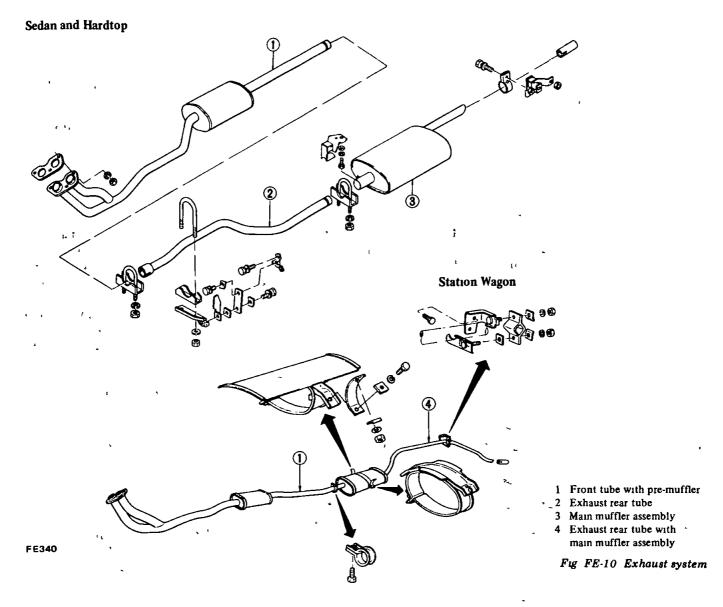
CONTENTS

DESCRIPTION REMOVAL INSPECTION

FE-6 INSTALLATION FE-7 SEALING COMPOUND FE-7 FE-8

FE-7

DESCRIPTION


The exhaust system consists of a front tube with pre-muffler assembly, a rear tube (with main muffler assem-

bly for Station Wagon), a main muffler assembly, mounting hangers and brackets

The spring constant of the mounting insulator is low in the vertical direction, so that exhaust system

vibration is not transmitted to the body

A protective heat shield is placed over the main muffler to prevent the trunk floor from being heated by the main muffler

REMOVAL

- 1 Remove bolts and nuts from main muffler clamp .
- 2 Break old sealant off the joint while lightly tapping around with a hammer, and twist muffler
- 3 Using a rubber hammer, tap the front end of the muffler while pulling it toward rear

The main muffler can then be pulled out.

- 4 Remove bolts and nuts from rear exhaust tube clamp Utilizing the same procedure as for the main muffler, remove rear exhaust tube from front exhaust tube
- 5 Remove nuts securing exhaust manifold to front exhaust tube, and detach front exhaust tube from exhaust manifold See Figure FE-11

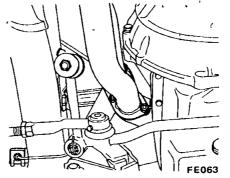


Fig FE-11 Removing front tube

INSPECTION

1 Check muffler and tubes for cracks or damage

Replace any part that is damaged beyond limits

2 Replace bracket and hanger rubber parts that are cracked, fatigued, or sweated

INSTALLATION

- 1 Wipe clean all the contact portion, allow them to dry thoroughly
- 2 To install, reverse the order of removal

Notes

- a Make sure that there is a minimum clearance of 18 mm (0.71 in) between body (or frame) and exhaust system component parts
- b Insert each exhaust tube into its place until stopper touches mating tube, and clamp securely See Figure FE-13.

Tightening torque

 kg-m (ft-lb)

 Exhaust manifold to front exhaust tube nuts
 19 to 2.5 (14 to 18)

 U-bolt securing nuts
 14 to 16 (10 to 12)

 C-clamp securing bolts
 14 to 16 (10 to 12)

 Mounting rubber securing bolts
 12 to 14 (9 to 10)

SEALING COMPOUND

If exhaust tubes are separated at connection to renew muffler assembly, etc, use the Genuine Nissan Sealant

"Exhaust Sealant Kit 20720-N2225" (see Figure FE-12) or equivalent to eliminate gas leakage past the joint Be sure to observe the following procedure

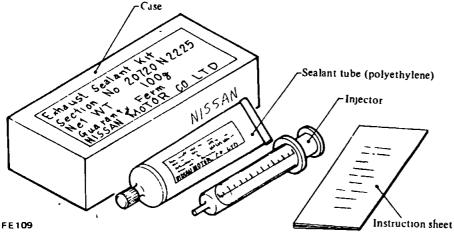


Fig FE-12 Exhaust sealant kit

- 1 Wipe clean all the contact portions of tube joints, allow them to dry thoroughly
- 2 Temporarily mount in place muffler assembly (and/or exhaust tube) as an assembled unit on the car
- 3 Insert the male tube into the female tube fully until the front end of the female tube touches the stopper on the male tube See Figure FE-13
 - 15 mm (0 59 in)

 Male tube

 Female tube

 Stopper

 4 4 mm (0 173 in)

Fig FE-13 Exhaust tube connections

FF110

- 4 Torque U-bolt securing nuts and exhaust tube mounting bolts to specifications
- 5 Squeeze 5 to 6 cc (0 31 to 0 37 cu in) of sealant into injector from the sealant tube See Figure FE-14

Be sure to place the cap back to the sealant tube since sealant will dry

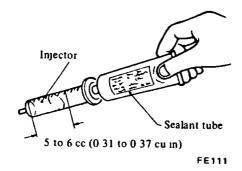
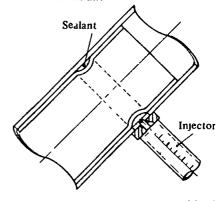



Fig FE-14 Squeezing sealant to injector

6 Position the nozzle of injector to the guide and press it there firmly Inject sealant slowly until sealant begins to flow out of the slit of the tube

This indicates that the bead requires no further sealant Excessive sealant can cause a clogged tube See Figure FE-15

After injecting, wash injector thoroughly in clean water to remove all traces of sealant

FE163

Fig FE-15 Injecting sealant

- 7 Start the engine and let it idle slowly for ten minutes (minimum) to harden sealant with the heat of exhaust gas
- 8 Check the condition of sealant before driving the car

It is also essential that the car should not be accelerated sharply for 20 to 30 minutes subsequent to this operation

Notes.

- The sealant should be used within guaranty term indicated on the kit case
- b. Exposure of sealant to the skin may cause a rash Wash sealant off the skin with water

- c Do not keep the sealant tube in a place where the ambient temperature is 40°C (104°F) or above.

 A sealant hardened at 40°C (104°F) or above cannot be used.

 The most suitable storage tempera-
- ture is from 15 to 35°C (59 to 95°F). If sealant becomes hardened because of low temperatures, warm the sealant tube with lukewarm water until the sealant is softened Do not warm the tube at a tempera-
- ture of over 40°C (104°F) for a long period of time
- d. Thoroughly read the instruction sheet furnished with the kit before using the sealant.

SERVICE MANUAL

DATSUN MODEL 610 SERIES

NISSAN

NISSAN MOTOR CO., LTD.

SECTION BF

BODY

GENERAL DESCRIPTION	BF- 2
UNDERBODY ALIGNMENT	BF- 5
BUMPERS	8F- 9
RADIATOR GRILLE AND FRONT APRON	BF-10
FRONT FENDERS	BF-11
ENGINE HOOD AND COWL TOP GRILLE	BF-12
TRUNK LID (Sedan and Hardtop)	BF-14
TAIL GATE (Station wagon)	BF-17
DOOR	BF-19
SEATS	BF-31
WINDSHIELD GLASS (Adhesive caulked glass)	BF-35
INTERIOR TRIMS	BF-39
FLOOR MAT AND CENTER CONSOLE	BF-41
MOULDING	BF-44
SPECIAL TOOLS	BF-50

BF

GENERAL DESCRIPTION

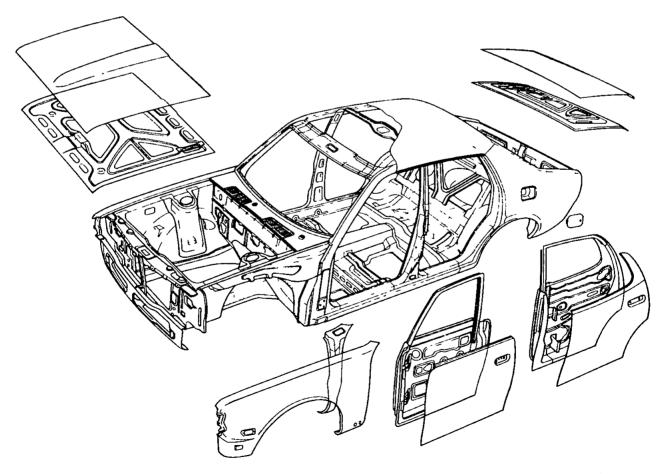
The 610 model series has three body types, Sedan, Hardtop and Station Wagon Each body is of unitized construction and is robust, light, and safe

The body has a long nose and short deck The engine compartment is wide enough to permit easy accessibility. On Sedan and Hardtop models, the trunk has a large capacity because of lowered spare tire compartment.

Insulation between the floor portion and the shock absorber mounting member, reduces transmission of vibration to the floor panel

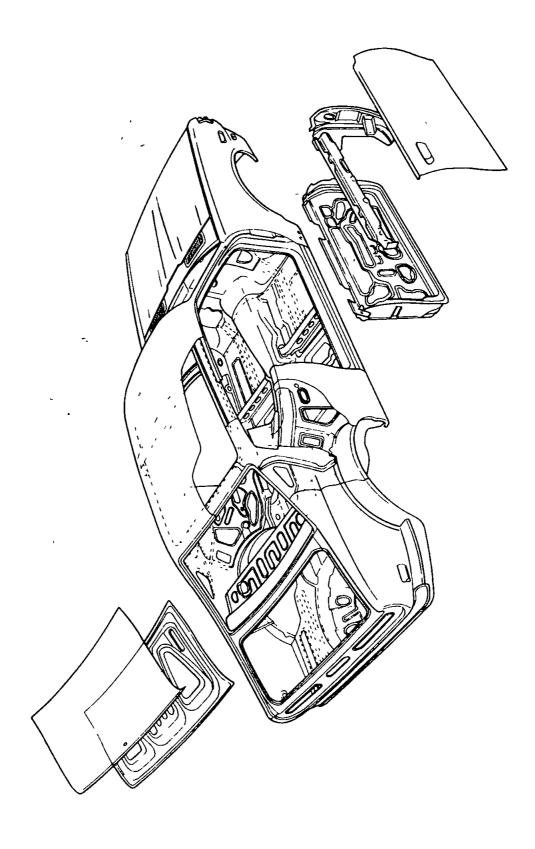
Under coating is applied to the lower surface of the floor Also, asphalt seats are placed on the upper surface of the floor to reduce interior vibration and noise

For washing inside, the floor is provided with water drain holes


The front and rear ends of the body are constructed so as to absorb impact energy during a crash

On Hardtop model, the front pillar,

door support, roof rail, and rear quarter are specially reinforced due to a wider door dimension


Body parts for the Sedan, Hardtop and Station Wagon models are to a great extent interchangeable For instance, the hood, front fender, hood ledge, front door, and dash board for the Sedan are exactly the same as those for the Station Wagon

Air and water tightness is improved around the door, weatherstrips, and welded panel portions

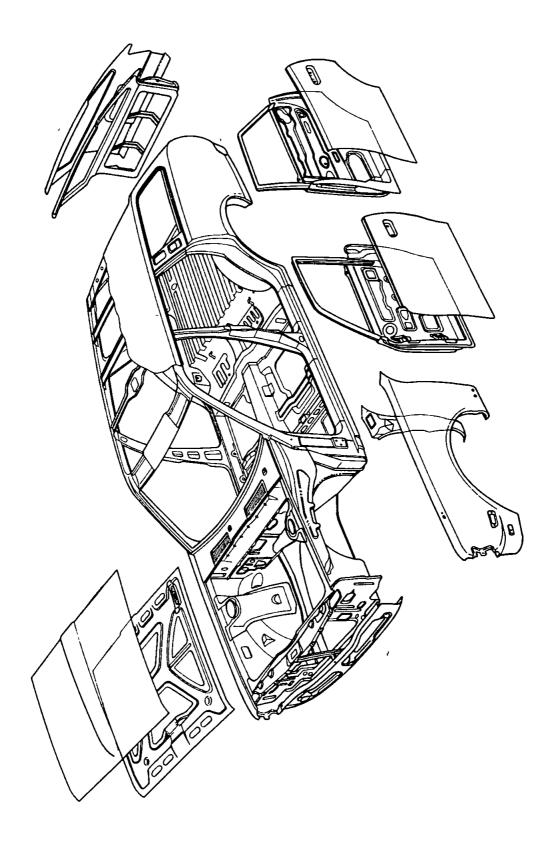

BF420A

Fig BF-1 Body construction of the Sedan

BF421A

Fig BF-2 Body construction of the Hardtop

BF422A

Fig BF-3 Body construction of the Station Wagon

UNDERBODY ALIGNMENT

CONTENTS

UNDERBODY GENERAL SERVICE		TRAMMING SEQUENCE	BF-5
INFORMATION	BF-5	Sedan and Hardtop	BF-6
ALIGNMENT CHECKING PROCEDURE	BF-5	Hardtop	BF-7
PRINCIPLES OF TRAMMING	BF-5	Station Wagon	BF-8
CAR PREPARATION	BF-5		

UNDERBODY GENERAL SERVICE INFORMATION

Since each underbody component directly affects the overall strength of the body, it is essential that proper welding, sealing and rust-proofing techniques be observed during service operations

Whenever the body is repaired, be sure to provide the repaired body parts with rust-proof

When rust-proofing critical underbody component, it is essential that a good quality air dry primer such as corrosion resistant zinc chromate be used

Do not use combination type primer surfacers

ALIGNMENT CHECKING PROCEDURE

Misalignment in the underbody affects the front fender, door, trunk lid and window alignments, and also the tail gate and rear body opening alignments in the case of the Station Wagon Underbody misalignment particularly affects the suspension system, thereby causing various problems that arise from suspension misalignment. It is essential that underbody components be aligned within the specified dimensions given in Figures BF-4 through BF-6.

In the event of a collision, it is important that underbody alignment be throughly checked and if necessary, realigned to the specified dimensions

There are many tools that may be employed to correct collision damage such as frame straightening machines, external pulling equipment, other standard body jacks

To assist in checking alignment of the underbody components, repairing minor underbody damage or locating replacement parts, the following underbody dimensions and alignment checking information are presented

PRINCIPLES OF TRAMMING

Figures BF-4 through BF-6 show reference locations required to determine the extent of misalignment present in underbody structure, the reference locations are symmetrical about the center line of the car

Tramming underbody correctly calls for two measurements, the vertical dimension from the datum line to the points to be measured, and the horizontal distance between any two points of measurement

Note that precision measurement can be made only when the tramming gauge is parallel to the underbody

If one of the two reference points is in misaligned area, the parallel plane between the body and tram gauge may not exist, indicating the necessity of underbody repair

CAR PREPARATION

Preparing the car for the underbody alignment, check involves the following

- 1 Place the car on a level surface
- 2 The weight of the car should be supported at wheel locations
- 3 A visual damage inspection should be made to eliminate unnecessary measuring Obviously damaged or misaligned areas may often be located visually

TRAMMING SEQUENCE

The tramming sequence will vary depending upon the nature and location of the misaligned area Prior to performing any tramming operation, the accuracy of reference points to be used must be determined A measurement that originates from a reference point included in a damaged area will produce untrue results and confuse the evaluation of the underbody condition Unlike the conventional type of frame design, the unitized type of body construction seldom develops the condition of "diamond" in the floor pan area as a result of front or rear end collision Therefore, underbody alignment checking can usually originate from the body floor pan area. If inspection indicates that these locations have been disturbed and are not suitable for measuring, one of the undamaged suspension locations should be used as an initial reference point If a rare situation should exist where all of these locations are not suitable as

reference points, repair operations should begin with the body floor pan area All other underbody com-

ponents should be aligned progressively from this area

Sedan and Hardtop

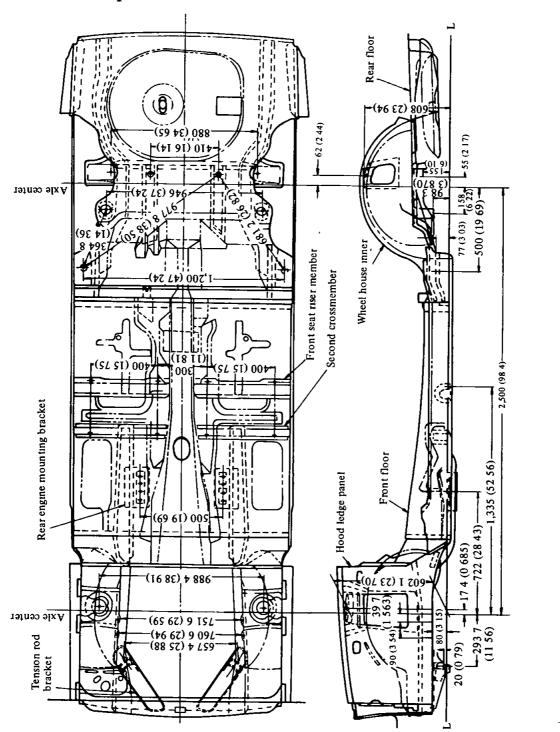
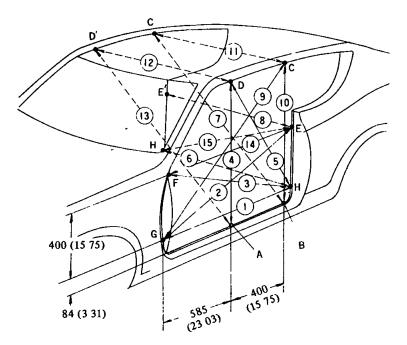


Fig BF-4 Underbody alignment (Sedan and Hardtop)

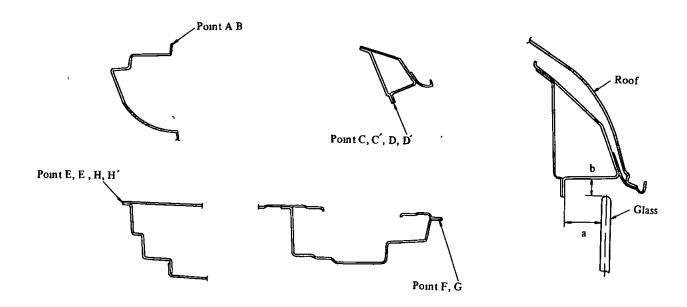
BF269A

BF-6


Just mm (m)

Hardtop

The body surrounding the door should be repaired according to the


following specifications The body should also be repaired so that the

distance between door glass and the door surrounding panels is equal

No	Measurement position	Length mm (in)
1	G to H	1,046 0 (41 18)
2	G to E	1,137 2 (44 77)
3	F to H	1,090 5 (42 93)
4	A to D	902 2 (35 52)
5	D to H	939 5 (36 99)
6	H to H	1,336 0 (52 60)
7	B to C	1,516 6 (59 71)
8	E to E	1,303 0 (51 30)
9	C to G	1,281 5 (50 45)
10	B to C	903 2 (35 56)
11	C to C	1,116 0 (43 94)
12	D to D'	1,116 6 (43 96)
13	A to D'	1,516 3 (59 70)
14	E to F	1,033 0 (40 67)
15	F to H	1,374 1 (54 10)

Tolerance error ±2 mm (0 08 in)

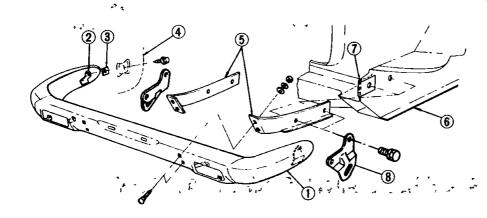
BF409
Fig BF-5 Side body alignment

Fig BF-6 Underbody alignment (Station Wagon)

BUMPERS

CONTENTS

FRONT BUMPER Removal Installation

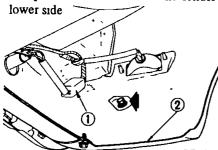

BF- 9	REAR BUMPER
BF- 9	Removal
BF- 9	Installation

BF- 9 BF- 9

BF-10

FRONT BUMPER

Removal

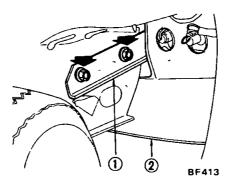


BF423A

- 1 Front bumper
- 2 Front bumper side bracket
- 3 Shim
- 4 Front fender
- Front bumper stay
- Body side member
- Spring nut
- 8 Tie-down hook

Fig BF-7 Exploded view of front bumper

- Disconnect battery ground cable 2
- Disconnect front turn signal lamp wire connectors
- Remove bolts retaining front bumper side bracket to front fender



1 Connector

2 Front fender

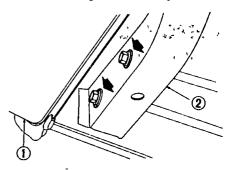
Fig BF-8 Removing front bumper side bracket installation

4 Remove bolts retaining front bumper stay to body side member and draw front bumper out of body

- 1 Front bumper stay
- 2 Front apron

Fig BF-9 Removing front bumper stay installation bolts

Installation

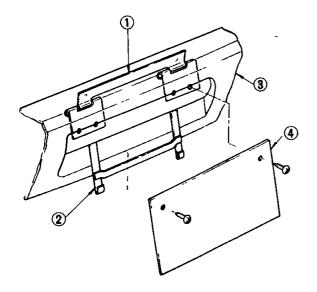

Install front bumper in reverse sequence of removal, noting the following point

Adjust bumper for proper alignment and tighten bolts securing bumper

REAR BUMPER

Removal

- 1 Disconnect battery ground cable Disconnect: wire connectors of
- lamp for license number plate. It is not necessary to disconnect them for the Station Wagon
- Remove bolts retaining rear bumper stay to body side member and draw rear bumper out of body


BF414

- Rear fender
- 2 Body side member

Fig BF-10 Removing rear bumper stay installation bolts

For the Sedan and Hardtop,

It is not necessary to remove rear license number plate as it is installed to body independently

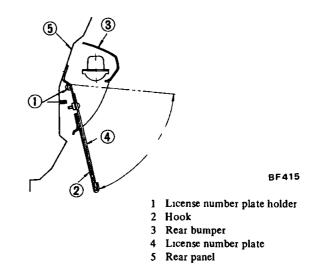


Fig BF-11 Exploded view of rear license number plate

Installation

Install rear bumper in reverse sequence of removal

RADIATOR GRILLE AND FRONT APRON

CONTENTS

REMOVAL

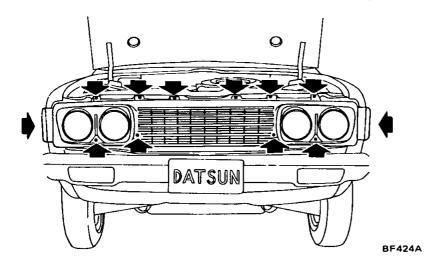
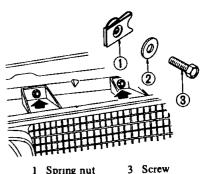
BF-10

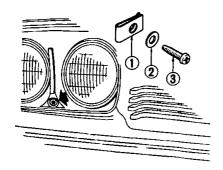
INSTALLATION

BF-11

REMOVAL

- Remove front bumper
- Remove radiator grille attaching screws and remove radiator grille


Fig BE-12 Removing screws attaching radiator grille

- 1 Spring nut
- 2 Plain washer

BF279A

Fig BF-13 Removing upper attaching screw and spring nut

- 1 Spring washer 3 Screw
- 2 Washer

BF280A

Fig BF-14 Removing lower attaching screw, washer, and spring nut

3 Remove screws attaching front apron to front fender

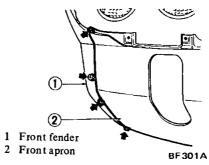


Fig BF-15 Removing screws attaching front apron to fender

4 Remove screws attaching front apron to hood lock stay and remove front apron

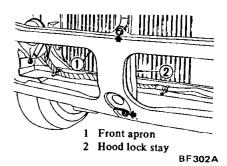


Fig BF-16 Removing screws attaching front apron to hood lock stay

INSTALLATION

Install radiator grille and front apron in reverse sequence of removal

When installing radiator grille, proceed the following manners

- 1 Install lower center attaching screw first and then install other screws
- 2 Be careful not to spill brake fluid, engine oil and any other chemical fluids on radiator grille to prevent from damage

FRONT FENDERS

CONTENTS

REMOVAL

BF-11

INSTALLATIOON

BF-12

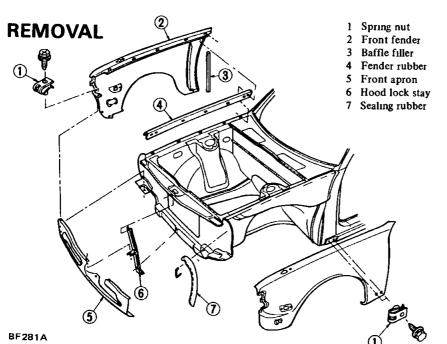
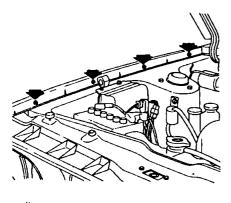



Fig BF-17 Exploded view of front fenders and apron

- 1 Open engine hood and support it in open position with a stay
- 2 Remove front bumper, side flasher, radiator grille, front apron, windshield wiper blades, cowl top grille and sill mouldings in the order
- 3 Remove fender attaching screws shown in the following illustrations

BF422

Fig BF-18 Removing screws attaching hood ledge to front fender

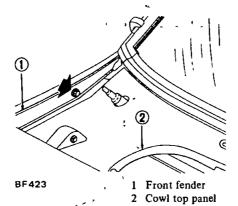


Fig BF-19 Removing screw attaching cowl top panel to front fender

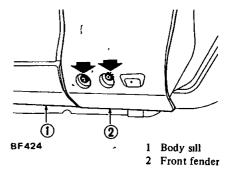


Fig BF-20 Removing screws attaching body sill to front fender lower end

INSTALLATION

Install front fenders in reverse sequence of removal

ENGINE HOOD AND COWL TOP GRILLE

CONTENTS

ENGINE HOOD
Removal
Installation
HOOD ALIGNMENT

BF-12	•	COWL	TOP	GRILLE	AND
BF-12		HOOD	HIN	3E	
BF-12		Rem	oval		
BF-12		Insta	llatio	n	

BF-14

BF-14

BF-14

ENGINE HOOD

Removal

- Open engine hood and protect body with covers to prevent scratch to the paint
- Mark hood hinge locations on 2 hood for proper reinstallation
- Support engine hood with hand and remove bolts securing hood hinge to hood Be careful not to let hood slip when bolts are removed

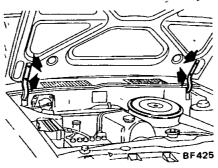


Fig BF-21 Removing bolts attaching hood

Remove hood from car

Installation

Install hood in reverse sequence of , removal 🕛

HOOD ALIGNMENT

Hood can be adjusted by bolts attaching hood to hood hinge, hood lock mechanism and hood bumpers Adjust hood for an even fit between front fenders and for a flush fit with the-front of fenders

Adjust , hood according to the following procedures

1 Adjust hood fore and aft and from side to side by loosening bolts attaching hood to hinge and repositioning hood

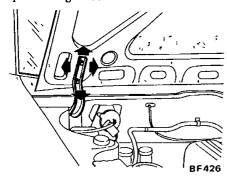


Fig BF-22 Adjusting bolts attaching hood

2 Loosen hood bumper lock nuts and lower bumpers until they do not contact with the front of hood when hood is closed

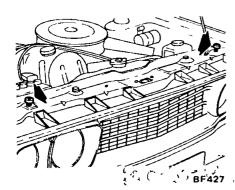
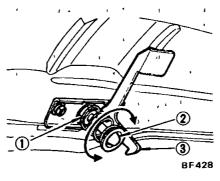
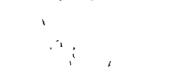
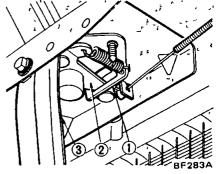



Fig BF-23 Adjusting hood bumper height

3. Adjust hood lock mechanism after hood has been properly aligned Hood lock male can be moved fore and aft and from side to side to align it with hood lock female by loosening attaching bolts


Hood lock male can also be moved up and down

Loosen lock nut of hood lock male part and move it up and down by turning it clockwise or counterclockwise as required



- 1 Lock nut
- 3 Safety catch
- 2 Hood lock male

Fig BF-24 Adjusting hood lock male

- 4 Lower engine hood 1 0 to 3 0 mm (0 039 to 0 118 in) from the top of front fender by adjusting hood lock male part
- 5 Raise two hood bumpers until engine hood is flush with fenders
- 6 Tighten hood lock male part lock nuts after the proper adjustment has been obtained
- 7 Make sure that female lever locks hood lock male part securely when hood is closed, and also safety catch retains hood properly when hood lock is released (See Figure BF-26)

- 1 Stopper
- 3 Hood lock stay
- 2 Hood lock female part

Fig BF-25 Adjusting hood lock female part

Notes When inspecting hood lock, note the following

- a Operation of safety catch lever
 Check caulking portion of safety
 catch lever for wear
 Check spring for weakness, and
 breakdown. If spring is broken,
 hood may be unlocked and open
 rapidly during driving
- b Operation of female lever
 Check female lever for smooth and
 correct operation
 Check spring for weakness and
 breakdown If female lever does not
 move smoothly, engaging stroke
 will be reduced, and it may be
 disengaged from hood lock

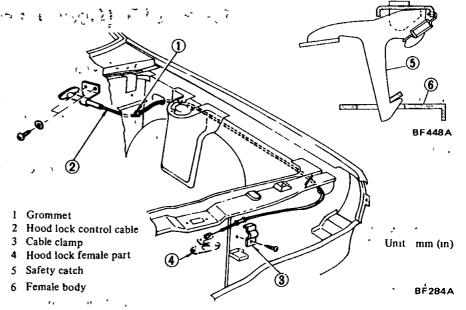
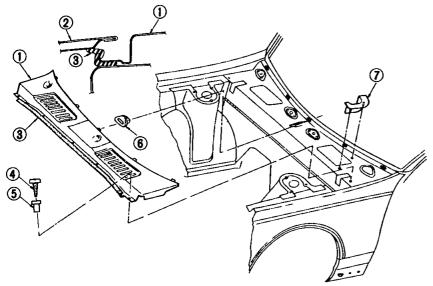


Fig BF-26 Exploded view of hood lock control

COWL TOP GRILLE AND HOOD HINGE


Removal

- 1 Open engine hood
- 2 Mark hood hinge locations on hood
- Protect body with covers to 3 prevent scratch to the paint
- Remove engine hood from hood hinge
- 5 Remove windshield wiper blades
- Remove attaching screws and grommets which retain cowl top grille front end
- Draw cowl top grille forwards Cowl top grille can also be removed without removing engine hood

Remove hood hinge clamp, pull hood hinge pin out of hood hinge bracket and remove hood hinge

Installation

Install cowl top grille and hood hinge in reverse sequence of removal

- 1 Cowl top grille
- Engine hood
- Cowl top sealing rubber
- 5 Grommet
- Cowl top panel cap
- 7 Cowl top baffle plate

Screw

Fig BF-27 Exploded view of cowl top grille

TRUNK LID (Sedan and Hardtop)

BF431

CONTENTS

TRUNK LID	BF-14	Removal and installation	BF-16
Removal and installation	BF-14	TRUNK LID LOCK CYLINDER	BF-16
Adjustment	BF-15	Removal	BF-16
TORSION BAR	BF-15	Installation	BF-16
Removal	BF-15	TRUNK LID WEATHERSTRIP	BF-17
Installation	BF-15	Removal and installation	BF-17
TRUNK LID HINGE	RF-16		,

TRUNK LID

Removal and installation

Open trunk lid and cover rear

fenders

- Mark trunk lid hinge locations on trunk lid for proper reinstallation
- 3. Support trunk lid by hand and remove bolts attaching trunk lid to hinge and remove trunk lid.

BF432

Fig BF-28 Removing bolts attaching trunk lid to hinge

4 Install trunk lid in reverse sequence of removal

TORSION BAR

Removal

- 1 Open trunk lid
- 2 Loosen screws attaching trunk room finisher and remove the finisher from the car
- 3 Support trunk lid in the open position and draw end of left torsion bar out of the hole drilled at side panel by hand

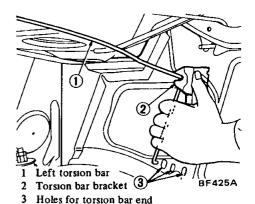


Fig BF-31 Drawing out torsion bar end

- 4 Remove torsion bar from torsion bar bracket and hinge
- 5 Remove right torsion bar in the same manner above

Adjustment

1 Loosen bolts attaching trunk lid to hinge and move trunk lid from side to side and fore and aft to align it with striker located on rear panel

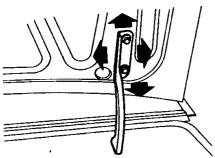


Fig BF-29 Adjusting trunk lid

2 To obtain a snug fit between trunk lid and weatherstrip, move striker up or down and from side to side as required

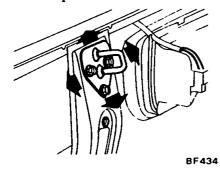


Fig BF-30 Adjusting trunk lid lock striker

Installation

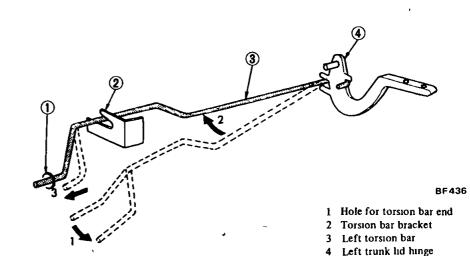
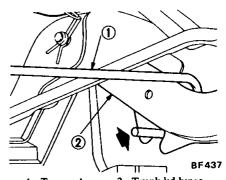



Fig BF-32 Installing left torsion bar

- 1 Support trunk lid in the open position
- 2 Position the end of right torsion bar first to right trunk lid hinge

1 Torsion bar 2 Trunk lid hinge

Fig BF-33 Positioning the end of right torsion bar to hinge

- 3 Twist torsion bar backwards and engage the bar in torsion bar bracket
- 4 Then, insert the end of torsion bar into the hole at side panel

Note Tension of torsion bar can be adjusted properly by selecting holes for torsion bar end

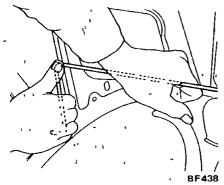


Fig BF-34 Twisting torsion bar

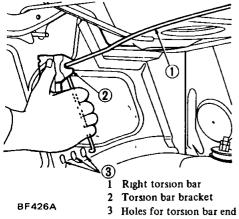


Fig BF-35 Inserting the end of right torsion bar into the hole

5 - . Install left torsion bar in the same manner above

TRUNK LID HINGE

Removal and installation

- 1 Open trunk lid and protect body with covers
- 2 Remove trunk lid
- 3 Remove torsion bars
- 4 Pull hinge clamps out of right and left hinges and remove washers and hinges from the car

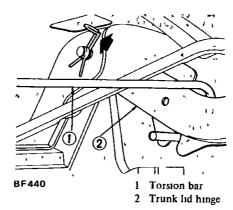
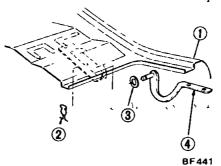



Fig BF-36 Removing trunk lid hinge clamp

- 1 Rear fender
- 3 Washer
- 2 Hinge clamp
- 4 Trunk lid hinge

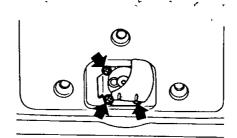
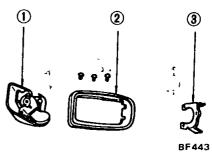
Fig BF-37 Removing trunk lid hinge

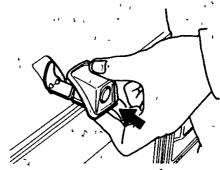
5 Install hinges in reverse sequence of removal

TRUNK LID LOCK CYLINDER

Removal :

- 1 Open trunk lid
- 2 Remove trunk lid lock from trunk lid
- 3 Loosen screws retaining cylinder and pull cylinder out of trunk lid


Fig BF-38 Removing cylinder attaching screws

- Lock cylinder
- 3 Clip
- 2 Insulator
 - Fig BF-39 Component parts of lock cylinder

Installation

1 Assemble lock cylinder and insert and push it into position until clip secures lock cylinder

BF44

Fig BF-40, Pushing lock cylinder into position

TRUNK LID WEATHERSTRIP

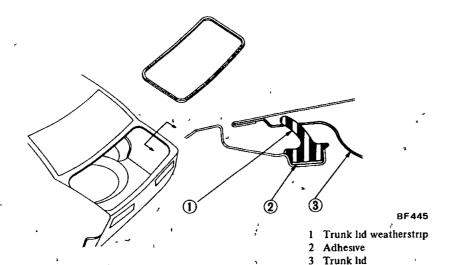


Fig BF-41 Sectional view of trunk lid weatherstrip

Removal and installation

- 1 Remove weatherstrip from body and wipe remaining adhesive away from body with non-lead gasoline, and then wash the surface with water
- 2 Coat body side and weatherstrip with adhesive
- 3 After coating with adhesive, leave it to dry for a while Install and press the corners first and then press the other parts

TAIL GATE (Station Wagon)

CONTENTS

REMOVAL AND INSTALLATION	BF-17	TAIL GATE LOCK AND		
TAIL GATE ALIGNMENT	BF-17	STRIKER		BF-18
TAIL GATE TORSION BAR	, BF-18	Removal and installation	,	BF-18
Removal and installation	BF-18	Adjustment		BF-18
TAIL GATE HINGE	BF-18	TAIL GATE LOCK CYLINDER		BF-18
Removal and installation	BF-18	Removal		BF-18
* a		Installation		RF-18

REMOVAL AND INSTALLATION

- 1 Open tail gate and support it in open position
- 2 Remove bolts attaching tail gate to tail gate hinge and remove tail gate from the hinge

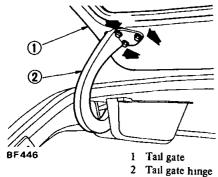


Fig BF-42 Removing tail gate

3 Install tail gate in reverse sequence of removal

TAIL GATE ALIGNMENT

Tail gate can be moved up and down and from side to side by loosening bolts attaching tail gate to tail gate hinge Fore and aft adjustment is obtained by loosening bolts attaching tail gate hinge to body

Tail gate should be adjusted for an even and parallel fit with the tail gate opening

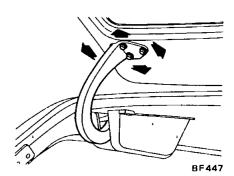


Fig BF-43 Adjusting tail gate up and down and from side to side

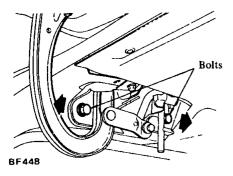


Fig BF-44 Adjusting tail gate fore and aft

Open tail gate and support it in

Loosen screws attaching tail gate

Loosen screws attaching head

4 Support tail gate and remove left torsion bar (painted yellow) first from

lining rear end and remove head

lining rear portion from tail rail

bracket "D" and "C" with a suitable

TAIL GATE TORSION BAR

Removal and installation

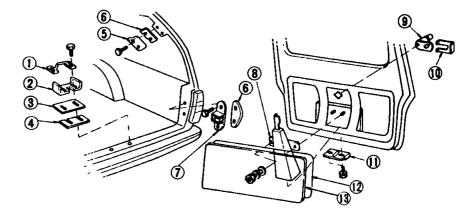
hinge cover and remove it

pipe See Figure BF-45

open position

panel

TAIL GATE HINGE


Removal and installation

- 1 Open tail gate and support it in the open position
- 2 Remove tail gate from hinge

- 3 Remove tail gate hinge cover
- 4 Remove head lining rear portion from tail rail panel
- 5 Remove torsion bars
- 6 Loosen bolts attaching hinge and remove it
- 7 Install hinge in reverse sequence of removal

TAIL GATE LOCK AND STRIKER

Removal and installation

BF450

- l Striker
- ? Tab tail striker
- 3 Friction plate
- 4 Shim
- 5 Bumper rubber
- 6 Shim
- Down stopper
- 8 Tail gate lock
- 9 Lock cylinder
- 10 Chp
- 11 Tail gate striker catcher
- 12 Sealing screen
- 13 Tail gate trim

Fig BF-46 Exploded view of tail gate lock and striker

- 1 Open tail gate and support it in the open position
- 2 Remove screws attaching tail gate trim and remove trim and sealing screen from tail gate
- 3 Loosen bolts attaching tail gate lock and remove the lock and striker catcher from tail gate
- BF451

RF 449

- 1 Lock cylinder
- 2 Tail gate lock
- 3 Striker catcher
- Fig BF-47 Removing tail gate lock

- 4 Loosen bolts attaching striker and remove it
- 5 Install tail gate lock, striker catcher and striker in reverse sequence of removal

Adjustment

1 Striker catcher can be adjusted from side to side, and striker can be adjusted fore and aft Before adjusting tail gate lock, make sure that tail gate is properly aligned

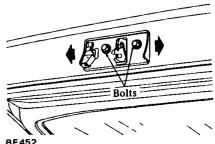


Fig BF-48 Adjusting striker catcher from side to side

Remove right torsion bar in the

4 Pipe for removal and installation
Fig BF-45 Removing torsion bars

5 Remove right torsion bar in the same manner above

Left torsion bar
 Tail gate hinge
 Right torsion bar

6 Install torsion bars in reverse sequence of removal

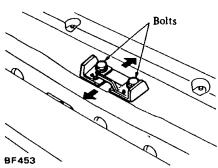


Fig BF-49 Adjusting striker fore and aft

2 To adjust contact between striker and catcher, loosen attaching bolts and move them as required

3 Loosen down stopper attaching bolts and move down stopper up or down to align it with stopper located on both sides of tail gate

Then, tighten attaching bolts

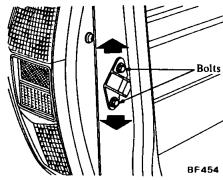


Fig BF-50 Adjusting down stopper

TAIL GATE LOCK CYLINDER

Removal

- 1 Open tail gate and support it in open position
- 2 Remove tail gate trim and sealing screen from tail gate
- 3 Pull out spring washer which secures lock cylinder to tail gate outer panel Then, remove lock cylinder from tail gate

Installation

Install lock cylinder in reverse sequence of removal

After installing lock cylinder, make certain that tail gate lock mechanism and lock cylinder are operated properly

DOOR

CONTENTS

REMOVAL AND INSTALLATION	BF-19	DOOR WINDOW GLASS AND	
Front door	BF-19	REGULATORS	BF-22
* Rear door	BF-20	Front door	
DOOR ALIGNMENT	BF-20	(Sedan and Station Wagon)	BF-22
DOOR TRIMS ' '	BF-20	Front door (Hardtop)	BF-24
Removal	BF-20	Rear door (Sedan and Station Wagon)	BF-27
Installation	BF-20	REAR SIDE WINDOW GLASS	
DOOR LOCK AND STRIKER	BF-21	(Hardtop)	BF-28
Removal and installation	BF-21	Removal	BF-29
Adjustment	BF-21	Installation and adjustment	BF-29
DOOR LOCK CYLINDER	BF-22	BODY SIDE WEATHERSTRIP (Hardtop)	BF-30
Removal and installation	BF-22	Removal	BF-30
		Installation and adjustment	BF-30

REMOVAL AND INSTALLATION

Front door

- 1 Remove front bumper, radiator grille, front apron, windshield wiper blades, cowl top grille and sill moulding in the order
- 2 Remove front fender from the vehicle
- 3 Open front door and place a support under door Use pads between door and a support to protect door
- 4 Loosen bolts attaching door hinge to body and remove front door

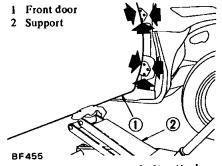


Fig BF-51 Removing bolts attaching door hinge to body

Install front door in reverse sequence of removal

Rear door

- Open front door and keep it 1 open
- 2 Open rear door and place a support under door Use pads between door and support to prevent damage
- Loosen bolts attaching rear door hinges to center pillar and remove rear door

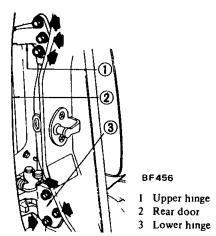


Fig BF-52 Removing bolts attaching door hinges to center pillar

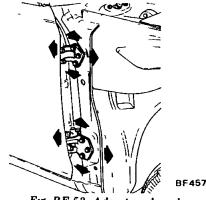
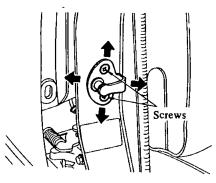
Install rear door in reverse sequence of removal

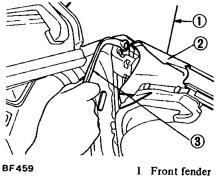
DOOR ALIGNMENT

Proper door alignment can be obtained by adjusting the position of door hinge and door lock striker

Door hinge and striker can be moved up and down and fore and aft in enlarged holes by loosening attaching bolts Door should be adjusted for an even and parallel fit with the door opening and surrounding body panels

Care should be taken not to distort or mar door or surrounding body panels


Fig BF-53 Adjusting door hinge

BF458

Fig BF-54 Adjusting door lock striker

Even if front fender is not removed, front door hinge can be adjusted with Door Adjusting Wrench ST08720000

2 Front door

3 ST08720000 Fig BF-55 Adjusting door hinge

DOOR TRIMS

Removal

- Open door and keep it open
- Raise lock knob, turn it counterclockwise and remove lock knob and grommet

Loosen bolts attaching arm rest and remove it from door

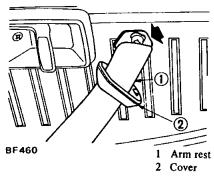


Fig BF-56 Removing bolts attaching arm rest (Hardtop)

Loosen screw attaching inside handle escutcheon and remove door lock dial and escutcheon

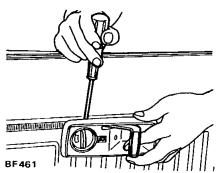


Fig BF-57 Removing inside handle escutcheon (Hardtop)

- Remove spring retaining regulator handle and then remove regulator handle and seating washer
- Remove clips retaining door finisher from door inside panel and remove door finisher

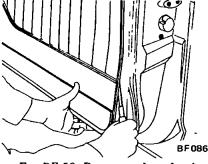


Fig BF-58 Removing door finisher

Remove watertight seal cover from door panel

Installation

Install door trım ın reverse sequence of removal

With door glass up, regulator handle should be installed as shown in Figure BF-59

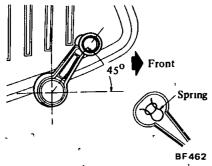
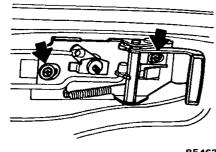



Fig BF-59 Installing regulator handle

DOOR LOCK AND STRIKER

Removal and installation

- 1 Open door and keep it open
- 2 Remove arm rest, inside door handle escutcheon and regulator handle
- 3 Remove lock knob and grommet
- 4 Remove door finisher and watershield
- 5 Loosen screws attaching inside door handle and remove inside door handle
- 6 Loosen screws attaching remote control and lock knob rod and then remove them

BF4

Fig BF-60 Removing inside door handle (Hardtop)

7 Loosen nuts attaching outside door handle and remove outside handle

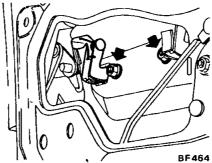
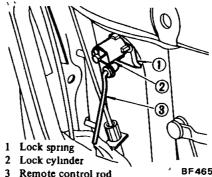



Fig BF-61 Removing nuts attaching outside door handle

8 Removing remote control rod from door lock cylinder

3 Remote control rod

Fig BF-62 Removing remote control rod from door lock cylinder

9 Loosen screws attaching door lock and remove door lock from door

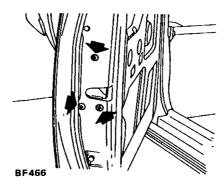
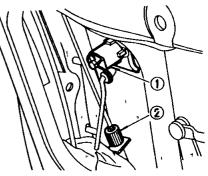


Fig BF-63 Removing screws attaching door lock

10 Loosen bolts attaching door lock striker and remove striker from body



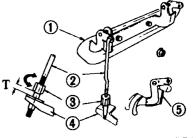
Fig BF-64 Removing door lock striker


11 Install door lock mechanism in reverse sequence of removal

Adjustment

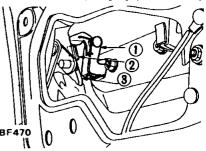
Outside door handle

Outside door handle can be adjusted by turning door handle rod nut clockwise or counterclockwise


The 'proper clearance "T" between door lock lever and adjusting nut is below 1 0 mm (0 039 in) See Figures BF-66 and BF-68

BF468

- 1 Door lock cylinder
- 2 Adjusting nut


Fig BF-65 Adjusting handle free play (Front door)

BF469

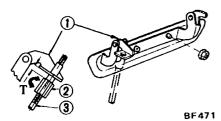

- Outside door handle 4 Door lock lever
- Remote control rod 5 Stopper
- 3 Adjusting nut

Fig BF-66 Adjusting handle free play (Front door)

- 1 Outside door handle 2 Adjusting nut
 - 3 Remote control rod

Fig BF-67 Adjusting handle free play (Rear door)

Outside door handle 3 Remote control 2 Adjusting nut

Fig BF-68 Adjusting handle free play (Rear door)

Inside door handle

To adjust inside door handle free play, move inside door handle base fore and aft in elongated holes as required by loosening attaching screws

The free play should be adjusted below 1 0 mm (0 039 in)

Do not bend door lock lever connecting to control rod to adjust

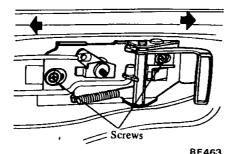
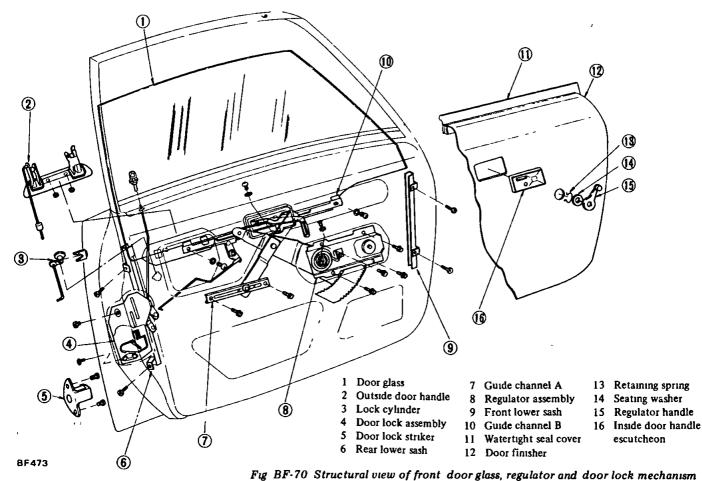


Fig BF-69 Adjusting inside door handle base fore and aft

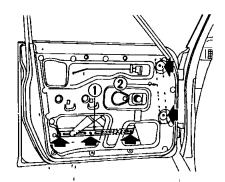
Door lock striker

Door lock striker can be moved from side to side and up and down to align with door lock latch


DOOR LOCK **CYLINDER**

Removal and installation

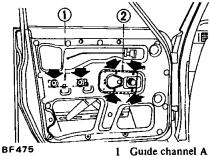
- Remove door finisher and watertight seal cover
- 2 Disconnect control rod from door lock cylinder
- Remove lock spring securing door lock cylinder to outside door panel and then remove door lock cylinder from door
- Install door lock cylinder in reverse sequence of removal


DOOR WINDOW GLASS AND REGULATORS

Front door (Sedan and Station Wagon)

Removal and installation

- 1 Lower door glass
- 2 Remove arm rest, regulator handle, inside handle escutcheon, door lock knob, door finisher and watertight cover
- 3 Remove door outside weatherstrip and door lock knob
- 4 Remove screws attaching front lower sash and remove front lower sash from door glass It is not necessary to draw front lower sash out of door before removing door glass
- 5 Support door glass and remove screws' retaining guide channel B to glass back plate



BF474

- Guide channel B
- 2 Front lower sash

Fig BF-71 Removing screws retaining guide channel B to glass back plate and front lower sash

- 6 Draw door glass upwards and remove it from door
- 7 Loosen screws attaching guide channel A and regulator base, remove regulator assembly, and draw it through the lower opening of door inside panel

2 Regulator base

Fig BF-72 Removing regulator assembly

8 Loosen screws attaching rear lower sash and remove rear lower sash

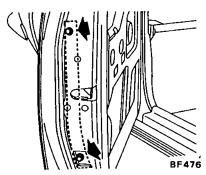


Fig BF-73 Removing rear lower sash

9 Remove front lower sash
10 Install door glass and regulator
in reverse sequence of removal

Adjustment

Door glass alignment can be performed by adjusting front and rear lower sash and guide channel A

- 1 To obtain proper alignment of glass, temporarily tighten front and rear lower sashes
- 2 With glass in the up position, adjust rear lower sash from side to side to align with glass and front lower sash Raise and lower glass to assure a good glass fit

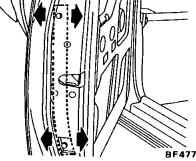


Fig BF-74 Adjusting rear lower sash

3 With glass up, adjust glass in parallel with the top rail of door sash by moving guide channel A up and down The sideward free play of glass can be adjusted by moving front lower sash fore and aft

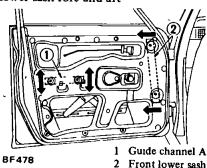


Fig BF-75 Adjusting front lower sash and guide channel A

Guide channel A adjustments can be performed as follows When door glass is as in picture (1) of Figure BF-76, move guide channel A up and move it down for the picture (2)

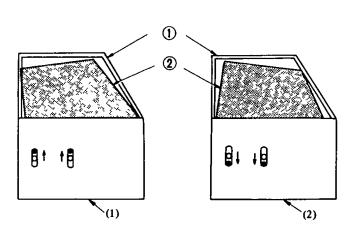
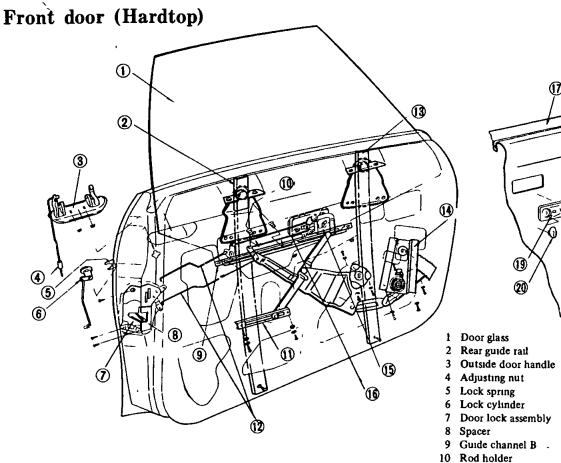



Fig BF-76 Adjusting guide channel A

BF 479 Door sash

2 Glass

escutcheon 20 Door lock dial

17

18

12 Door lock rod

13 Front guide rail

14 Regulator assembly

15 Inside door handle 16 Dust cover

> Door finisher Inside door handle

Watertight seal cover

21 Retaining spring

22 Regulator handle

Fig BF-77 Structural view of front glass, regulator and door lock mechanism

Guide channel A

Removal

BF480

- 1 Lower door glass
- Remove arm rest, regulator handle, inside door handle escutcheon, door finisher and watertight cover
- 3 Remove door outside moulding
- Drive out inner pin of clip retaining outside finish and then remove retaining clip, outside finish and outside weatherstrip from door

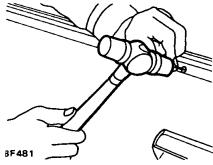
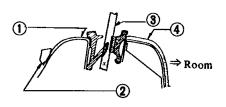



Fig BF-78 Driving out inner pin of outside finish retaining clip

BF482

- Door outside finish
- Door outside moulding
- 3 Glass
- Door finish

Fig BF-79 Sectional view of door outside and inside weatherstrips

Raise door glass until glass upper stoppers appear in the upper openings of inside door panel and remove glass upper stoppers

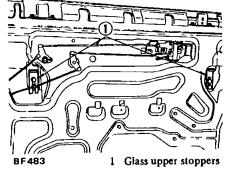
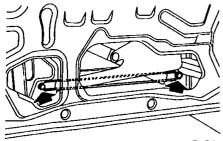



Fig BF-80 Removing glass upper stoppers

With glass in the full down position, support door glass and remove screws attaching glass back plate to guide channel B

BF484

Fig BF-81 Removing screws attaching glass back plate to guide channel B

- 7 Raise door glass and draw it upwards
- 8 Loosen bolts adjusting front and rear guide rail and remove guide rails from door

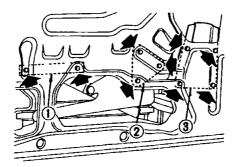



Fig BF-82 Removing guide rail adjusting bolts

9 Remove screws attaching guide channel A, regulator arm base and

regulator base and then remove them through the lower opening of inside door panel

BF486

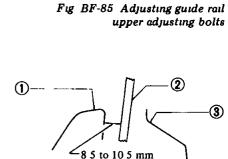

- Guide channel A
- 2 Regulator arm base
- 3 Regulator base

Fig BF-83 Removing regulator assembly

Installation and adjustment

- l Install regulator assembly, guide rails, door glass and door lock assembly in reverse sequence of removal
- 2 With door glass up, temporarily tighten upper and lower bolts adjusting guide rail in the neutral position

The neutral position for upper adjusting bolts means the center of the elongated holes For lower adjusting bolt, tighten it all the way and return nine turns and secure lock nut at that position

2 Scale

BF489

BF488

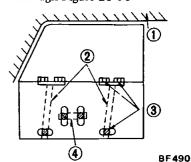
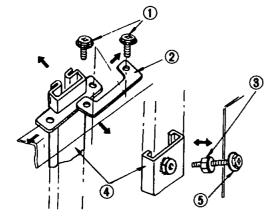

- 1 Door outside panel
- 2 Glass
- 3 Door inside panel

Fig BF-86 Proper clearance between door outside panel and glass


(0 335 to 0 413 in)

- 4 Install door outside finish in position and make sure that door outside weatherstrip properly contacts with door glass when door glass is raised and lowered
- 5 Raise door glass to its full up position and align door glass with body weatherstrip to obtain a watertight seal

Proper glass alignment can be obtained by adjusting guide rails and guide channel A as shown in Figures BF-87 through Figure BF-91

- 1 Body side weatherstrip
- weather- 3 Guide rail adjusting bolts
- 2 Guide rail 4 Guide channel A Fig BF-87 Proper glass position

8F487

- 1 Upper adjusting bolts
- 2 Spacer
- 3 Lock nut
- 4 Guide rail
- 5 Lower adjusting bolt

Fig BF-84 Guide rail adjusting mechanism

3 Adjust guide rail upper adjusting bolts so that the clearance between door outside panel and glass outside face becomes 8 5 to 10 5 mm (0 335 to 0 413 in)

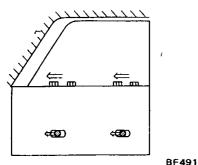


Fig BF-88 When moving to front

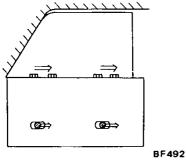
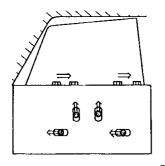



Fig BF-89 When moving to rear

BF493
Fig BF-90 When moving front up

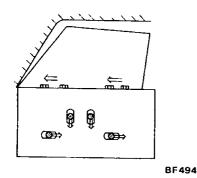


Fig BF-91 When moving rear up

6 Raise glass to its up position, adjust upper glass stoppers so that the clearance between the top of

glass and body side weatherstrip is 0 to 10 mm (0 to 0 039 in)

BF495
Fig BF-92 Proper glass clearance
when glass stoppers are secured
in position

7 With glass up, move top edge of glass to body side weatherstrip to obtain a tight seal by adjusting guide rail lower adjusting bolts evenly

Turn lower adjusting bolts clockwise to release top edge of glass from body side weatherstrip and counterclockwise to tight

8 Make sure that top edges of glass maintain a tight fit evenly at the positions shown in Figure BF-93

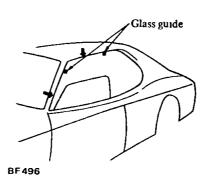
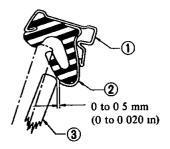



Fig BF-93 Checking positions for a tight fit

9 Make certain that the clearance between the top of glass and the end of glass guide is 0 to 0.5 mm (0 to 0.020 in) just before door glass contacts door side weatherstrip

BF497

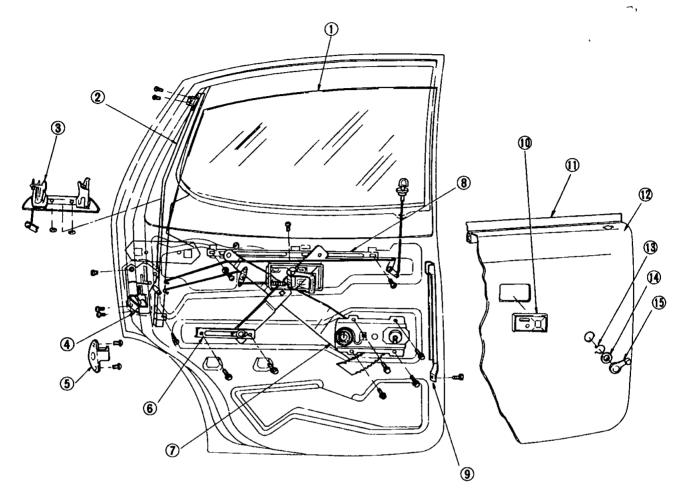
- 1 Weatherstrip retainer
- 2 Glass guide
- 3 Door glass

Fig BF-94 Proper clearance between glass and glass guide

10 Raise and lower door glass to be sure the operation of regulator handle is smooth The operating force of regulator handle should be performed less than 4 kg (9 lb) at the knob of regulator handle

If proper operating force is still not obtained, adjust regulator mechanism according to the following procedures

- (1) Lubricate guide rollers, guide rails and regulator linkage
- (2) Perform outside and inside door weatherstrip-to-door glass adjustment
- (3) Adjust guide rails in parallel



BF498

Fig BF-95 Improper side view of guide rails

- 11 Make certain that the location of upper glass stoppers is aligned properly If necessary, adjust them
- 12 Install outside door finish and moulding
- 13 Install watertight seal cover and door finisher
- 14 Install arm rest and regulator handle in position
- 15 Install door lock (unlocked) with dial facing red mark

Rear door (Sedan and Station Wagon)

BF 499

- 1 Door glass
- 2 Rear sash
- 3 Outside door handle
- 4 Door lock assembly
- 5 Door lock striker
- 6 Guide channel A
- 7 Regulator assembly
- 8 Guide channel B
- 9 Front lower sash
- 10 Inside handle escutcheon
- 11 Watertight seal cover
- 12 Door finisher
- 13 Retaining spring
- 14 Seating washer
- 15 Regulator handle
- Fig. BF-96 Structural view of front door glass, regulator and door lock mechanism

Removal

- 1 Lower door glass
- 2 Remove door lock knob and grommet
- 3 Remove arm rest, regulator handle, inside handle escutcheon, door finish and watertight seal cover from door
- 4 Remove door outside weatherstrip and rear sash
- 5 Remove screws attaching guide channel B to glass back plate and draw door glass out of door

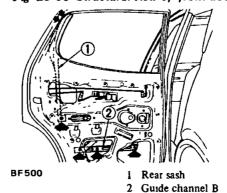
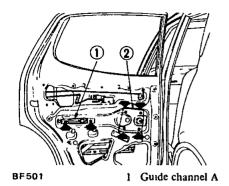



Fig BF-97 Removing screws attaching rear sash and guide channel B

- 6 Remove rear sash and front lower sash from door
- 7 Loosen screws attaching guide channel A and regulator base, remove regulator assembly, and draw it through the lower opening of door inside panel

2 Regulator base

Fig BF-98 Removing regulator
assembly attaching screws

8 Install regulator assembly and door glass in reverse sequence of removal

Adjustment

Proper glass alignment can be obtained by adjusting front lower sash, rear sash and guide channel A Front lower sash must be adjusted in parallel with rear sash by moving from side to side

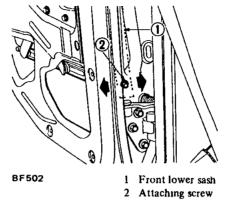


Fig BF-99 Adjusting front lower sash

To adjust the sideward free play of door glass, move rear sash fore and aft by loosening lower attaching screw

Tilt adjustment of glass can be performed by moving guide channel A up and down

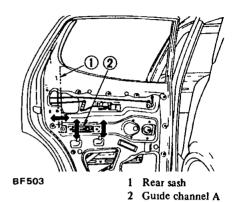
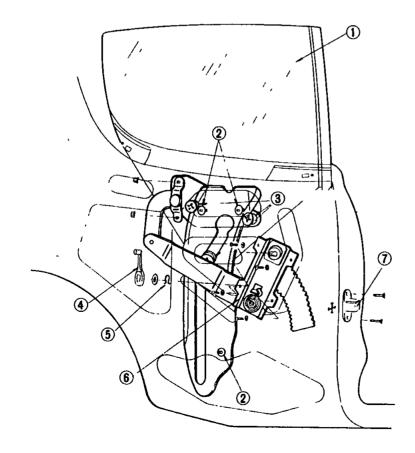



Fig BF-100 Adjusting rear sash and guide channel A

REAR SIDE WINDOW GLASS (Hardtop)

BF504

- 1 Side window glass
- 2 Guide plate adjusting bolts
- 3 Guide roller
- 4 Regulator handle
- 5 Retaining spring
- 6 Regulator assembly
- 7 Door lock striker

Fig BF-101 Structural view of side window glass and regulator

Removal

- 1 Remove rear seat cushion and rear seat back from body
- 2 Remove seat belt anchorage if equipped and kicking plate
- 3 Lower side window glass
- 4 Remove arm rest, regulator handle
- 5 Remove rear side finisher and

watertight seal cover

- 6 Remove draughter finisher
- 7 Remove seat belt anchorage if equipped on rear quarter panel
- 8 Remove clips retaining rear corner finisher and remove rear corner finisher
- 9 Remove inner seal and bracket

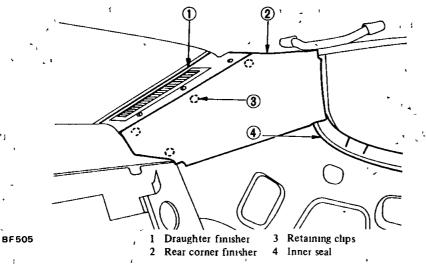


Fig BF-102 Removing rear quarter panel inside fittings

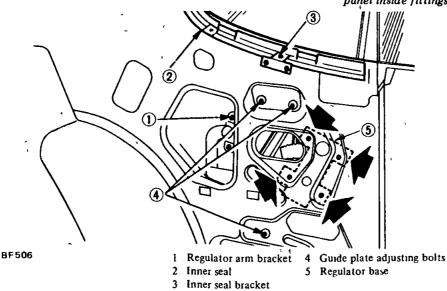
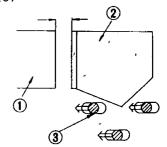


Fig BF-103 Removing regulator assembly attaching bolts

- 10 Raise glass until regulator arm bracket appears in the upper opening of inside panel and support glass and remove nuts attaching regulator arm bracket to side window back plate
- 11 Loosen lock nuts of guide plate upper and lower adjusting bolts Remove adjusting bolts from guide

plate

- 12 Raise window glass with guide panel and remove them toward passenger compartment
- 13 Remove regulator base attaching screws and draw regulator assembly out through lower opening of inside panel


Installation and adjustment

- I Install window glass and regulator assembly in reverse sequence of removal
- 2 With window glass down, temporarily tighten guide plate adjusting bolts in the neutral position

The neutral position means the center of the elongated holes

Tighten these adjusting bolts all the way and return eight turns and secure them at that position

- 3 Adjust guide plate upper adjusting bolts to obtain 8 5 to 10 5 mm (0 335 to 0 413 in) clearance from rear fender to window glass outside face
- 4 Install rear fender finish in position and make certain that window glass is properly aligned with weatherstrip when window glass moves up and down
- 5 Close front door and raise door glass and side window glass
- 6 Align side window glass with door glass and body side weatherstrip by adjusting guide plate adjusting bolts according to the following procedures in Figures BF-104 through BF-107

BF507

- 1 Door glass
- 2 Side window glass
- 3 Guide plate adjusting bolt

Fig BF-104 When moving to front

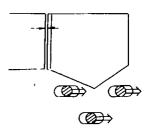
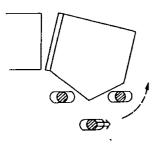
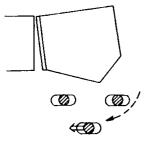
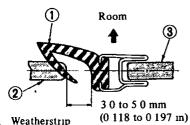




Fig BF-105 When moving to rear

BF509


Fig BF-106 When moving rear up

BF510

Fig BF-107 When moving rear down

7 With window glass up, adjust guide plate adjusting bolts so that clearance from window glass to side window weatherstrip is 3 0 to 5 0 mm (0 118 to 0 197 in) as shown in Figure BF-108

- 1 weatherstr
- 2 Door glass
- 3 Side window glass

BF511

Fig BF-108 Proper clearance from window glass to weatherstrip

- 8 Align window glass with body side weatherstrip to obtain a tight seal by adjusting guide plate lower adjusting bolt. See Door glass adjustment for details
- 9 Install inner seal and bracket
- 10 Install rear fender finish
- 11 Install regulator handle and raise and lower window glass to be sure operation of the handle is smooth. The operating force of the handle should be adjusted less than 3 kg (7 lb) at the knob of the handle

handle

See Door glass adjustment for details

- 12 Install rear corner finisher and draughter finisher
- 13 Install watertight seal cover and door finisher
- 14 Install arm rest and regulator handle
- 15 Position door outside finish and secure it with retaining clips and install door outside moulding
- 16 Install kicking plate and seat belt anchorage if equipped
- 17 Install seat back and cushion

BODY SIDE WEATHERSTRIP (Hardtop)

Removal

BF512

1 Remove rivets retaining body side weatherstrip to front pillar

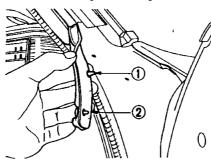
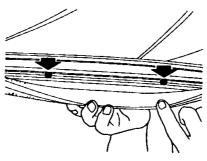
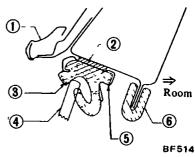



Fig BF-109 Removing body side weatherstrip retaining rivets

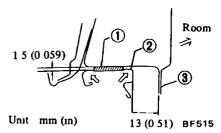
Rivet 2 Weatherstrip


2 Remove screws installing weatherstrip retainer to roof side rail

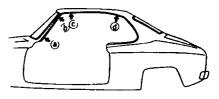
BF51

Fig BF-110 Removing attaching screws of weatherstrip retainer

- 3 Remove front pillar garnish and then remove body side welts
- 4 Remove weatherstrip retainer and retainer seal


- 1 Roof drip moulding 4 Window glass
 - Weatherstrip retainer 5 Weatherstrip
- seal retainer

 Body side weatherstrip 6 Body side welt


Fig BF-111 Sectional view of body side weatherstrip, retainer seal and body side welt

Installation and adjustment

- 1 Temporarily attach weatherstrip retainer seal to weatherstrip retainer with an adhesive
- 2 Position weatherstrip retainer and retainer seal and temporarily tighten attaching screws
- 3 Make sure that weatherstrip retainer is installed in the position as shown in Figure BF-112 and measure the clearance from body side flange to weatherstrip retainer at the points of (a) through (d) as shown in Figure BF-113 Proper clearance is 13 mm (0.51 in)

- 1 Weatherstrip 2 Weatherstrip retainer retainer seal 3 Side flange
 - Fig BF-112 Proper position of weatherstrip retainer

BF516

Fig BF-113 Measuring points of weatherstrip retainer-to-side flange clearance

4 Tighten weatherstrip attaching screws evenly until the thickness of retainer seal is 1.5 mm (0.059 in)

Make sure that retainer seal is cen-

tered on weatherstrip retainer

5 Install body side weatherstrip
Weatherstrip should be installed
evenly without stretching it

6 Install front pillar garnish and body side welts

SEATS

CONTENTS

FRONT SEAT	BF-32	REAR SEAT (Station Wagon)	BF-32
Removal and installation	BF-32	Removal and installation	BF-32
REAR SEAT (Sedan and Hardtop)	BF-32	SEAT BELT ANCHORAGES	BF-32
Removal and installation	BF-32	Installation of child restraint anchorages	BF-33

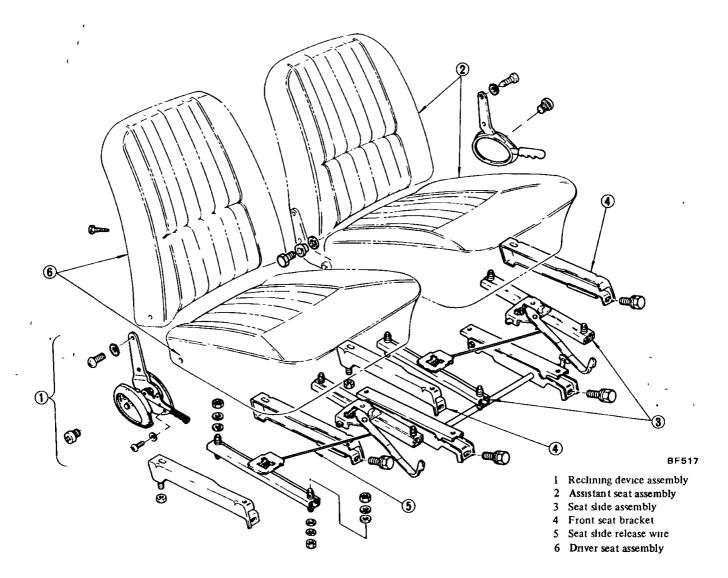


Fig BF-114 Structural view of front seat, seat slide and reclining device

FRONT SEAT

Removal and installation

1 Remove bolts attaching front seat bracket

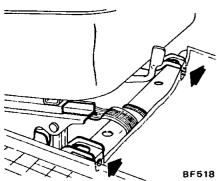


Fig BF-115 Removing front attaching bolts of front seat bracket

2 Remove rear attaching nuts from beneath the floor

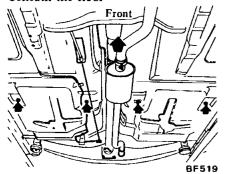


Fig BF-116 Removing attaching nuts of front seat bracket

3 Reclining device

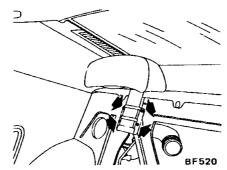
Remove reclining device cover and remove screws attaching reclining device to seat and then remove reclining device

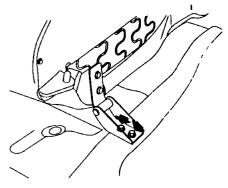
4 Install front seat assembly in reverse sequence of removal

REAR SEAT (Sedan and Hardtop)

Removal and installation

- 1 Remove screws attaching rear seat front end and remove rear seat cushion
- 2 Remove screws attaching rear seat back and move rear seat back upwards and then remove it from body
- 3 Remove screws attaching head restraint and remove head restraints




Fig BF-117 Removing head restraint attaching screws

4 Install rear seat cushion, rear seat back and head restraints in reverse sequence of removal

REAR SEAT (Station Wagon)

Removal and installation

I Tilt rear seat cushion forwards and remove bolts attaching rear seat hinge and then remove rear seat cushion

BF521

Fig BF-118 Removing rear seat hinge attaching bolts

- 2 Remove rear seat back from catcher and hinge
- 3 Remove rear seat back catcher and hinge bracket from body
- 4 Install rear seat cushion and rear seat back in reverse sequence of removal

SEAT BELT ANCHORAGES

The seat belt anchorages are as shown in Figures BF-119 through BF-122 Figures BF-121 and BF-122 are the installation procedure of the seat belt anchorages for the child restraint

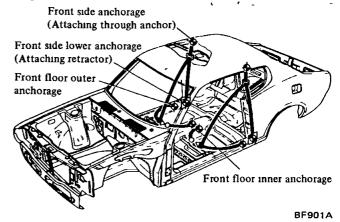
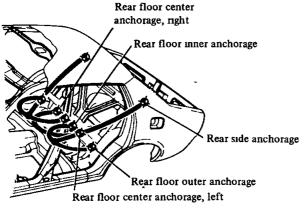
The seat belts should not be installed on any other positions except those designated

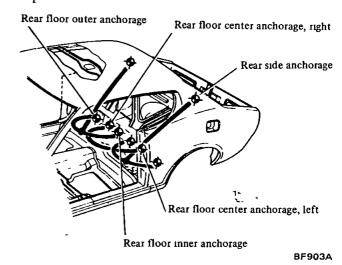
Sedan and Station Wagon Front side anchorage (Attaching through anchor) Front floor outer anchorage (Attaching retractor)

Front floor inner anchorage **BF900A**

Retractor

Hardtop


Fig BF-119 Front seat belt anchorages

Sedan

BF902A

Hardtop

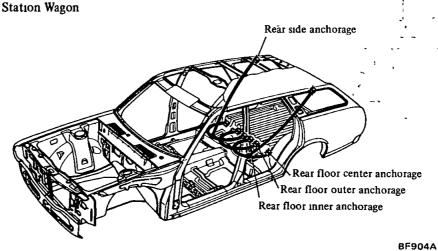
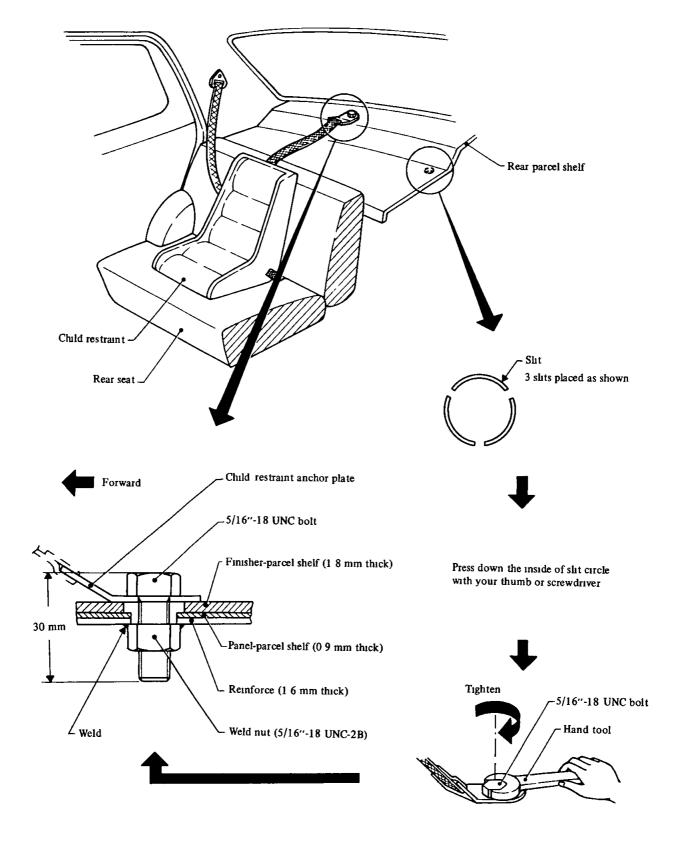



Fig BF-120 Rear seat belt anchorages

Installation of child restraint anchorages

BF905A

Fig BF-121 Child restraint anchorages (Sedan and Hardtop)

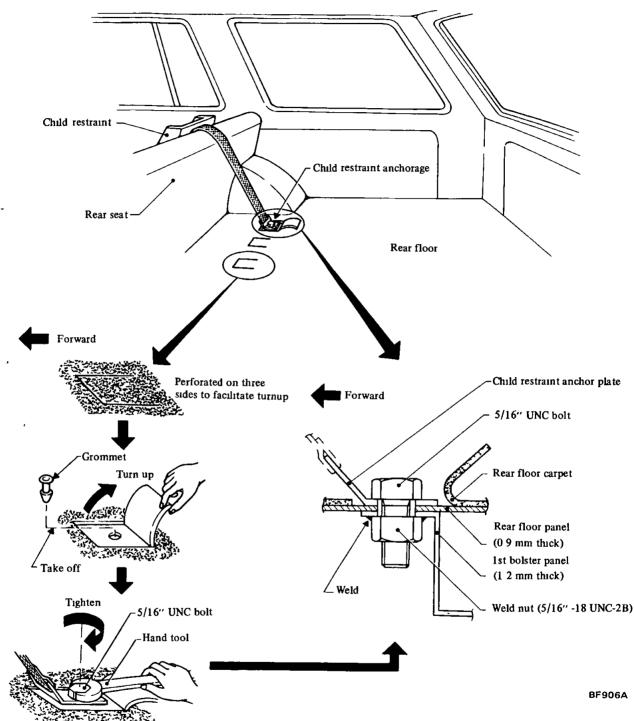
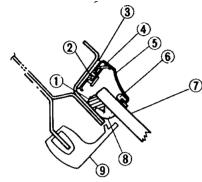


Fig BF-122 Child restraint anchorages (Station Wagon)

WINDSHIELD GLASS (Adhesive caulked glass)

CONTENTS


DESCRIPTION REMOVAL

BF-36 BF-36 INSTALLATION REPAIRING LEAKS

BF-36 BF-38

DESCRIPTION

A pre-mixed, one-part sealant is available as a service part to cement windshield glass to window opening After using this sealant, the car should be allowed to stand idle for about 24 hours to allow sealant to cure

- Sealant
- T-stud
- 3 Spacer
- 4 l'astener
- 5 Windshield moulding
- Silencer
- Windshield glass
- Dam sealant
- rubber
- Welt

BF450A Fig BF-123 Sectional view of front adhesive caulked glass

REMOVAL

- Protect hood, front fenders, instrument panel and front seats with covers
- Remove windshield wipers, front pillar garnish, instrument garnish and welt (Front windshield glass) Remove rear corner finisher, rear parcel shelf finish welt (Rear window glass)
- Using a putty knife or similar tool, pry mouldings out of position starting at the center and working toward the ends

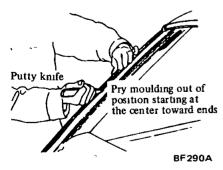


Fig BF-124 Removing moulding

Reaching from inside car, strip dam from around window glass

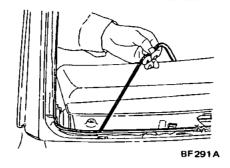
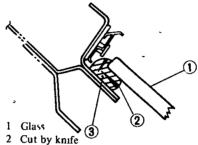



Fig BF-125 Stripping dam

With a sharp cutting knife, cut off caulking material along edge of entire window opening

- 3 Adhesive caulking material

BF479A Fig BF-126 Cutting off adhesive caulking material

- The following procedure may also be used in removing rear windshield
- (1) Using a knife, cut through part of caulking material
- (2) Secure one end of steel music wire [0 5 mm (0 020 in) diameter] to a piece of wood that can serve as a handle

Using long nose phers,insert other end of wire through caulking material at edge of glass, then, secure that end of wire to another wood handle

(3) With the aid of an assistant, carefully cut (pull wire) through caulking material around entire perimeter of window using a sawing motion

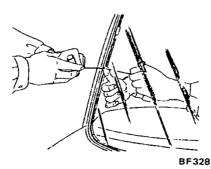
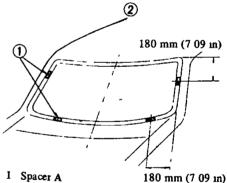


Fig BF-127 Cutting sealant


- From inside car, push glass up and out of window opening.
- Using a razor blade or sharp scraper, remove caulking material along entire edge of window opening, leaving it about 1 to 2 mm (0 04 to 0 08 in) thick

INSTALLATION

- Check moulding for missing retamers
- Clean contacting face of body with nonlead gasoline

Note Do not allow oil, grease or water to get on cleaned surfaces by touching with dirty band or fouled

Install four spacers on window 3 opening

- 2 Body center line
 - Fig BF-128 Location of spacers (Front)

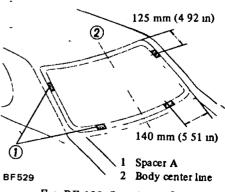
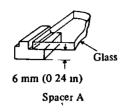



Fig BF-129 Location of spacers (Rear)

BF530

Fig BF-130 Installing glass on spacer

- There are two water drain holes in the bottom edge of body opening In applying caulking material, use care not to plug these two holes
- To set glass in proper position in window opening, paste two pieces of masking tape at the center top and bottom of glass and panel for alignment

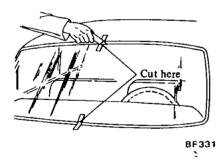
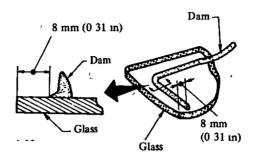



Fig BF-131 Aligning glass in window opening

Clean glass surface where the sealant is to be applied and dam with non-lead gasoline as shown in Figure **BF-132**

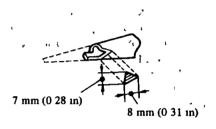
7. Install dam tape to inside of windshield glass 8 mm (0 31 in) inboard from edge of glass and cut off excess at ends

BF292A

Fig BF-133 Installing dam

8. With a sponge apply a light coat of primer to original caulking material -remaining on window opening flanges

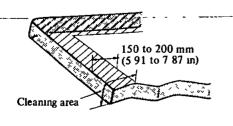
Notes


- a It is not necessary to apply primer to old sealant in replacing glass that once has been repaired with 1-part sealant (silicone) Identification of old adhesive material is accomplished as follows
 - 1) Cut a small piece of excess sealant from glass or window opening flanges
 - 2) Stick small piece of sealant on the end of a knife or the like. and then hold sealant over flame of match or lighter until it ignites
 - A Polysulfide burns of white smoke or no smoke at all and its odor is of white smoke or no smoke a tall and its odor is very objectionable (heavy sulfur dioxide) --

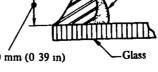
- B Silicone glows with little or no flame and emits white smoke and very little odor Burnt residue is white ash
- b Allow primer to dry for 10 to 15 minutes, then proceed to the next step
- Insert cartridge in Caulking Hand Gun ST08810000 and place smooth, continuous bead on glass 10 mm (0 39 in) thick

Notes

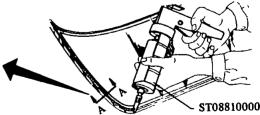
a Cut off nozzle end of cartridge as shown


Pierce sealing film with a needle, ınstall cartridge in hand gun

BF293A


Fig BF-135 Cutting nozzle of cartridge

- b Sealant starts to harden 15 minutes after it is applied, i.e., window glass should be installed in body within 15 minutes after applying sealant.
- Support windshield glass with Sucker ST08800000
- Position windshield glass in opening, align the previously placed masking tape and make sure that glass is properly set on spacers located at the glass opening flange


BF531

10 mm (0 39 in) Sect.A-A

Dam

BF333

Fig BF-134 Applying adhesive caulking

Fig BF-132 Cleaning area of glass

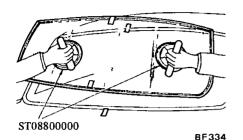


Fig BF-136 Installing glass

- 12 Push glass to aid in seating on plate
- 13 Wipe excess caulking material off T studs, edges of glass and body
- 14 Remove protective covers
- 15 Water test immediately using a cold water spray

Do not direct stream of water at fresh adhesive material Allow water to spill over edges of glass If leaks are encountered, use Caulking Hand Gun to work in additional caulking material at leak point

16 Install all previously removed parts

Notes

a After installing, attach caution label to glass surface Be sure that it does

not obstruct visibility A label noting the fact that sealing will be impaired if door is opened or closed with window shut before sealant has dried is furnished with the kit

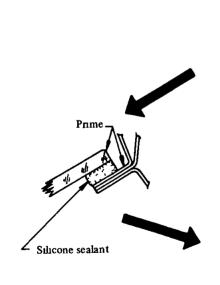
b Advise the owner that car should not be driven on rough roads for the time being

Reference Period required for sealant to dry to desired hardness

CAUTION

LEAVE ONE WINDOW OPEN SLIGHTLY FOR THREE DAYS

This is to protect your new windshield installation from pressure-induced leaks before the rubber seal has completely vulcanized


Fig BF-137 Caution label

		Unit days				
Relative hur % Temperature °C (°F)	nidity 90	50	25			
25 (77)	1 5	2 5	6			
10 (50)	3	5 3	10			
-10 (14)	10	17	34			

REPAIRING LEAKS

Leaks can be repaired without re-

moving and installing glass as follows

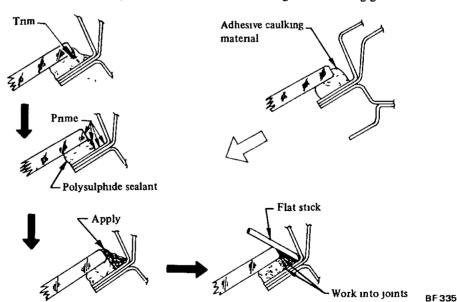


Fig BF-138 Adhesive caulked glass leak repair

1 To stop leaks, first remove mouldings in area of leak It may be necessary to remove garnish moulding or finishing lace to isolate cause of the problem

2 Mark location of leak

Note If water is leaking between caulking material and body or between glass and caulking material, determine the extent of leak by pushing the glass outwards
Apply water to leak area while
pushing on the glass Mark the
extent of leak point

INTERIOR TRIMS

CONTENTS

FRONT PILLAR GARNISH
Removal and installation
CENTER PILLAR GARNISH
Removal and installation
REAR DOOR GARNISH
Removal and installation
REAR CORNER GARNISH

BF-39	Removal and installation (Sedan)	BF-40
BF-39	Removal and installation (Hardtop)	´ BF-40
BF-39	REAR PARCEL SHELF	BF-40
BF-39	Removal and installation	BF-40
BF-39	HEAD LINING	BF-41
BF-39	Removal	BF-41
BF-40	Installation	BF-41

FRONT PILLAR

Removal and installation

Remove front pillar garnish attaching screws and then remove the garnish from front pillar.1

Be careful not to bend the lower tip of the garnish shown in Figure BF-139

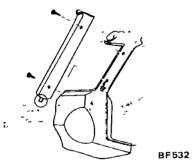
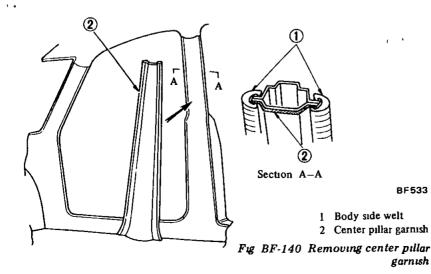


Fig BF-139 Removing front pillar garnish

2 Install front pillar garnish in reverse sequence of removal

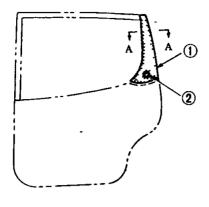
Install center pillar garnish in reverse sequence of removal

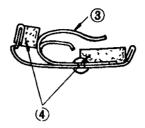
CENTER PILLAR GARNISH


Removal and installation

- Remove body side welts which are installed to center pillar flange
- Remove center pıllar garnısh from center pullar

REAR DOOR **GARNISH**


Removal and installation


- Remove screws attaching rear door garnish and remove garnish from door sash
- Install rear door garnish in reverse sequence of removal

BF533

garnish

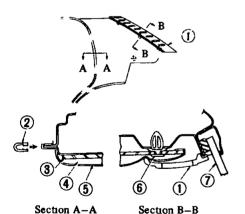
- 1 Rear door garnish
- 2 Attaching screw
- 3 Plate spring
- 4 Urethane form

Section A-A

BF534

Fig BF-141 Removing rear door garnish

ter finish and remove draughter finish


corner garnish forwards

2 Remove clips retaining rear corner garnish and then draw rear

REAR CORNER GARNISH

Removal and installation (Sedan)

- 1 Remove body side welt which is installed to rear corner flange
- 2 Remove clips retaining rear corner garnish and then remove rear corner garnish

BF535

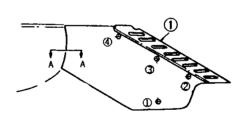

- 1 Draughter finish
- 2 Welt
- 3 Hard board
- 4 Urethane form
- 5 Vinyl leather
- 6 Retaining clip
- 7 Rear window glass

Fig BF-142 Removing rear corner garnish

3 Install rear corner garnish in reverse sequence of removal

Removal and installation (Hardtop)

1 Remove screws attaching draugh-

- 1 Draughter finish
- 4 Vinyl leather
- 2 Side window glass
- 5 Urethane form
- 3 Inner seal
- 6 Hard board

3 6

Section A-A

BF536

Fig BF-143 Removing rear corner garnish

3 Install rear corner garnish in reverse sequence of removal

REAR PARCEL SHELF

Removal and installation

- 1 Remove rear seat cushion and rear seat back
- 2 Remove clips retaining rear parcel shelf front end and remove rear parcel shelf, pulling it forward.

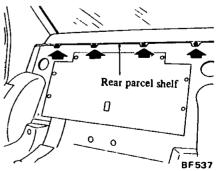
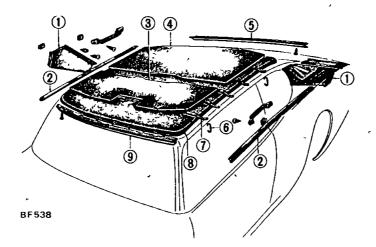



Fig BF-144 Removing rear parcel

3 Install rear parcel shelf in reverse sequence of removal

HEAD LINING

- 1 Rear corner garnish assembly
- 2 Front and rear windshield welt
- 3 Front roof insulator
- 4 Rear roof insulator
- 5 Rear window welt retainer
- 6 Listing wire hook
- 7 Head lining listing wire
- 8 Head lining cloth
- 9 Front window welt retainer

Fig BF-145 Structural view of head lining (Hardtop)

Removal

1 Pull break-away type inside rearview mirror out of bracket and remove inside rearview mirror bracket

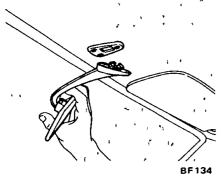


Fig BF-146 Removing inside back mirror

- 2 Remove sun visors
- 3 Remove room lamp
- 4 Remove assist straps
- 5 Remove body side welts

- 6 Remove front pillar garnishes
- 7 Remove center pillar garnishes
- 8 Remove rear corner garnishes
- 9 Remove the end of head lining cloth from roof rails
- 10 Remove head lining listing wires from roof rails and remove head lining from roof

Installation -

- 1 Apply a trim adhesive to body flange and other body parts before installing head lining
- 2 Starting at front and proceeding toward rear, or vice versa, install listing wires

Notes

a All fullness must be removed by stretching front and rear listing wires

- b. Wrinkles can be removed by prying lining ever along lining wire.
- 3 Cement the end of head lining to body flange while pulling it down at sides to remove wrinkles
- 4 Trim the remaining head lining to proper size
- Note. In trimming at front pillars, center pillars and rear quarter panels, care should be taken to reserve enough material since head lining must be touched at these parts
- 5 Cut a hole in the head lining material for room lamp and install room lamp assembly
- 6. Install body side welts to body flanges and other equipments in position

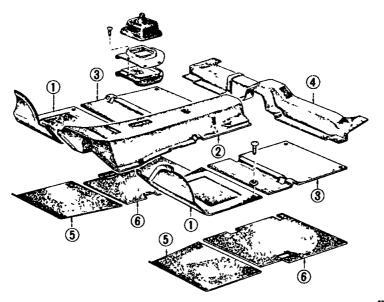
FLOOR MAT AND CENTER CONSOLE

CONTENTS

FLOOR MAT
Removal and installation
CENTER CONSOLE

BF-42

Removal and installation INSTRUMENT PANEL


BF-42

BF-42 BF-42

Removal and installation

BF-43 BF-43

FLOOR MAT

BF539

- 1 Front floor mat
- 2 Center floor mat
- 3 Rear floor mat
- 4 Rear seat lower mat
- 5 Front floor felt
- 6 Rear floor felt

Fig BF-147 Structural view of floor mat

Removal and installation

1 Remove floor mats from retaining hooks and remove floor mats

- 2 Remove floor felts from floor
- 3 After removing center console, remove center floor mats and felts
- 4 When installing, attach floor felts to floor with a adhesive and install floor mats and center console

Removal and installation

- 1 Remove transmission shift lever knob
- 2 Remove screws attaching rear console and remove rear console
- 3 Remove front console-to-package tray attaching screws and side attaching screws and then remove front console
- 4 Install front and rear console in reverse sequence of removal

CENTER CONSOLE

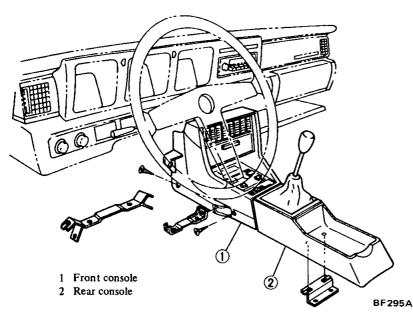
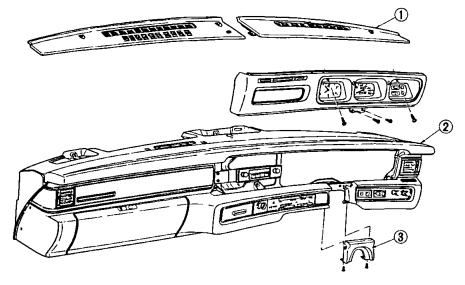



Fig BF-148 Structural view of center console and brackets

INSTRUMENT PANEL

- 1 Instrument garnish
- 2 Instrument panel assembly
- 3 Cluster lid cover

BF296A

Fig BF-149 Structural view of instrument panel

Removal and installation

Instrument panel assembly

- 1 Disconnect battery ground cable
- 2 Remove horn bar, steering wheel and shell assembly
- 3 Remove heater control cable clamps from heater assembly

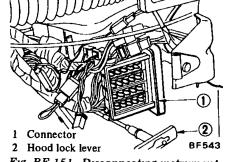


Fig BF-151 Disconnecting instrument harness connector

- 6 Remove instrument garnishes from instrument panel
- 7 Remove cluster lid cover
- 8 Loosen bolts attaching instrument panel and draw instrument panel assembly out backwards

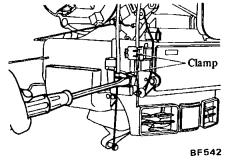
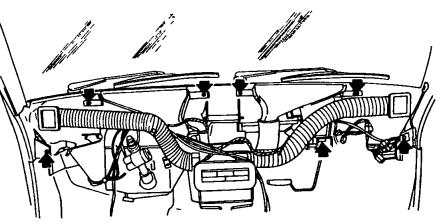



Fig BF-150 Removing heater control cable clamps

- 4 Disconnect speedometer cable behind speedometer
- 5 Disconnect body and instrument harnesses at a connector

BF298A

Fig BF-152 Removing instrument panel attaching bolts

9 Install instrument panel assembly in reverse sequence of removal

Cluster lid

- 1 Remove steering column shell and cluster lid cover It is not necessary to remove steering wheel
- 2 Remove speedometer cable from back side of speedometer
- 3 Loosen screws attaching cluster lid and draw cluster lid out backwards

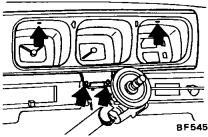


Fig BF-153 Removing cluster lid attaching screws

- 4 Disconnect related wire harnesses from back side of meters
- 5 Install cluster hd in reverse sequence of removal

Cluster lid A

1 Remove steering column shell and cluster lid cover

2 Remove screws retaining cluster lid A and remove cluster lid A from instrument panel

Retaining screw "S" which secures cluster hd A to instrument panel, can be removed from the inside of cluster hd A See Figure BF-154

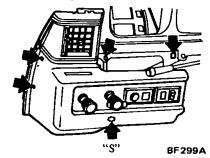


Fig BF-154 Removing cluster lid A retaining screws

3 Install cluster lid A in reverse sequence of removal

Cluster lid B

- 1 Disconnect battery cable.
- 2 Remove steering column shell assembly, cluster lid cover, cluster lid and heater control knobs
- 3 Remove screws attaching heater control assembly to cluster lid B
- 4 Remove screws attaching cluster lid B and remove cluster lid B from instrument panel

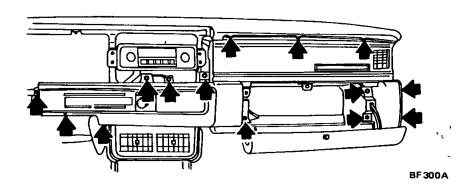
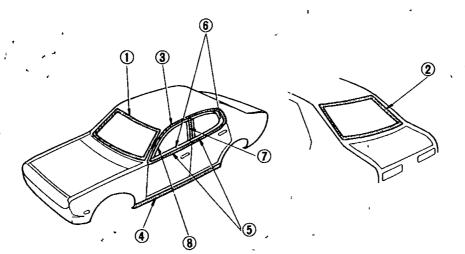


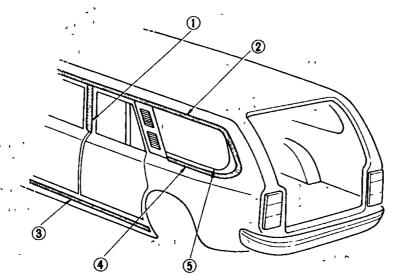
Fig BF-155 Removing cluster lid B attaching screws


5 Install cluster lid B in reverse

sequence of removal

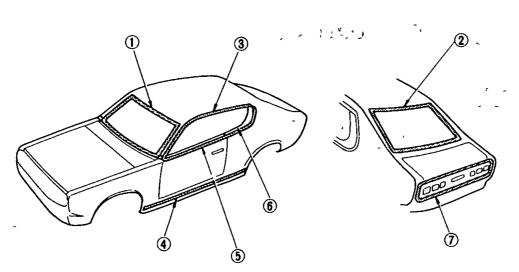
MOULDING

CONTENTS


BF-46	Removal and installation	BF-47
BF-46	ROOF DRIP MOULDING	BF-48
BF-46	DOOR SASH AND CENTER PILLAR	
BF-46	COVERS	BF-49
BF-46	REAR PANEL AND TRUNK LID	
BF-47	MOULDINGS	BF- 4 9
BF-47	Removal and installation	BF-50
	BF-46 BF-46 BF-46 BF-47	BF-46 ROOF DRIP MOULDING BF-46 DOOR SASH AND CENTER PILLAR BF-46 COVERS BF-46 REAR PANEL AND TRUNK LID BF-47 MOULDINGS

BF548

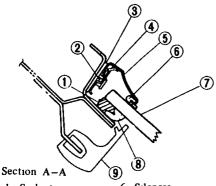
- 1 Front windshield moulding
- 2 Rear windshield moulding
- 3 Roof drip moulding
- 4 Sill moulding
- 5 Door outside moulding
- 6 Door outside finisher
- 7 Center pıllar cover
- 8 Door sash cover


Fig BF-156 Mouldings of the Sedan

BF549

- 1 Center pillar cover
- 2 Roof drip moulding
- 3 Sill moulding
- 4 Body outside moulding
- 5 Body outside finisher

Fig BF-157 Mouldings of the Station Wagon



BF550

- 1 Front windshield moulding
- 2 Rear windshield moulding
- 3 Roof drip moulding
- 4 Sill moulding
- 5 Door and rear fender moulding
- 6 Door and rear fender finisher
- 7 Rear panel moulding

Fig BF-158 Mouldings of the Hardtop

FRONT WINDSHIELD **MOULDING**

- Sealant
- T-stud
- Spacer
- Fastener
- Windshield moulding
- Silencer
- Windshield glass Dam sealant
- rubber
- Welt
 - BF450A

Fig BF-159 Sectional view of front windshield moulding

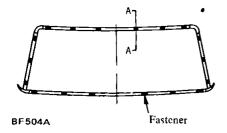
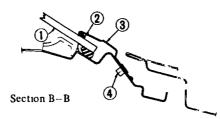
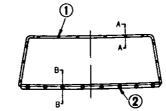



Fig BF-160 Front windshield moulding fasteners


REAR WINDSHIELD MOULDING

- 1 Windshield glass
- 2 Silencer
- Lower moulding
- Fastener for lower moulding

BF480A

Fig BF-161 Sectional view of rear windshield moulding

- 1 Fastener
- 2 Fastener for lower moulding

BF554

Fig BF-162 Rear windshield moulding fasteners

Removal and installation

- Open trunk lid
- Drive out inner pin of lower moulding fastener

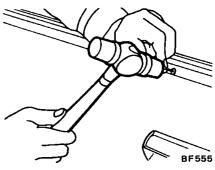
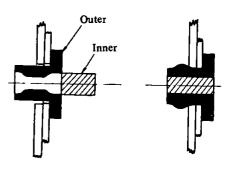
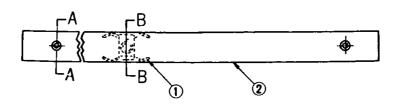



Fig BF-163 Driving out fastener ınner pın

BF556

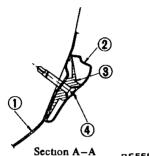

Fig BF-164 Sectional view of fastener

- Move side moulding down until separated from corner moulding and remove corner moulding
- Draw side moulding upwards
- 5 Draw upper and lower mouldings sidewards
- 6 Install rear window mouldings in reverse sequence of removal

Removal and installation

- 1 Remove front roof drip mould-เทยร
- 2. Remove screw attaching side windshield moulding and remove side windshield mouldings
- Move side moulding down until separated from corner moulding and remove corner mouldings
- Draw side mouldings upwards
- 5 Draw upper and lower moulding sidewards
- Install windshield mouldings in reverse sequence of removal

SILL MOULDING


BF451A

- 1 Chp
- 2 Sill moulding

Fig BF-165 Sill moulding

Removal and installation

1 Remove screws retaining sill moulding

Section A-A BF558

1 Front and rear fenders 3 Spacer

- 2 Sill moulding 4 Retaining screw
 - Fig BF-166 Sectional view of retaining screw and spacer

2 Remove retaining clips from body side sill

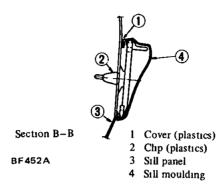


Fig BF-167 Sectional view of retaining clip

3 Install sill moulding in reverse sequence of removal

Removal and installation

1 Remove door moulding with a flat-headed driver Insert a pad between driver and door panel to protect door paint

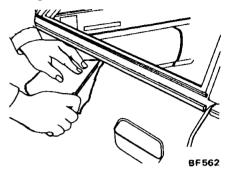


Fig BF-170 Removing door moulding 2 Remove door finisher and water-tight seal cover and then drive beading clip inner pins out of clip and remove clips from outside door finish

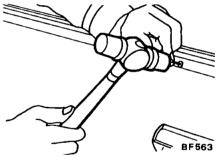


Fig BF-171 Driving out beading clip inner pin

- 3 Push door outside weatherstrip toward door glass and remove outside finish
- 4 Remove door outside weatherstrip anchor clips from door outside panel with a flat-headed driver and then remove outside weatherstrip

In the Hardtop outside weatherstrip can be removed together with outside door finish

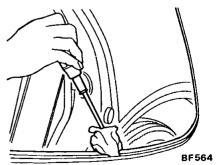
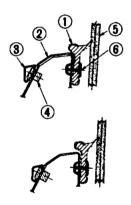



Fig BF-172 Removing outside weatherstrip

DOOR MOULDING AND FINISH

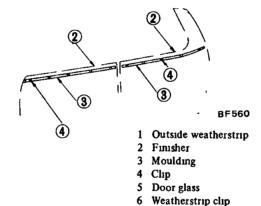
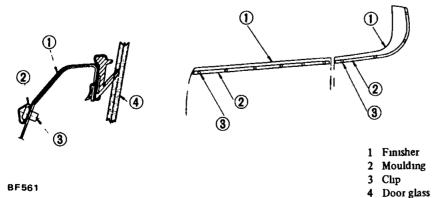
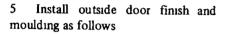
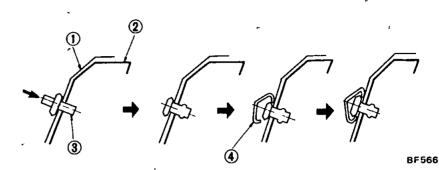


Fig BF-168 Sectional view of door moulding and finisher (Sedan)

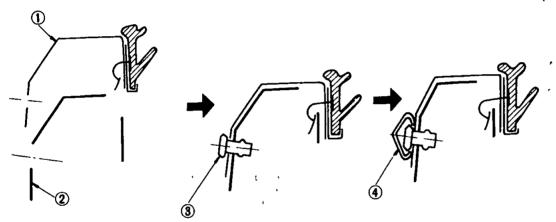




Fig BF-169 Sectional view of door moulding and finisher (Hardtop)



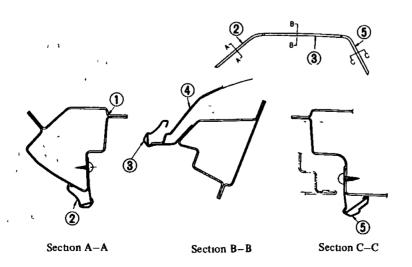
BF565

- 1 Door outside weatherstrip
- 2 Anchor clip


Fig BF-173 Anchor clip

- 1 Outside finish
- 2 Door panel
- 3 Beading clip

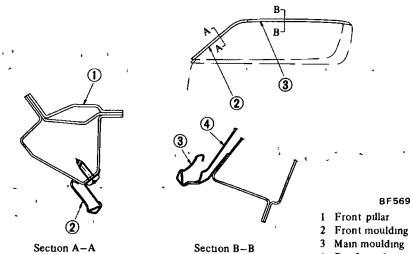
Fig BF-174 Installing door outside finish and moulding (Sedan and Station Wagon)



BF567

- 1 Outside finish
- 2 Door panel
- 3 Beading clip
- 4 Moulding

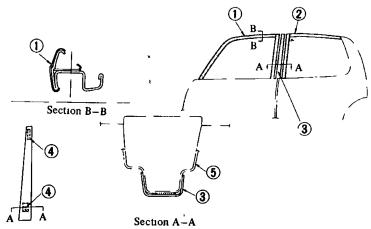
Fig BF-175 Installing door outside finish and moulding (Hardtop)


ROOF DRIP MOULDING

BF568

- 1 Front pillar
- 2 Front moulding
- 3 Center moulding
- 4 Roof panel
- 5 Rear moulding

Fig BF-176 Roof drip moulding (Sedan)

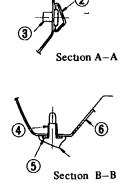


DOOR SASH AND **CENTER PILLAR**

Center pillar cover is attached to center pillar with adhesive tapes as shown in Figure BF-178

4 Roof panel Fig BF-177 Roof drip moulding (Hardtop)

BF569



BF570

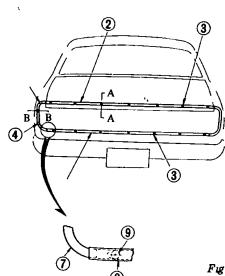

- Front sash cover
- Rear sash cover
- Center pillar cover
- Adhesive
- 5 Center pillar

Fig BF-178 Sectional view of door sash and center pillar cover

REAR PANEL AND TRUNK LID MOULDING

BF571

- Trunk lid panel
- Trunk lid moulding
- Beading clip
- Clip
- Seal rubber
- Rear fender
- Rear fender moulding
- Rear panel moulding
- Retainer for rear panel moulding

Fig BF-179 Sectional view of rear panel and trunk lid mouldings

Removal and installation

- 1 Remove nuts retaining rear panel moulding and remove rear panel moulding
- 2 Remove rear fender mouldings
- 3 Remove trunk lid moulding from clips
- 4 Install trunk lid, rear fender and rear panel mouldings in reverse sequence of removal

SPECIAL SERVICE TOOLS

	Tool number		For	Reference
No	& tool name	Description Unit mm (in)	use	page or Figure No
1	ST08810000 Caulking hand gun	For pushing out the bottom of windshield glass sealer cartridge 50 (1 97)	710 C110 C130 330 S30	Fig BF-134
		SE231		
2	ST08800000 Sucker	This tool is used to set and secure the windshield glass panel on the spacer It is also used to assure satisfactory adhesion of the glass panel to the body through application of uniform pressure after setting	All models	Fig BF-136
3	ST08720000 Door adjusting wrench	This special wrench is used to make door adjustments without dismounting fender	610	Page BF-20 Fig BF-55
		SE 232		

SERVICE MANUAL

DATSUN MODEL 610 SERIES

SECTION BE

BODY ELECTRICAL SYSTEM

BODY ELECTRICAL WIRING	BE- 2
FUSE AND FUSIBLE LINK	BE- 4
LIGHTING AND SIGNAL SYSTEM	BE- S
METERS AND GAUGES	BE-18
IGNITION SWITCH AND STEERING LOCK	BE-26
HORN	BE-27
WINDSHIELD WIPER AND WASHER	BE-29
RADIO	BE-37
HEATER	RF-40

BE

NISSAN MOTOR CO., LTD. TOKYO, JAPAN

BODY ELECTRICAL WIRING

CONTENTS

DESCRIPTION				
Colors of cables				
WIRING HARNESS				

BE-2 Inspection
BE-2 Maintenance instructions

BE-2 BE-2

BE-2

DESCRIPTION

Cables used for body electrical wiring are low tension cables. Their conductors are covered with vinyl of various colors. These various colors are intended to represent use of respective cables. In wiring diagram, these colors are indicated by one or two alphabetical letters. With different colors thus used, such cables gathered together in wiring harness easily reveal their origins and destinations. Basic colors, that is, standard colors and

supplementary colors to standard color, are established for cables of respective systems such as starting and ignition system, lighting system and signal system By designated colors, therefore, you can easily tell circuit systems and starting points of respective cables

Colors of cables

The system of colors applied to the covering of cable conductors is as shown in the following table

Circuit system	Standard color	Supplementary color	Supplementary color to standard color
Starting and ignition system	B (Black)	W, Y	t
Charging system	W (White)	B, R, L	Y
Lighting system	R (Red)	W, B, G, Y, L	
Signal system	G (Green)	W, B, R,	W, Br (Brown)
Instrument system	Y (Yellow)	W, B, G, R, L	
Others	L (Blue)	W, R, Y	Y, Br, Lg (Light green)
Grounding system	B (Black)		

To covering of individual main cable of each system, standard color or supplementary color to standard color is generally applied Colors are represented respectively by such letters as G, W and Br Applied to minor item of each circuit's terminal is two-tone

which is composed of standard and supplementary colors. Each of such two-tone colors is indicated with combination of two letters like RW or GY, and first letter of each combination stands for standard color, and second, supplementary color

WIRING HARNESS

Inspection

Referring to wiring diagrams or circuit diagrams, inspect entire electrical wiring and connections and insure

- 1 That each electrical component part or cable is securely fastened to its connector or terminal
- 2 That each connection is tight in place and free from rust and dirt
- 3 That each cable covering shows no evidence of cracks, deterioration or otherwise damage
- 4 That each terminal is securely kept away from any adjacent metal parts
- 5 That each cable is fastened to its proper connector or terminal
- 6 That each grounding bolt is planted tight
- 7 That wiring is securely kept away from any adjacent sharp edges of parts or parts (such as exhaust pipe) having high temperature
- 8 That wiring is kept away from any rotating or working parts such as fan pulley, fan belts, etc
- That cables between fixed portions and resiliently mounted equipment are long enough to withstand shocks and vibratory forces

Maintenance instructions

1 Before starting to inspect and repair any part of electrical system or other parts which may lead to a short circuit, be sure to disconnect cables at battery terminals.

Disconnect cables at battery terminals in the following manner

Disconnect cable at negative — terminal, and then disconnect the other cable at positive \oplus terminal

Before connecting cables at battery terminals, be sure to clean terminals with a rag Fasten cable at positive \oplus

terminal, and then the other cable at negative \bigcirc terminal Apply grease to top of these terminals to prevent rust from developing on them

- 2 Never use a screwdriver or service tool to conduct a continuity test USE TEST LEADS TO CONDUCT THIS CHECK
- 3 Never ground an open circuit or circuits under no load Use a test lamp (12-3W) or circuit tester as a load
- 4 Never disconnect cables by pulling them Be sure to loosen terminals before disconnecting them

FUSE AND FUSIBLE LINK

CONTENTS

DESCRIPTION MAINTENANCE INSTRUCTIONS BE-4 Fuse BE-4 Fusible link

BE-4

BE-4

DESCRIPTION

The fuse and fusible link are protective device used in an electric circuit When current increases beyond rated amperage, fusible metal metal and circuit is broken, and thus, cable and electrical equipment are protected from burning Whenever fuse is melted for one reason or another, use systematic procedure to check and eliminate cause of trouble before installing new fuse in position

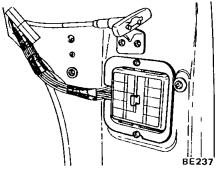


Fig BE-1 Fuse box

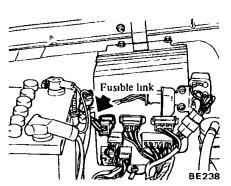


Fig BE-2 Fusible link

MAINTENANCE INSTRUCTIONS

Fuse

In nearly all cases, visual inspection can reveal faulty fuse If condition of fuse is questionable, conduct continuity test with use of circuit tester or test lamp

Notes

- a If fuse is blown off, be sure to eliminate the cause before installing new fuse in position
- b Use fuse of specified rating Do not use fuse of more than specified rating

c Check fuse holders for condition If much rust or dirt is found thereon. clean metal parts with fine-grained sandpaper until proper metal-tometal contact is made Poor contact of any fuse holder will often lead to voltage drop or heating in the circuit and, in the worst case, may result in improper operation of circuit

Fusible link

Two types of fusible link are in use Each type is clearly identified by colored covering of conductors, as shown below

Color	Size mm ² (sq in)	Continuous current	Max current (fuse melts within 5 sec)
Brown Green	0 3 (0 0005) 0 5 (0 0008)	11A 20A	Approx 60A Approx 200A
Red	0 85 (0 00132)	26A	Approx 250A

Melted fusible link can be detected by either visual inspection or finger-tip feeling If its condition is questionable, use circuit tester or test lamp, as required, to conduct continuity test This continuity test can be performed in same manner as for any conventional fuse

Notes

a Fusible link carries current as large as 60 or 250 amperes when it melts in period of less than five seconds Under no circumstances should any

larger fusible link than that specified be used

- b Should melting of fusible link occur, it is possible that critical circuit (power supply or large current carrying circuit) is shorted In such case, carefully check and elimmate the cause of trouble.
- c Never wrap periphery of fusible link with vinyl tape Extreme care should be taken of this link so that it does not come into contact with any other wiring harness or vinylor rubber-parts.

LIGHTING AND SIGNAL SYSTEM

CONTENTS

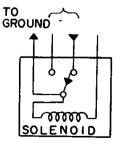
DESCRIPTION	BE- 5	Bulb replacement	BE-13
Circuit diagram of lighting system	BE- 5	BACK-UP LAMP	BE-14
Circuit diagram of signal lamp system	BE- 9	TURN SIGNAL AND LIGHTING SWITCH	BE-14
HEAD LAMP	BE- 9	Removal	BE-14
Head lamp beam replacement	BE- 9	REAR SIDE MARKER LAMP	BE-14
Aiming adjustment	BE-10	Lamp assembly replacement	BE-14
FRONT COMBINATION LAMP	BE-11	Bulb replacement	BE-14
Bulb replacement	BE-11	TRUNK ROOM LAMP	BE-14
Lamp assembly replacement	BE-11	Trunk room lamp assembly replacement	BE-14
SIDE FLASHER LAMP	BE-11	LIGHTING SWITCH	BE-14
Lamp assembly replacement	BE-11	Removal	BE-14
Bulb replacement	BE-11	HAZARD WARNING SWITCH	BE-14
SIDE MARKER LAMP	BE-11	Removal	BE-14
ROOM LAMP	BE-11	STOP LAMP SWITCH	BE-15
Room lamp	BE-11	Removal and installation	BE-15
Rear room lamp	BE-11	Inspection	BE-15
REAR COMBINATION LAMP	BE-12	BULB SPECIFICATIONS	BE-15
Combination lamp assembly replacement	BE-12	TROUBLE DIAGNOSES AND CORRECTIONS	BE-16
Bulb replacement	BE-12	Head lamp system	BE-16
LICENSE LAMP	BE-13	Signal lamp system	BE-17
License lamp assembly replacement	BE-13		

DESCRIPTION Circuit diagram of lighting system

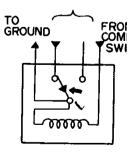
Head lamp system, isolated from other lighting system, has its own circuit Power circuits of both right and left head lamps are independent so that melting of fuse for one head lamp causes neither head lamp to go out, light with fuse melted is dimly lit by dint of electric current flowing in from circuit of the other lamp, which has no

2

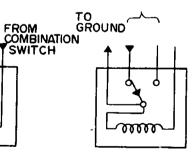
trouble and 1s, of course, normally lit


Figure BE-3-1' shows that combination switch lever is in position B, and contact of lighting relay is on one side Once lever is switched to position C, as shown in Figure BE-3-2, contact trans-

3


FROM HEAD LAMP

FROM HEAD LAMP


FROM HEAD LAMP

BE239

Fig BE-3 Lighting relay

fers to the other side Even when shifted to position C, lever automatically returns to position B (See Figure BE-3-3)

This movement of relay contact is caused by magnet force which is produced on solenoid of relay When lever of combination switch is set in posi-

tion C, electric current flows to solenoid of relay, and produces magnet force, which transfers contact to the opposite side

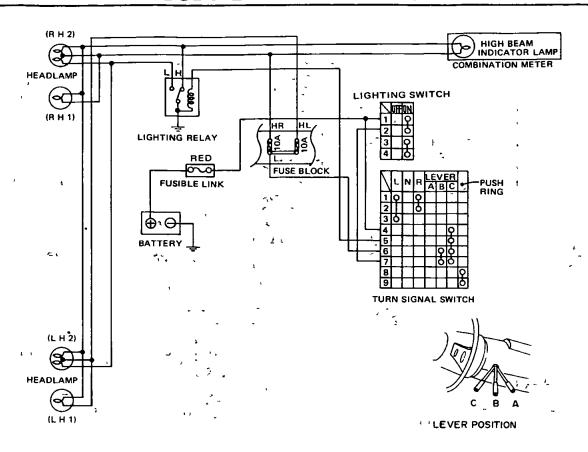
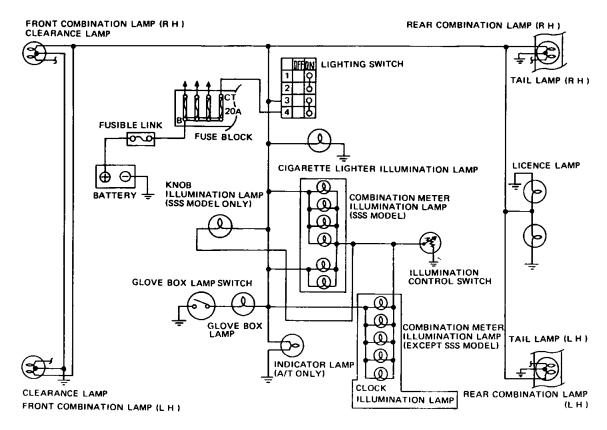



Fig BE-6 Circuit diagram for lighting system

BE290B

BE293B

Fig BE-9 Circuit diagram for lighting system

Circuit diagram of signal lamp system

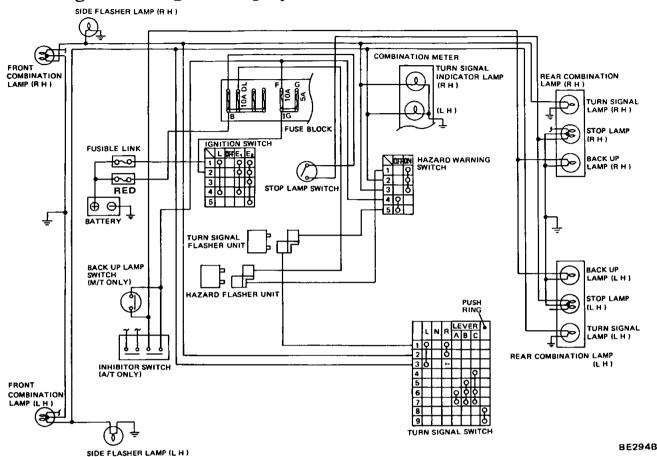
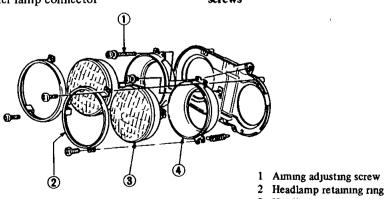


Fig BE-10 Circuit diagram for back-up lamp, turn signal lamp (hazard warning lamp) and stop lamp system


HEAD LAMP

Head lamp beam replacement

Remove retaining screws and remove radiator grille then disconnect side flasher lamp connector

Loosen three head lamp retaining ring screws. It may be unnecessary to remove screws

Note Do not disturb aiming adjust screws

BE221A

- Headlamp beam
- Headlamp mounting ring

- Remove retaining ring by rotating it clockwise
- Remove head lamp beam from mounting ring and disconnect wiring connector from behind beam
- 5 Change head lamp beam and connect wiring connector to new beam
- Place head lamp beam in position so that three location tabs behind beam fit in with three hollows on mounting ring Make sure that sign "Top" of beam lens is on upper side
- 7. Install head lamp retaining ring and tighten screws
- Position radiator grille (or head lamp finisher) in position and install retaining screws

Fig BE-11 Exploded view of head lamp

Aiming adjustment

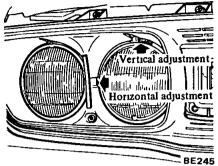
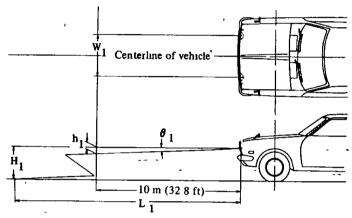
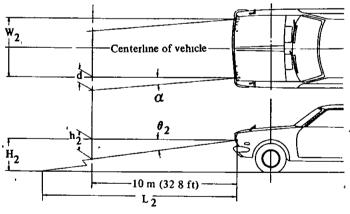


Fig BE-12 Aiming adjustment


To adjust vertical aim, use adjusting screw on upper side of head lamp, and to adjust horizontal aim, use adjusting screw on side of head lamp

Notes Before making head lamp aiming adjustment, observe the following instructions


- a. Keep all tures inflated to correct pressures
- b. Place car and tester on one and same flat surface

- c. See that there is no load in car
 - 1) Gasoline, radiator and engine oil pan filled up to correct levels
 - 2) Without passenger

When performing head lamp aiming adjustment, use an aiming machine, aiming wall screen or headlight tester For operating instructions of any aimer, refer to respective operation manuals supplied with the unit

DRIVING BEAM (High Beam)

PASSING BEAM (Low Beam)

BE246

Item]	Driving bea	am (Hıgl	h beam)			Passing	g beam (L	ow beam).	đ	
Model	H ₁ mm (in)	W ₁ mm (in)	θ¹ (°)	h ₁ mm (in)	L ₁ m (ft)	H ₂ mm (ın)	w ₂ mm (in)	.θ² (ο)	h ₂ mm (1n)	L ₂ m (ft)	mm (ın)	α (°)
610, K 610	655 (25 8)	830 (32 7)	44'	128 (5 0)	51 (167)	655 (25 79)	1,180 (46 5)	2º14'	390 (15 4)	17 , (56)	349 (13 7)	2°
W610	680 (26.8)	830 (32 7)	44'	128 (5 0)	53 (174)	680 (26 77)	1,180 (46 5)	2º14'	390 (15 4)	17.5 (57)	349 (13 7)	2°

FRONT COMBINATION LAMP

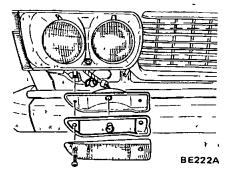
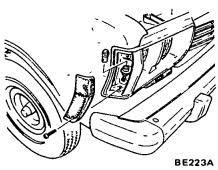


Fig BE-14 Exploded view of front combination lamp


Bulb replacement

- 1 Remove two lens retaining screws and detach lens
- 2 Push in on bulb, turn it counterclockwise and remove it from socket
- 3 Insert new bulb into socket, making certain that locking pins in bulb base are properly positioned in socket Press bulb inward, rotate it clockwise, and lock bulb in socket

Lamp assembly replacement

- 1 Remove two lens retaining screws and pull lamp assembly out
- 2 Disconnect lead wires at connector

SIDE FLASHER LAMP

, Fig BE-15 Exploded view of side flasher lamp

Lamp assembly replacement

Side marker lamp is secured to RADIATOR GRILLE with three screws

Replace lamp assembly by removing three screws from front of lens and disconnecting wires from connector

Bulb replacement

- 1 Remove two screws securing lens, and detach lens
- 2 Push bulb in, turn it counterclockwise, and remove bulb
- 3 Install bulb in the reverse order of removal

SIDE MARKER LAMP

Side marker lamp is fixed on fender with two screws. Replacement of lamp assembly can be done by removing two screws from front of lens and disconnecting wires from connector

ROOM LAMP

Room lamp

To replace bulb, remove lamp body and change bulb

To remove lamp body, pull lamp body out of roof and disconnect room lamp wires at connector

Room lamp is held by spring pressure against roof

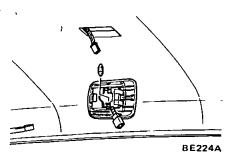
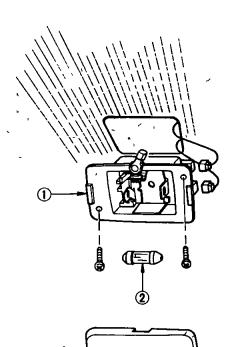
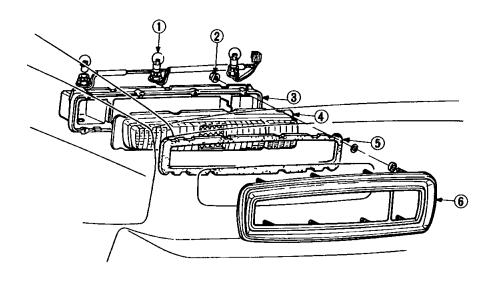



Fig BE-16 Exploded view of room lamp

Rear room lamp / resp.

BE250

- l⇔ Lámp body
- 2 Bulb
- 3 Lens


Fig BE-17 Rear room lamp (for Station Wagon)

To replace bulb, remove lens and change bulb

To remove lamp body, remove two retaining screws, disconnect lead wires from each connector and withdraw lamp body

REAR COMBINATION LAMP

Combination lamp assembly replacement

- 1 Bulb
- 2 Flange nut
- 3 Lamp housing
- 4 Lens
- 5 Packing 6 Lens rim
 - n

Fig BE-18 Rear combination lamp

BE 251

Sedan and Hardtop

- 1 Disconnect trunk harness at connector.
- 2 Remove eight flange nuts on lamp housing (shade) in trunk
- 3. Remove lamp housing (shade), lens and packing from rear panel toward inside of trunk Withdraw lens rim from car
- 4 Install new rear combination lamp assembly in reverse sequence of removal

Station Wagon

- 1 Remove three screws securing lamp assembly to fender
- 2 Remove bulb socket from lamp housing (shade) and then remove lamp assembly
- 3 Install new assembly in reverse sequence of removal

Bulb replacement

- 1 Turn bulb socket counterclockwise and remove socket from lamp housing (shade)
- 2 Push in on bulb, turn it counterclockwise, and remove it from socket
- 3 Insert new bulb into socket making certain that looking pins in base of bulb is in position Press bulb inward, rotate it clockwise, and lock it in socket
- 4 Insert socket into lamp housing with locking tab in proper position Rotate socket clockwise to lock it in housing (shade)

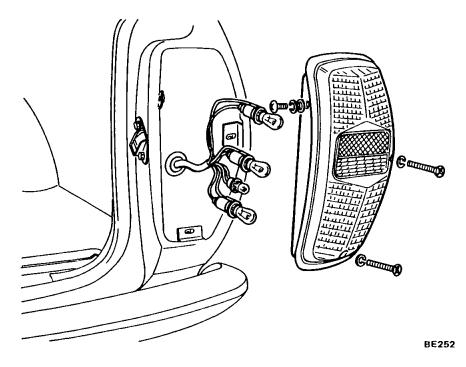
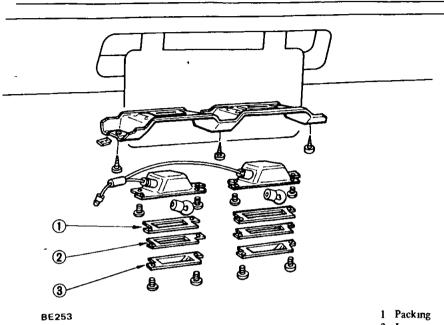



Fig BE-19 Rear combination lamp (Station Wagon)

LICENSE LAMP Sedan and Hardtop

- 2 Lens
- 3 Lens cover

Fig BE-20 License lamp (Sedan and Hardtop)

License lamp assembly replacement

- 1 Remove three license lamp retaining screws and remove lamp assembly from bumper
- 2 Disconnect lead wire at connector
- 3 Install new license lamp assembly in reverse sequence of removal

Bulb replacement

- 1 Remove two lens cover retaining screws
- 2 Remove lens cover, lens and packing
- 3 Replace bulb with new one
- 4 Install cover, lens and packing in reverse sequence of removal

Station Wagon

License lamp assembly replacement

- 1 Remove tailgate trim
- 2 Remove two tailgate handle retaining nuts
- 3 Disconnect lead wire at con-
- 4 Dismount lamp assembly from vehicle

Bulb replacement

- 1 Remove two lens retaining screws
- 2 Remove lens and packing
- 3 Replace bulb with a new one
- 4 Install packing and lens in reverse sequence of removal

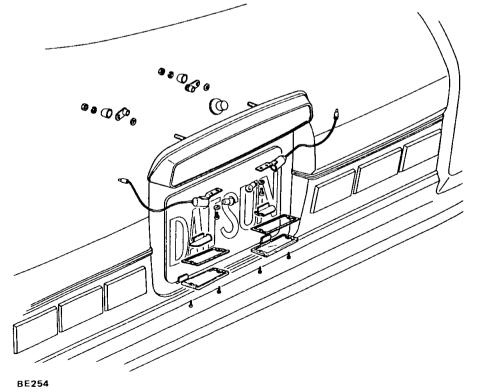


Fig BE-21 License lamp (Station Wagon)

BACK-UP LAMP

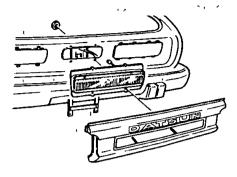


Fig BE-22 Exploded view of back-up lamp (Hardtop)

Sedan and Station Wagon

For replacement procedure of bulb and lamp assembly, refer to Rear Combination Lamp Assembly Replacement

Hardtop

- 1 Disconnect wires at connector
- 2. Remove right and left rear combination lamp assemblies.
- 3 Remove four flange nuts
- 4 Remove lamp assembly from rear panel.
- 5 Install new assembly in reverse sequence of removal.

TURN SIGNAL AND LIGHTING SWITCH

Removal

- 1 Remove horn ring
- 2 Remove steering wheel securing nut and steering wheel
- 3 Remove four shell cover retaining screws and remove upper and lower shell covers
- 4 Disconnect combination switch wires at connectors
- 5 Loosen two retaining screws and remove combination switch assembly

REAR SIDE MARKER LAMP

Lamp assembly replacement

- 1 Remove two screws securing lamp assembly and lens to body
- 2 Disconnect lamp connector and remove lamp assembly

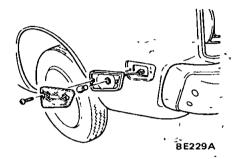
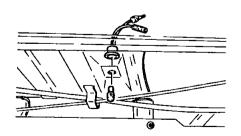


Fig BE-23 Exploded view of rear side marker


Bulb replacement

- 1 Remove two screws securing lamp assembly and lens to body, and detach lens
- 2 Push bulb in, turn it counterclockwise, and remove bulb
- 3 Install bulb in the reverse order of removal

TRUNK ROOM LAMP

Trunk room lamp assembly replacement

- Disconnect lamp wire
- 2 Pull lamp out downward
- 3 Lift socket out of position

BE230A

Fig BE-24 Trunk room lamp replacement

LIGHTING SWITCH

Removal.

- 1 Remove upper and lower shell covers from steering column by loosening four screws.
- 2 Loosen two cluster lid cover retaining screws and remove cluster lid cover.
- 3 Remove five screws from front of cluster A, and remove one screw holding cluster A to instrument panel from behind Thus cluster A is detached
- 4 Remove switch knob by depressing it and turning it counterclockwise.
- 5' Remove lighting switch

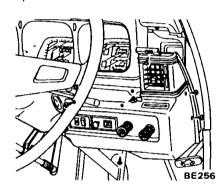


Fig BE-25 Removing cluster A

HAZARD WARNING SWITCH

Removal

- 1 Remove cluster lid A, following the same procedures as "Removal" procedures 1 through 3 for "LIGHT-ING SWITCH"
- 2 Remove connector from instrument harness.
- 3 Remove switch from cluster lid A, to which switch is attached by means of spring tension From rear of cluster lid, push switch out forward

STOP LAMP SWITCH

Removal and installation

Stop lamp switch is integral part of brake pedal height

Whenever stop lamp switch is removed, adjustment is required

- 1 Disconnect lead wires at connectors
- 2 Loosen lock nut Switch assembly can then be taken out by rotating switch

3 Install in the reverse sequence of removal

Inspection

When plunger is pressed into switch assembly, stop lamp switch contacts are open Contacts are closed when plunger is projected

Test continuity as previously described by using test lamp or ohmmeter

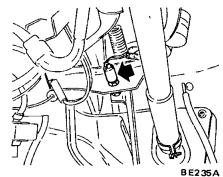


Fig BE-26 Stop lamp switch

BULB SPECIFICATIONS

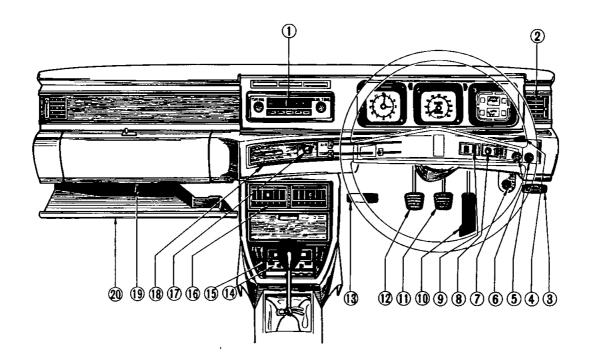
Item	General areas Wattage		
Head lamp Outer Inner	37 5/50 37 5		
Front combination lamp Turn signal light Parking light Side flasher lamp	21 5 5		
Rear combination lamp Stop/Tail lamp Turn signal lamp Back-up lamp	21/5 21 21		
License lamp	7 5		
License lamp (Europe)	5		
Room lamp Room lamp Rear room lamp Trunk room lamp	10 10 5		
Instrument illumination light and indicator lights	3 4		

TROUBLE DIAGNOSES AND CORRECTIONS

Head lamp system

Condition	Probable cause	Corrective action
Head lamps (both of high beam and low beam) do not light Neither high beam nor low beam is lit 1) Even when lighting switch is set to	Fusible link blown off	When fused, detect and eliminate the cause, and replace with new one
	Faulty lighting relay terminal con- nector	Check connector for contact and repair as required
"OFF," and lighting lever switch is switched to operate passing light, it will not do	Inoperative lighting relay	Conduct continuity test If relay is faulty, replace
wan not do	Both fuses (right and left side beams) blown off	When fused, detect and eliminate the cause, and replace with new ones
	Faulty terminal connectors (lighting switch and lever switch)	Check connectors for contact and repair as required
	Inoperative lighting switch and lever switch	Conduct continuity test If both switches are faulty, replace
2) Passing light is in normal workable condition	Faulty lighting switch terminal connector	Check connector for contact and repair as required
	Inoperative lighting switch	Conduct continuity test If switch is faulty, replace
Either high or low beam is lit normally (High and low beams are not switched to each other)	Faulty terminal connectors (lighting relay and/or lighting lever switch)	Check connectors for contact and repair as reuquired
	Inoperative lighting relay and/or lighting lever switch	Conduct continuity test If any switch is faulty, replace
Only one head lamp is lit 1) Head lamp on left side is normal,	Either of two fuses for head lamps is melted	When fused, detect and eliminate the cause, and replace with a new one
and that on right side is only dimly lit, or vice versa	Faulty head lamp terminal connector	Check connector for contact and repair as required
2) Head lamp on left side is normal,	Faulty lamp	Replace with a new one
and that on right side does not light	Faulty head lamp terminal con- nector	Check connector for contact and repair as required
Head lamps dim	Faulty head lamp circuit	Check head lamp circuit for cable about to break or in faulty contact, or check fuse for faulty contact Repair, or replace if required
Head lamps dim when the engine is stopped or idling	Battery partly discharged	Measure specific gravity of electrolyte Charge battery if required
	Faulty battery	Replace battery

Condition	Probable cause	Corrective action
2) Head lamps still dim with engine running faster than idling	Voltage at head lamp terminals is 12.8 volts or higher Faulty sealed beam unit	Replace sealed beam units
	Voltage less than 12 8 volts Faulty charging system	Check the alternator, regulator, and head lamp circuit


Signal lamp system

Condition	Probable cause	Corrective action
Turn signal lamps fail to operate properly	When turn signal lever is moved to left, left turn signal lamp will not go on and off regularly (But, when this lever is moved to right, right turn signal lamp will operate properly)	ı
	o Faulty LH turn signal lamp	Replace bulb
	o Trouble in LH turn signal circuit	Check and correct
	Both turn signal lamps fail to operate properly	
	o Inoperative flasher unit	Replace
Turn signal lamps will not be on	Both turn signal lamps fail to light when turn signal lever is moved to left and right	
	When stop lamp switch is operated stop lamp will go on properly	
-	a) Faulty "F" fuse	Replace
	b) Inoperative hazard lamp switch	Replace
	c) Inoperative flasher unit	Replace
	- d) Faulty turn signal switch	Check and correct
	When stop lamp switch is operated, stop lamp will not go on	
	,a). Discharged battery	Re-charge
	b) Trouble in power supply	Check and correct
Hazard warning lamps will not operate properly	Turn signal lamps will operate properly, but hazard warning lamp will not light	
	1 Faulty "C" fuse	Replace
	2 Inoperative hazard flasher unit	Replace
	3 Faulty hazard switch	Replace
	Turn signal lamps operate properly, but LH hazard warning lamp will not	
	o Faulty hazard warning lamp switch contacts (left side)	Replace switch
	Turn signal lamps operate properly, but hazard warning lamps will not operate properly (Flashing cycle is too low or high)	
	o Inoperative flasher unit	Replace

METERS AND GAUGES

CONTENTS

CLUSTER LID	BE-20	HAND BRAKE WARNING LAMP	BE-22
Removal	BE-20 BE-20	TACHOMETER	BE-22
SPEEDOMETER	BE-20	Installation	BE-22
Removal	BE-20	CLOCK	BE-22
FUEL METER AND WATER		Installation	BE-22
TEMPERATURE METER	BE-20	TROUBLE DIAGNOSES AND	
Replacement	BE-21	CORRECTIONS	BE-23
OIL PRESSURE WARNING LAMP	BE-21	Speedometer '	BE-23
CHARGE WARNING LAMP	BE-21	Water temperature meter and fuel meter	BE-23
		Oil pressure and charge warning lamps	BF-25

- 1 Radio
- 2 Side ventilator
- 3 Hood release handle
- 4 Turn signal/dimmer passing switch lever
- 5 Wiper and washer switch
- 6 Light switch
- 7 Illumination control rheostat
- 8 Hazard warning switch
- 9 Rear window defroster switch
- 10 Accelerator pedal

- 11 Brake pedal
- 12 Clutch pedal
- 13 Parking brake lever
- 14 Cassete stereo
- 15 Gear control lever
- 16 Heater
- 17 Cigarette lighter
- 18 Ash tray
- 19 Glove box
- 20 Package tray

CLUSTER LID

Removal

- 1. Disconnect battery terminals
- 2 Remove shell covers from steering column by loosening four screws
- 3 Remove two cluster lid cover retaining screws and remove cluster lid cover
- 4 Remove two retaining screws as shown in Figures BE-28 and BE-29

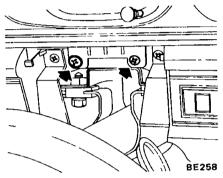


Fig BE-28 Removal of cluster lid

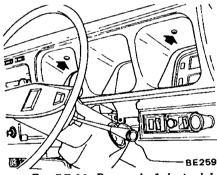


Fig BE-29 Removal of cluster lid

- 3 Remove six attaching screws and remove printed circuit housing together with speedometer, water temperature meter and fuel meter
- 4 Loosen two speedometer retaining screws and remove speedometer from printed circuit housing
- 5 Install new speedometer in the reverse sequence of removal

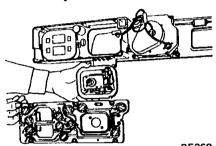


Fig BE-30 Removing speedometer

FUEL METER AND WATER TEMPERATURE METER

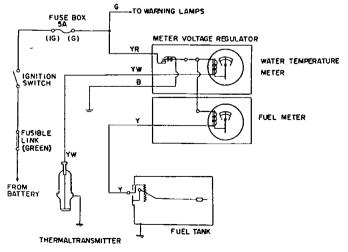
The fuel meter consists of a tank unit located in the fuel tank and fuel meter. The tank unit detects fuel level with its float, converts fuel level variation to a resistance of slide resistor installed on the float base, and thus, controls current flowing to the fuel meter.

The water temperature meter consists of a meter and thermaltransmitter located in the engine block. The ther-

maltransmitter is equipped with a thermistor element which converts cooling water temperature variation to a resistance, and thus, the thermaltransmitter controls current flowing to the meter

The fuel meter and water temperature meter are provided with a bimetal arm and heater coil When the ignition switch is set to "ON," current flows to the heat coil, and the heat coil is heated With this heat, the bimetal arm is bent, and thus, the pointer connected to the bimetal arm is operated. The characteristics of both meters are the same

A tolerance may occur on the water temperature meter or fuel meter due to source voltage fluctuation. The voltage regulator is used to supply a constant voltage so that the water temperature meter and fuel meter operate correctly


The operating part of the regulator consists of a bimetal arm and a heater coil. When the ignition switch is turned on, the bimetal arm is heated and bent by the coil, opening the contact Consequently, current to the coil is interrupted. As the bimetal cools, the contact closes The repetition of this operation produces a pulsating voltage of 8 volts which is applied to the temperature and fuel gauges.

- 5 Pull instrument panel forward
- 6 From behind instrument panel, disconnect connector plug (multi-pole) from printed circuit housing
- 7 Disconnect speedometer cable from speedometer head
- 8 Disconnect other wires at terminals on printed circuit housing if so equipped
- 9 Remove cluster lid assembly from instrument panel

SPEEDOMETER

Removal

- 1 Remove cluster lid
- 2 Remove odometer knob if so equipped

BE296B

Fig BE-31 Circuit diagram for fuel meter, temperature meter and voltage regulator

If both the water temperature meter and fuel meter become faulty at the same time, this may be attributable to trouble in the voltage regulator

Replacement

- 1 Remove cluster lid
- 2 Remove two meter retaining screws and remove meter from printed circuit housing
- 3 Install new meter in the reverse sequence of removal

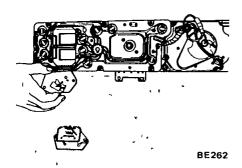


Fig BE-32 Removing meter

OIL PRESSURE WARNING LAMP

The engine lubricating system incorporates an oil pressure warning lamp which glows whenever engine oil pressure falls below 0 4 to 0 6 kg/cm² (6 to 9 psi) Under normal operation,

when the engine is stationary, the light glows with the ignition switch turned on When the engine is running and oil pressure reaches the above range, the circuit opens and the light goes out

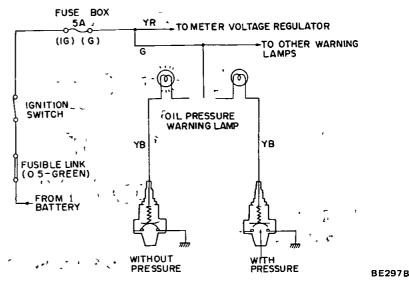


Fig BE-33 Circuit of oil pressure warning system

CHARGE WARNING LAMP

The charge warning lamp glows when the ignition switch is set to "ON" with the engine shut down, or when the alternator fails, to charge with the engine operated

. When the ignition switch is set to "ON", the charge warning circuit is

closed and current flows from the ignition switch to the warning lamp and grounds through the regulator (Fig BE-34-1) When the engine is started and the alternator comes into operation, the alternator output current from N terminal opposes the

current flowing from the warning lamp, as the current from N terminal increases, the solenoid is more energized and the warning lamp relay contacts are opened, in effect it breaks the warning circuit ground connection, and the lamp goes out (Fig BE-34-2)

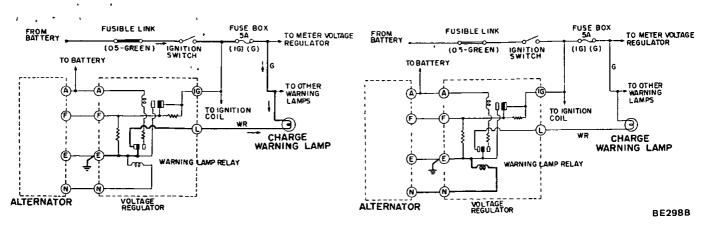


Fig BR-34-1 Circuit of charge warning system

Fig BR-34-2 Circuit of charge warning system

HAND BRAKE WARNING LAMP

The hand brake warning lamp glows when the hand brake is applied

When the ignition switch is set to "ON," current flows from the ignition switch to the warning lamp When the hand brake is applied, hand brake warning switch is closed and warning lamp glows On some vehicles, this lamp is also used as a warning lamp to indicate that there is a leak in the service brake line. When a pressure difference between the front and rear brake lines reaches the limit, the switch in the brake line is actuated by line pressure and the contacts close. As the contacts close, the lamp glows

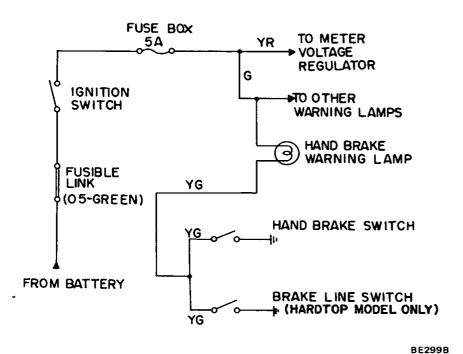
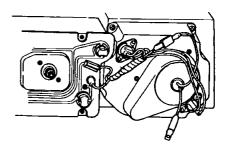



Fig BE-35 Circuit diagram for brake warning system

Installation

- 1 Remove cluster lid
- 2 Remove mask and install tachometer in place of mask.
- 3 Disconnect black/white-black/ green wire (laid along the lower portion of instrument panel) at connector plug
- 4 Connect tachometer lead wires to disconnected plug ends in series
- 5 Connect other lead wires of tachometer to combination meter printed circuit terminals
- 6 Install cluster lid

CLOCK

BE267
Fig BE-37 Installing clock

TACHOMETER -

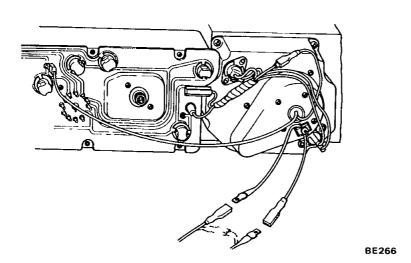


Fig BE-36 Installing tachometer

Installation

- 1 Remove cluster lid.
- 2 Remove mask and install clock in place of mask
- 3 Connect lead wire coming out from clock to blue/white wire laid along the lower portion of instrument panel.
- 4 Connect other clock lead wires to terminals on combination meter printed circuit
- 5 Install cluster lid

TROUBLE DIAGNOSES AND CORRECTIONS

Speedometer

Condition	Probable cause	Corrective action
Speedometer pointer and odometer do not operate	Improperly tightened speedometer cable union nut	Retighten
	Broken speedometer cable	Replace
	Damaged speedometer drive pinion gear	Replace
	Inoperative speedometer	Replace
Speedometer pointer	Rapidly bent speedometer cable	Correct or replace
deflects excessively	Damaged speedometer drive pinion gear	Replace
	Inoperative speedometer	Replace
Unstable speedometer pointer	Improperly tightened speedometer cable union nut	Retighten
,	Faulty speedometer cable	Replace
	Inoperative speedometer	Replace
Unusual sound occurs in response to	Excessively bent or twisted speedometer cable inner wire or lack of lubrication	Replace or lubricate
increase of driving speed	Inoperative speedometer	Replace
Inaccurate speedometer indication	Inoperative speedometer	Replace
Inaccurate odometer operation	Improperly meshed second and third gear worm gears	Replace speedometer
	Faulty feeding due to deformed odometer and pinion carrier	Replace speedometer

Water temperature meter and fuel meter

Condition	Probable cause	Corrective action
Both water temperature meter and fuel meter do not operate	Blown off fuse, or improper connection	Check fuse for fusing and improper contact Replace after correcting cause, if fused Correct contact
	Faulty voltage regulator (damaged, fused, or open contact)	Replace
Both water temperature meter and fuel meter indicate inaccurately	Faulty voltage regulator (broken heat wire, seized contact and/or improper grounding)	(In this case meter pointer fluctuates excessively) Replace
	Improper cable contact	(In this case, meter pointer fluctuates slightly) Check cable for improper contact, and repair if required

Condition	Probable cause	Corrective action
Water temperature meter		
Water temperature meter does not operate	Faulty thermaltransmitter	Replace thermaltransmitter if pointer de- flects when thermaltransmitter yellow/white cable is grounded
	Faulty water temperature meter	Replace meter if pointer does not deflect when thermaltransmitter yellow/white cable is grounded
Pointer indicates maximum temperature	Faulty thermaltransmitter	Pointer moves to low limit when ignition switch is turned off In this case, replace thermaltransmitter
	Faulty water temperature meter	Pointer indicates maximum temperature even after ignition switch is turned off In this case, replace meter
Water temperature meter does not operate accurately	Faulty water temperature meter	Meter is serviceable when a 40Ω resistance is applied between thermaltransmitter yellow/ white cable and ground, and meter indicates approximately 80°C (176°F)
	Faulty thermaltransmitter	If meter is normal through the above inspec- tion replace thermaltransmitter
	Improper cable contact	If meter indicates a temperature slightly lower than the actual temperature, check cable from meter to thermaltransmitter for cable being about to break, poor contact, and faulty grounding, and repair if necessary
Fuel meter		
Fuel meter does not operate	Damaged tank unit	Replace tank unit if pointer deflects when tank unit yellow cable is grounded
	Inoperative fuel meter	Replace fuel meter with a new one if pointer does not deflect through the above inspection
Pointer indicates "F" position	Damaged tank unit	Replace tank unit if pointer lowers below empty limit when ignition switch is turned off
	Inoperative fuel meter	Replace fuel meter if pointer still indicates "F" position through the above inspection
Fuel meter functions improperly	Damaged tank unit	Replace tank unit if pointer indicates a half level when a 32Ω resistance is applied between tank unit yellow cable and ground
	Inoperative fuel meter	Replace fuel meter if pointer does not indicate a half level through the above inspection

Condition	Probable cause	Corrective action
	Improper cable contact	If fuel meter indicates a level slightly lower than actual level, check cable from fuel meter to tank unit for cable being about to break, poor contact, and faulty grounding, and repair as necessary

Oil pressure and charge warning lamps

Condition	Probable cause	Corrective action
Oil pressure warning lamp		
Lamp does not light when ignition switch is set to "ON"	Blown off fuse or faulty contact.	Check fuse for fusing and faulty contact Replace after correcting cause or repair as necessary.
-	Faulty bulb or faulty cable contact	If oil pressure switch yellow/black cable is grounded and warning lamp does not light check bulb for burnt out filament, and replace as necessary
	Damaged oil pressure switch	If warning lamp lights through the above inspection, replace oil pressure switch
Lamp does not go out	Lack of engine oil	Check oil level and add oil as required
Lamp does not go out while engine is being operated	Oil pressure too low	Inspect engine oil pressure system
•	Faulty oil pressure switch	Continuity exists on oil pressure switch when engine is being operated Replace oil pressure switch
Charge warning lamp		
Lamp does not light when ignition switch	Blown off fuse or faulty contact	Check fuse for fusing and faulty contact Repair or replace if necessary
is set to "ON"	Faulty bulb or faulty cable contact	Pilot lamp does not light when white/red cable in voltage regulator wiring connector is grounded, and ignition switch is set to "ON" Check bulb for burnt out filament, and replace if necessary
Lamp does not go out when engine is started.	Faulty charging system.	Inspect charging sysytem

IGNITION SWITCH AND STEERING LOCK

CONTENTS

IGNITION AND STARTER SWITCH .

BE-26

Steering lock replacement

BE-26

Removal .

BE-26

IGNITION SWITCH WITH STEERING LOCK

BE-26

Ignition switch replacement

BE-27

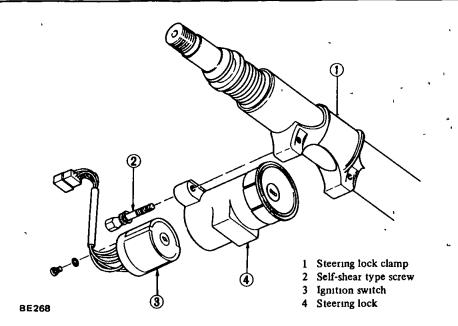
IGNITION AND STARTER SWITCH

Key position Terminal (wire color)	OFF	ON	START	ACC
Battery (WR)		γ	ρ	ρ
Accessory (LB)		Ò		
Starter (BY)			Ŷ.	
Ignition (BW)		0	Ŷ.	
Resistance (BG)			6	

Removal

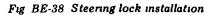
- Remove four screws and remove shell covers
- Disconnect lead wires at con-2. nector
- Remove two screws securing switch assembly to switch clamp
- Remove switch assembly from switch clamp

IGNITION SWITCH WITH STEERING LOCK


Key position Terminal (wire color)	LOCK	OFF	ACC	ON	START
Battery (WR)			Ŷ	P	P
Ignition (BW)				þ	þ
Starter (BY)					þ
Accessory (L)			9	o	
Resistance (BG)					o

Steering lock replacement

For the purpose of tamper-proof, the self-shear type screws are used, and their heads are sheared off when installed so that the steering lock system cannot be removed easily Replace the steering lock in accordance with the following instructions when required


Break two self-shear type screws with a drill or other proper tool Now, remove the steering lock from the steering lock clamp

When installing a new steering lock, be sure to tighten two new self-shear type screws to shear off their heads

Ignition switch replacement

To replace ignition switch from steering lock device, remove shell covers, disconnect ignition switch wires at connector, and remove one retaining screw from back of steering lock device. Install new switch in reverse sequence of removal

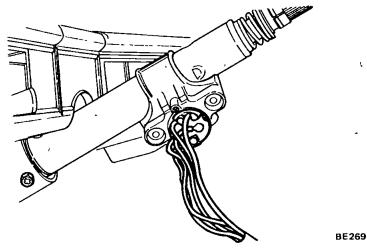


Fig BE-39 Ignition switch

HORN

CONTENTS

DESCRIPTION INSPECTION

BE-27 TROUBLE DIAGNOSES AND

BE-28 CORRECTIONS

BE-28

DESCRIPTION

The horn circuit includes a horn relay Current from the battery flows through the fusible link and fuse to the horn relay (terminal B), where it is shunted by the two circuits In one

circuit (terminal S), the current flow is supplied through the solenoid and horn button to the grounding In the other circuit (terminal H), the current flow is supplied through the relay contacts to horn (Horn bracket serves

as a grounding)

When the horn button is pressed, current from the battery energizes the solenoid As the solenoid is energized, the relay contacts close This allows the current to flow to the horn

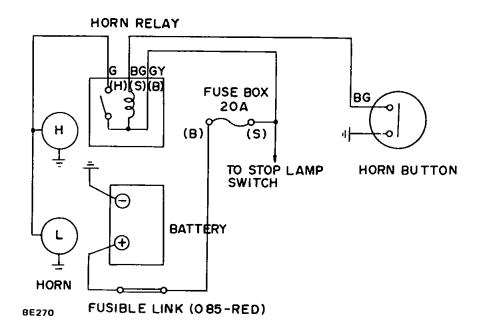
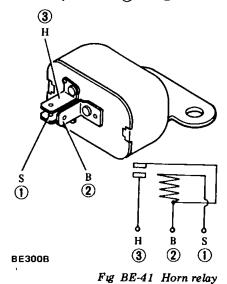



Fig BE-40 Circuit diagram for horn system

INSPECTION

Test system continuity and each unit by using test lamp or ohmmeter Refer to Figures BE-40 and BE-41 for horn system

In testing horn relay, there must be continuity between (1) and (2)

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Horn does not operate	Excessively discharged battery	Measure specific gravity of electrolyte Charge if required
	Blown off fuse	Check fuse for fusing and improper contact Replace or repair if required
	Improper horn button contact	In this case horn sounds when horn relay terminal (S) is grounded Check and repair horn button
	Inoperative horn relay	Horn sounds when horn relay terminals (B) and (H) are short-circuited. Replace horn relay
	Faulty hom	Horn does not sound though horn relay terminals (B) and (H) are short-circuited, and horn does not sound though battery (+) terminal is connected to horn terminal directly Replace horn
Horn sound continuously	Inoperative horn relay	Horn does not stop though horn relay (S) terminal is disconnected Replace horn relay
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Short-circuited horn button and horn relay terminal (S)	When horn stops through above disconnection, check horn button unit particularly carefully Repair horn relay terminal (S) Replace horn button

Condition	Probable cause	Corrective action
Reduced volume and/or tone quality	Improper fuse contact and loose connection	Correct
	Broken cable	Repair or replace if required
	Improper hom button contact	Repair

WINDSHIELD WIPER AND WASHER

CONTENTS

WINDSHIELD WIPER AND WASHER	-BE- <u>2</u> 9	, Inspection	BE-32
Description '	BE-29	TROUBLE DIAGNOSES AND	٠
Removal and installation	BE-30	, CORRECTIONS	BE-35 ¹

WINDSHIELD WIPER AND WASHER

Description

The windshield wiper consists of a wiper motor unit, a link mechanism, wiper arms, blades, and an intermittent amplifier (the intermittent amplifier is installed on the Hardtop model only) The motor unit is made up of a motor and an auto-stop mechanism.

The wiper motor unit is located on the fire wall in the engine compartment, and the link mechanism is located under the cowl top panel The intermittent amplifier is installed on the front dash side panel

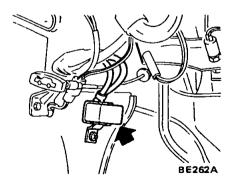


Fig BE-42 Window screen wiper amplifier

The electrically operated windshield washer consists of washing fluid tank (with motor and pump), washer nozzles, and vinyl tube used to connect those components

The windshield washer switch is combined with the windshield wiper switch to a single unit When operating the washer, twist the switch knob

Removal and installation

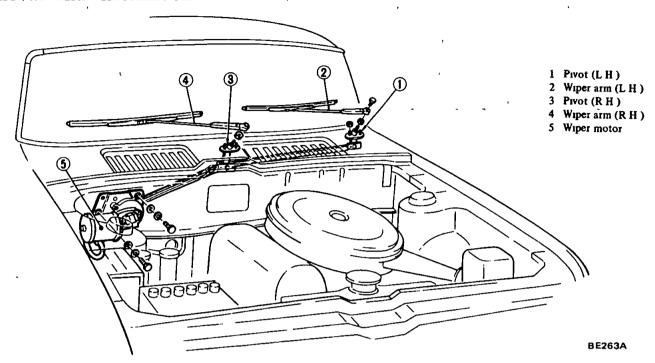


Fig BE-43 Wiper motor and wiper linkage

Wiper motor and wiper linkage

- 1. Disconnect wiper motor wire connector from wiper motor
- 2 When removing wiper arm from pivot shaft, raise wiper blade from windshield glass and then remove the base of wiper arm from pivot shaft by loosening attaching nut
- 3 Remove cowl top grille by removing set screws
- 4 Remove three wiper motor attaching bolts.
- 5 Remove ball joint connecting motor shaft to wiper link
- 6 Remove wiper motor from cowl top panel

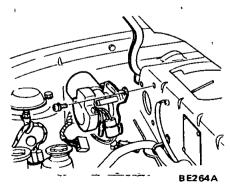


Fig BE-44 Removing motor

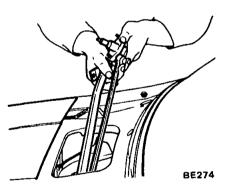


Fig BE-45 Removing link assembly

- 7 Remove two flange nuts attaching pivot to cowl top panel and remove link assembly
- 8 Install wiper linkage and wiper motor in the reverse sequence of removal

Install wiper blade in correct installation angle to obtain correct sweeping zones

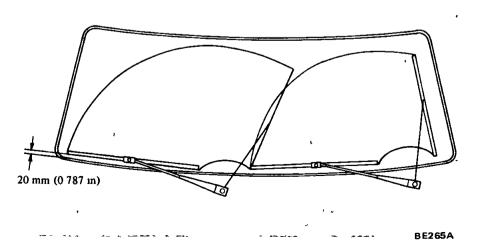
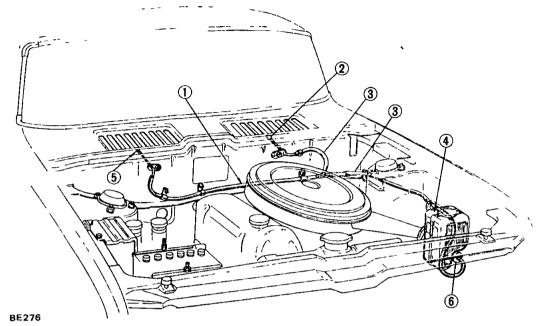



Fig BE-46 Wiper arm installation

Washer nozzle

- 1 Remove washer nozzle fixing screw from cowl top panel
- 2 Remove washer nozzle
- 3 Install washer nozzle in the reverse sequence of removal
- 4 Adjust nozzle direction so that

fluid is sprayed in proper range as shown in Figure BE-48

- l Washer tube
- 2 Washer nozzle
- 3 Washer tube
- Washer tank
- 5 Washer nozzle (R H)
- Washer motor

Fig BE-47 Windshield washer

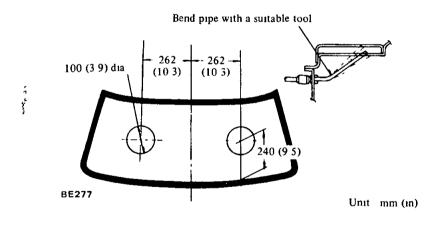


Fig BE-48 Nozzle adjustment

Note In assembling washer motor and washer tank, it is recommended that soapy water be used to facilitate the operation

Cautions for windshield washer operation

1 Be sure to use only washing solution

- Never mix soap powder or detergent with solution
- 2 Do not operate windshield washer continuously more than 30 seconds or without washer fluid. This often causes improper windshield washer operation. Normally, windshield washer should be operated 10 seconds or less at one time.

Wiper switch

- 1 Loosen four screws and remove upper and lower shell covers from steering column
- 2 Loosen two cluster hid cover retaining screws and remove cluster hid cover
- 3 Remove five screws from front of cluster A, and remove one screw holding cluster A to instrument panel from behind Thus cluster A is detached
- 4 Remove switch knob by depressing it and turning it counterclockwise
- 5 Remove wiper and washer switch, utilizing the same procedure as that for lighting switch

Intermittent wiper amplifier

The intermittent wiper amplifier is installed on the front dash side

- 1 Remove battery ground cable
- 2 Remove screw securing intermittent amplifier in place
- 3 Disconnect connector and remove amplifier See Figure BE-42

Inspection

Hardtop model

Wiper and washer switch

To perform continuity tests properly, refer to Figure BE-49 and proceed as follows

Note Use of an ohmmeter is suggested to facilitate continuity tests

- 1 Turn wiper switch to the OFF position, and test continuity between terminals (4) and (7)
- 2 Pull wiper switch out to 1st position (intermittent wiper operation)
 Test continuity between terminals 4 and 7 and between 3 and 5, respectively
- 3 Pull wiper switch out to 2nd position (low-speed wiper operation)
 Test continuity between terminals (3) and (4), and between (3) and (5), respectively
- 4 Pull wiper switch out to 3rd position (high-speed wiper operation)
 Test continuity between terminals 2 and 3, and between 2 and 5, respectively
- 5 Push wiper switch in all the way to the OFF position, and then twist it With wiper switch held in that position, test continuity between terminals (1) and (8), and between (3) and (6), respectively

If continuity exists in all tests in steps I through 5 above, wiper switch is in good order

Wiper motor

Refer to Figure BE-50 and perform continuity tests at the following terminals

Between (6) and (2), (1) and (2), (6) and (4), (6) and (5), and (6) and (7)

Then connect positive terminal of a 12-volt d-c power supply to terminal (6), and ground terminal (5) securely With this setup, check whether or not wiper motor runs The motor should = run-Next, ground-terminal (4). Do not ground terminal (5) this time With this setup, check whether or not wiper

motor turns

Ground either terminal (5) or (4) to keep wiper motor in running condition Check continuity between terminals (3) and (2) If continuity exists, it indicates that the on-off cycle is repeated, and that auto-stop circuit is functioning properly

Ground terminal (7), and check to ensure that continuity between terminals (1) and (3) exists Undo grounding terminal (7) and check that continuity between (1) and (3) does not exist. If test results are as indicated, wiper motor intermittent relay is functioning properly.

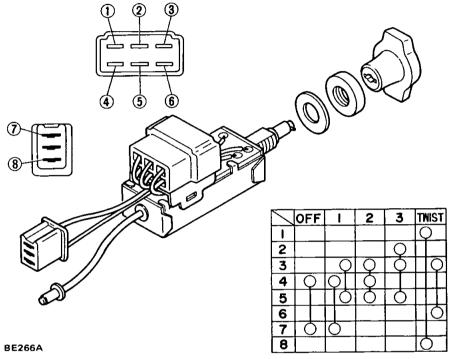


Fig BE-49 Wiper switch

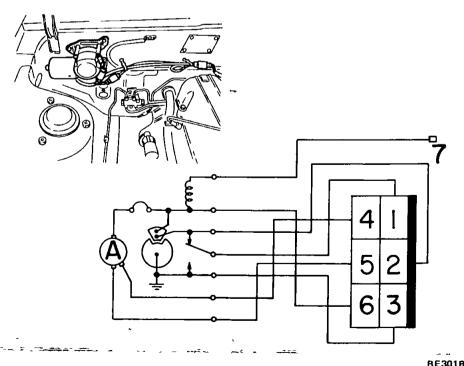


Fig BE-50 Wiper motor

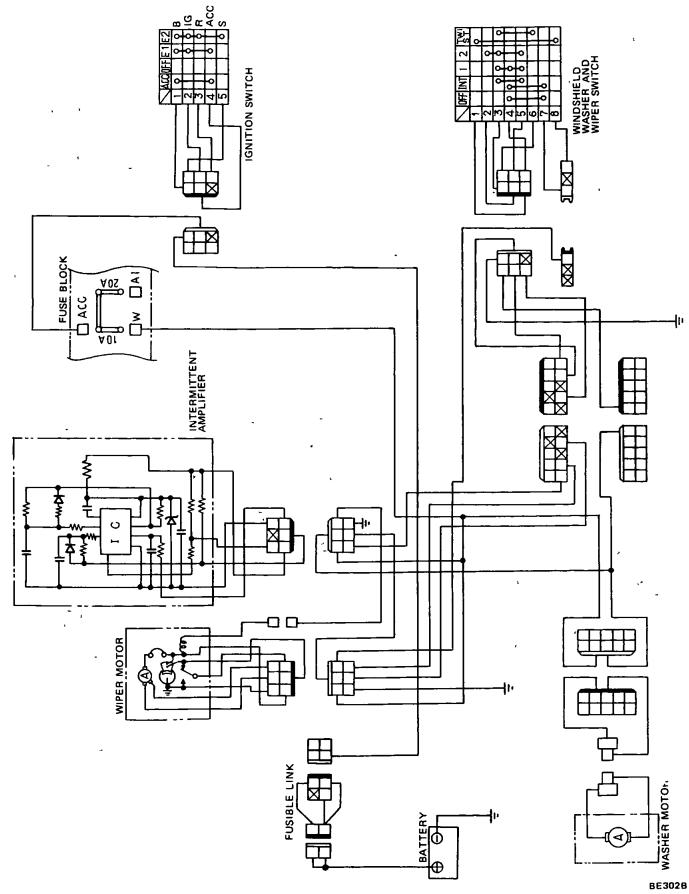


Fig BE-51 Circuit diagram of wiper and washer system

Intermittent amplifier

Set up a test circuit as shown in Figure BE-52, and check intermittent amplifier for operation as follows

- Turn on switch B, making sure that inspection lamp comes on immediately, then blinks at 5 to 7 second intervals
- Next, turn on switch A Inspection lamp should come on approximately 0 7 second after switch is turned on When switch is turned off 2 seconds after lamp comes on, lamp should remain on for some another 2 5 seconds

If above tests do not come out positive, replace intermittent amplifier

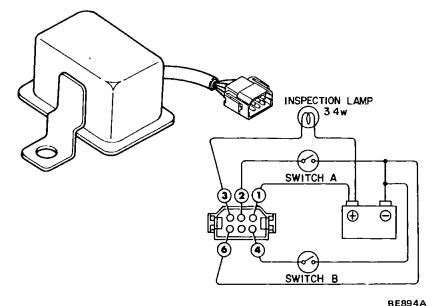
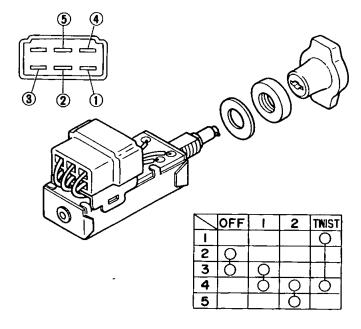


Fig BE-52 Intermittent amplifier

Sedan and Station Wagon

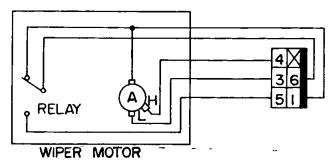
Wiper and washer switch


To perform continuity tests properly, refer to Figure BE-53 and proceed as follows

Note Use of an ohmmeter is suggested to facilitate continuity tests

- 1 Turn wiper switch to the "OFF" position, and test continuity between (2) and (3)
- 2 Pull wiper switch out to "1st" position Test continuity between terminals (3) and (4)
- 3 Pull wiper switch out to 2nd position Test continuity between terminals 4 and 5
- 4 Push wiper switch in all the way to the "OFF" position, and then twist it

With wiper switch held in that position, test continuity between terminals (1) and (4)


If continuity exists in all tests in steps 1 through 4 above, wiper switch is in good order

BE303B

Fig BE-53 Wiper switch (Sedan and Station Wagon)

Wiper motor

BE304B

Fig BE-54 Wiper motor (Sedan and Station Wagon)

Checking motor

Refer to Figure BE-54 and perform continuity tests at the following terminals

Between ① and ④, and between ① and ③

Then, connect positive terminal of a 12-volt d-c power supply to terminal
and ground terminal
With

terminal ① connected to that voltage source, undo grounding terminal ④, and ground terminal ③

With each setup, check whether or not wiper motor runs. If it does not, wiper motor is faulty

Checking auto-stop circuit

Connect positive terminal of a

12-volt d-c power supply to terminal (1) and ground terminal (3) With this setup, permit to run wiper motor and measure voltage at terminal (5)

If voltmeter pointer deflects from 12 volts to 0 volt then back to 12 volts, auto-stop circuit is functioning properly

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Windshield wiper does	Inoperative intermittent amplifier	Replace
not intermittently	Improper wiper and washer switch contacts	Replace switch
operate '	Broken armature of wiper motor	Replace wiper motor
	Inoperative intermittent wiper relay	Replace wiper motor
	Worn motor brush	Replace wiper motor
	Motor is overheated due to seized motor shaft	Replace wiper motor
	Windshield wiper fuse (10A) melts due to short-circuit, layer short-circuit, or motor inside component burnt	Replace fuse and wiper motor or repart
Windshield wiper does not operate	No current flows to motor due to Broken armature	Replace motor
- h	Worn motor brush	Replace motor
	Motor is overheated due to seized motor shaft	Replace motor
	Windshield wiper fuse (10A) is easily fused due to short-circuit, layer short-circuit, or motor inside component burnt	Replace motor or repair short-circuited par
	Blown out fuse due to trouble of other part in windshield wiper circuit	Check other part for operation and correct problem
	Loose, open or broken wiring	Check wiring near motor and connector for connection Correct if necessary
	Erroneous wiring	Check each wire for color code, and correct if necessary
	Improper grounding	Correct
	Improper switch contact	Correct if necessary
	Foreign materials interrupts the movement of link mechanism	Correct
	Disconnected link rod	Correct
	Seized or rusted arm shaft	Lubricate or replace arm shaft

Condition	Probable cause	Corrective action
Windshield wiper operating speed is	With arm raised, still excessive current flows due to leyer short-circuit of motor armature	Replace motor
too slow	Windshield wiper stops only by lightly holding with hand due to worn motor brush	Replace motor
	With arm raised, still excessive current flows (3 to 5A) due to seized motor shaft	Replace motor or lubricate bearing with engine oil
	Low source voltage	Measure voltage, check other electrical parts for operation, and take corrective action for power supply if necessary
	Humming occurs on motor in arm operating cycle due to seized arm shaft	Lubricate or replace
	Improper switch contact	Conduct continuity test, and replace if necessary
	Windshield wiper blade sticks on windshield glass	Raise arm and operate windshield wiper without applying load Clean windshield glass and/or replace wiper blade
Windshield wiper speed cannot be changed correctly.	Motor brush for either low or high speed is worn	Replace motor
Windshield wiper does not stop correctly		
Stops anywhere.	Contaminated auto-stop relay contacts or improper contact due to foreign matter	Remove auto-stop device cover, and clean contacts carefully so as not to deform relay plate
	Improper connection between 1st and 2nd switch steps	Remove switch, and make sure that 1st and 2nd steps are not connected at "OFF" position If connected, replace switch
Does not stop	Incomplete auto-stop operation (Contact is not interrupted)	Remove auto-stop device cover, and correct relay plate bending

RADIO

CONTENTS

INSTALLATION	BE-37	TROUBLE DIAGNOSES AND	
Radio receiver	BE-37	CORRECTIONS	BE-39
Radio antenna	BE-38	Noîse prevention chart	BE-39
ADJUSTING ANTENNA TRIMMER	BE-38	•	

INSTALLATION

Radio receiver

- 1 Remove instrument panel
- 2 Position speaker to instrument panel and install two flange nuts (See Figure BE-55)
- 3. Install radio receiver to instrument panel
- 4 Connect speaker wires to instrument harness at connector
- 5. Connect radio wires to instrument harness at connector
- 6 Install antenna Follow procedure

given in "Radio Antenna" in this section

- 7 Install instrument panel.
- 8 Connect antenna feeder to radio receiver cable

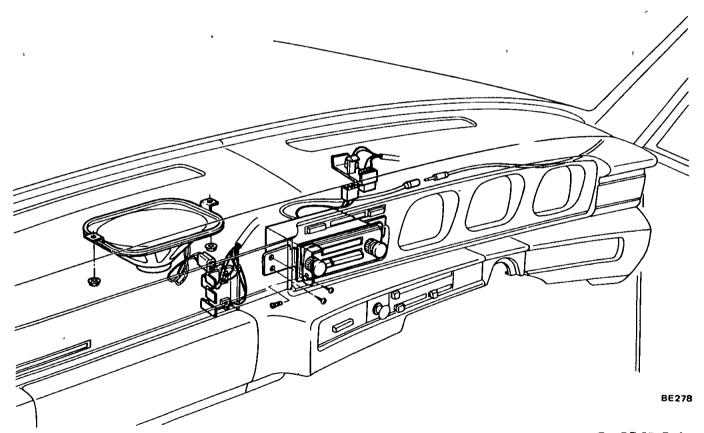


Fig BE-55 Radio

Radio antenna

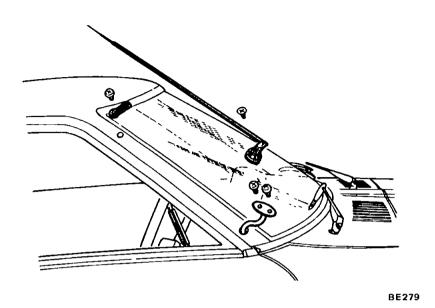
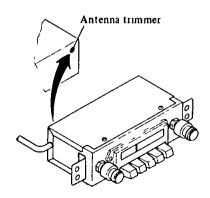


Fig BE-56 Radio antenna

1 Insert antenna feeder into antenna mounting opening in front pillar

and route it through dash side panel to radio receiver

- 2 Install two retaining screws and install antenna feeder base to front pillar
- 3 Position antenna support to front pillar in position and install retaining screw
- 4 Install antenna rod assembly


ADJUSTING ANTENNA TRIMMER

When a new radio receiver, antenna or antenna feeder is installed, antenna trimmer should be adjusted

- 1 Extend antenna completely
- 2 Tune in the weakest station between 12 and 16 (1,200 to 1,600 KC) on dial

Noise may be generated but disregard it

3 Turn antenna trimmer to left and right slowly and set it at a position where receiving sensitivity is highest

- CLARION MAKE -

BE572

TROUBLE DIAGNOSES AND CORRECTIONS

Noise prevention chart

Position vehicle in an open area away from steel buildings, run engine, extend antenna to its maximum length, set volume control to maximum and set dial at a medium point without catching broadcasting wave

Condition	· Probable cause	Corrective action	
Ignition system		- ,	
Noise occurs when engine is operated	High tension cable	Install new high tension cable	
,	Ignition coil	Keep choke wire away from ignition coil Install a 0 5μF capacitor to primary side + terminal of ignition coil	
		Note Be careful not to install capacitor to secondary or primary breaker side, other wise engine becomes improper	
		Connect wire between engine and ignition coil locating area of body Secure ground of ignition coil	
	Distributor	Secure contact of carbon electric pole and rotor Eliminate sharp tip on rotor pole or cap pole by scrubbing with a screwdriver Check stagger between rotor and stator	
Charging system		1.11.05.5	
Sound of alternating current presents	Alternator	Install a 05µF capacitor to charging terminal A	
		Note Do not use a larger capacitor If capacitor is installed to terminal F alternator coil will be damage	
When accelerator pedal is depressed or released, noise presents	Regulator	Install a 05µF capacitor to "A" terminal of voltage regulator	
Supplement equipment			
When engine starts, noise presents Noise still presents even after stop-	Operative noise of water tem- perature and fuel meters	Install 0 1µF capacitor between terminal and ground wire	
ping engine		Note If a capacitor having a larger capacity is used, indication of meter will be deviated	
Noise presents when horn is blown	Horn	Install a 0.5µF capacitor to horn relay terminal or horn switch	
Noise presents when turn signal lamps are operated	Flasher unit	Install a 0 5µF capacitor	

Note

- a Be sure to locate capacitor as close as to noise source and connect in parallel
- b Cut lead wire as short as possible
- c. Ground wire should be attached on the body completely
- d Make installation and connection

securely

e Carefully identify "+," "-," "IN" or "OUT" marks

HEATER

CONTENTS

DESCRIPTION	•	BE-40	Heater core		BE-43
Air flow .		BE-41	ADJUSTMENT	•	BE-43
REMOVAL AND INSTALLATION	•	BE-42	Control assembly	•	BE-43
Heater unit		BE-42	INSPECTION		BE-43
Heater control		BE-43	Fan motor power supply		BE-43
Air intake box		BE-43	Fan motor		BE-43
Heater motor		BE-43	TROUBLE DIAGNOSES AND	CORRECTIONS	BE-44

DESCRIPTION

The heater is controlled by three levers – AIR, TEMP and FAN

The AIR lever controls air discharge by means of three doors (air intake, mode and defroster room doors)

- o The air intake door is used to let either outside- or inside-air flow into the heater unit The outside air is drawn from the cowl top grille and delivered to the air intake box.
- o The mode door serves to supply air flow to the outlet in the instrument panel This door has three detent positions — open, close, middle
- o The defroster room door controls air flow discharged from heater unit When the door is open, air is discharged to the floor area with a small amount going to the defroster nozzle When it is closed, all air is discharged from the defroster nozzle

The TEMP lever controls the air mix door and mixes heated air with air bypassing the heater core to obtain the desired air temperature. In this manner, the temperature of air is effectively controlled

The FAN lever controls switch that is located on the control lever assembly, providing three blower speeds

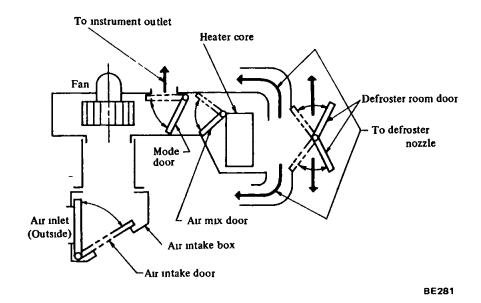
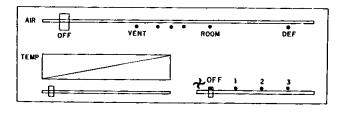
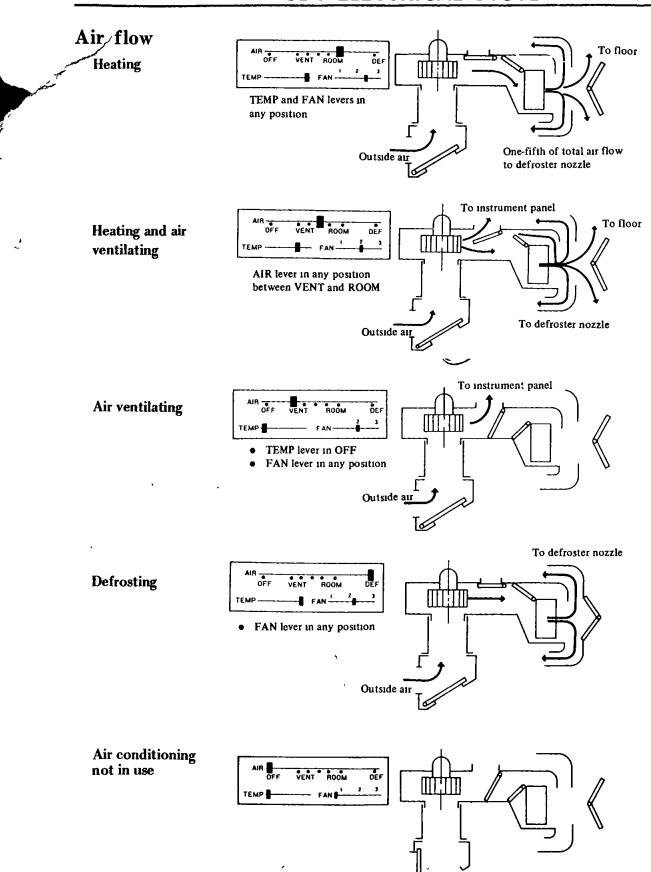




Fig BE-58 Sectional view of heater

BE282

Fig BE-59 Control lever

BE283

REMOVAL AND INSTALLATION

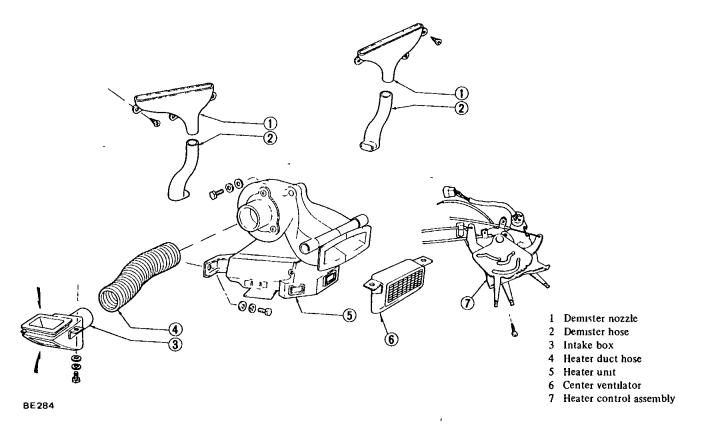


Fig BE-61 Exploded view of heater unit

Heater unit

- 1 Disconnect battery ground cable
- 2 Drain engine coolant
- 3 Remove hose clamps and disconnect inlet and outlet hoses
- 4 Perform the following operations in the driver's compartment side
- 5 Remove center ventilator (and center console box if so equipped)
- 6 Remove heater duct hose

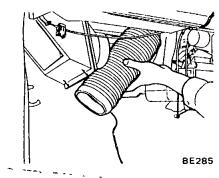


Fig BE-62 Removing heater duct hose --

7 Remove demister hose from each side of heater unit

8 Remove cable retaining clamps for the air mix door, mode door and defroster room door Disconnect cables from door control levers

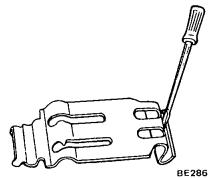


Fig BE-63 Removing cable retaining clamp

- 9 Disconnect lead wires at two connectors
- 10 Remove three bolts (two on seach side of heater unit as shown Figure BE-64, and one on the top of this unit as shown Figure BE-65
- 11 Remove heater unit

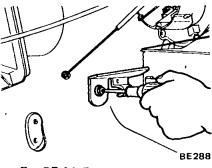


Fig BE-64 Removing unit securing bolt

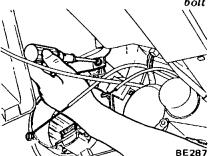


Fig BE-65 Removing unit securing

12 To install heater unit, reverse the sequence of removal

Heater control

- 1 Remove heater unit Refer to the "Heater Unit"
- 2 Pull out finisher forward Note that finisher is latched in position
- 3 Remove two retaining screws and remove heater control assembly
- 4 To install, reverse the sequence of removal

Air intake box

- 1 Remove heater duct hose
- 2 Disconnect control cable from air intake door
- 3. Remove screw securing air intake box in place
- 4 Remove air intake box
- 5 To install, reverse the sequence of removal

Heater motor

- 1 Remove heater unit by referring to the "Heater Unit"
- 2 Remove three screws and remove heater motor
- 3 To install, reverse the sequence of removal

Heater core

- 1 Drain engine coolant
- 2 Remove hose clamps and disconnect inlet and outlet hose from heater unit
- 3 Disconnect two control cables on the sides of heater unit
- 4 Remove clips and remove grille heater box
- 5 Pull out heater core
- 6 To install, reverse the sequence of removal

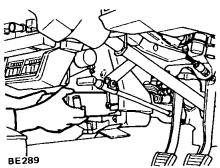


Fig BE-66 Removing heater core

ADJUSTMENT

Control assembly

Whenever a new or re-conditioned heater unit is to be installed, adjust control assembly as follows

- Move AIR lever to OFF position
- Fit cable to door lever of air intake box, and fasten with a cable retaining clamp while pulling outer case of cable with a force of 1 to 2 kg (2 to 4 lb)
- 2 Move AIR lever to DEF position
- Fit cable to defroster room door lever, and fasten with a cable retaining clamp while pulling outer case with a force of 1 to 2 kg (2 to 4 lb)
- Fit cable to mode door lever, and fasten with a cable retaining clamp while pulling outer case with a force of 1 to 2 kg (2 to 4 lb)
- 3 Move TEMP lever to left stop
- Fit cable to air mix door lever, and fasten with a cable retaining clamp while pulling outer case with a force of 1 to 2 kg (2 to 4 lb)

Note Make sure that each control lever moves smoothly over its entire stroke

Control lever	Operating force kg (lb)
AIR Lever	0 3 (0 7), min
TEMP lever	0 3 (0 7), mın
FAN lever	1 5 (3 3), min

INSPECTION

Check the following items if fan motor fails to rotate

- 1 Fuse and fusible link
- 2 To check for burned out fuse, use the same procedure as that for ordinary fuses with the use of a circuit tester or test lamp
- 3 Loose wire connection

Fan motor power supply

- 1 Disconnect lead wires at connector
- 2 Move ignition switch to ACC position
- 3 Connect test lamp lead wire to blue/white wire terminal in connector plug on instrument harness side and the other to the ground
- 4 Make sure that test lamp goes on

Fan motor

- 1 Disconnect lead wires at connector
- 2 Move ignition switch to ACC position
- 3 Connect test lead to positive side of fuse block power supply and the other to blue/white wire terminal in connector plug on fan motor side
- 4 Make sure that fan motor operates at each position of fan lever

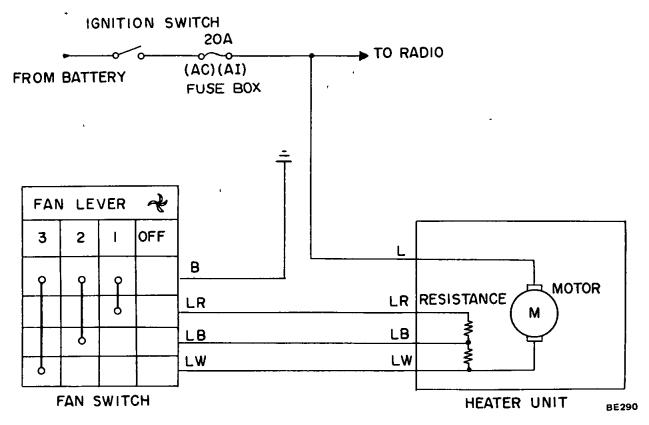
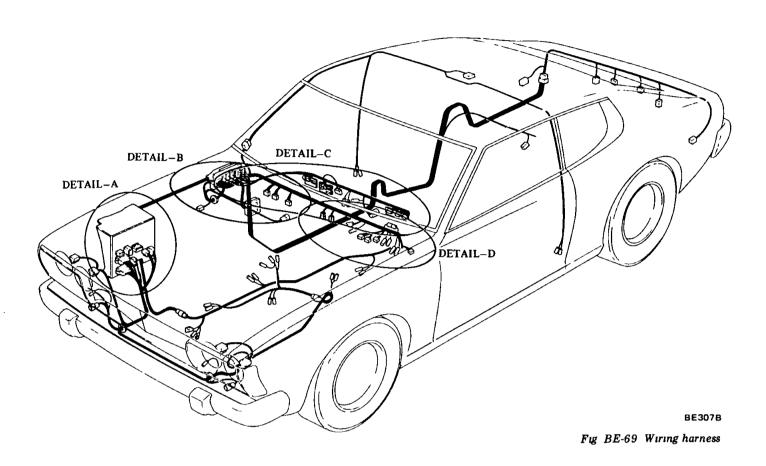



Fig BE-67 Circuit diagram for heater

TROUBLE DIAGNOSES AND CORRECTIONS

Condition	Probable cause	Corrective action
Insufficient heating performance		
No heated air discharged	Cooling water temperature too low.	Check thermostat Replace as necessary.
	Heater core plugged.	Clean
	Insufficient cooling water level	Refill
	Water cock out of proper operation	Adjust control cable.
	Air mix door out of proper operation	Adjust control cable
Insufficient air	Fan motor speed too low	Check for inotor terminal voltage Repair poor connection and discontinuity Replace motor if necessary
- <u>-</u>	Defroster room door out of proper operation.	Adjust control cable

Condition	Probable cause	Corrective action
Insufficient defrosting performance		
Cold air discharged	Refer to "No heated air discharged"	
Insufficient air flow to defroster	Defroster room door out of proper operation (or seal damaged)	Adjust control cable
	Demuster nozzle plugged	Clean
	Leak at demister hose-to-nozzle connec- tion	Correct
Heated air discharged with lever in VENT	Mode door out of proper operation	Adjust control cable.
No heated air dis- charged with lever in between VENT and ROOM	Mode door out of proper operation	Adjust control cable Make sure that AIR lever moves smoothly over its entire range
Failure of fan to run	Fuse melted	Replace
	Motor wire connector disconnected.	Correct
	Switch faulty	Replace.
	Motor faulty	Check and correct
Control lever drags	Inner wire rubbing against outer case end	Adjust control cable.
	Control cable bent excessively	Correct
	Doors, door levers, etc out of proper operation	Check and correct
Outside air comes in with fan in OFF.	Air intake door out of proper operation.	Repair or replace
	Control cable out of adjustment	Adjust control cable
Noise from fan motor.	Unusual noise from fan motor	Check and tighten loose bolts

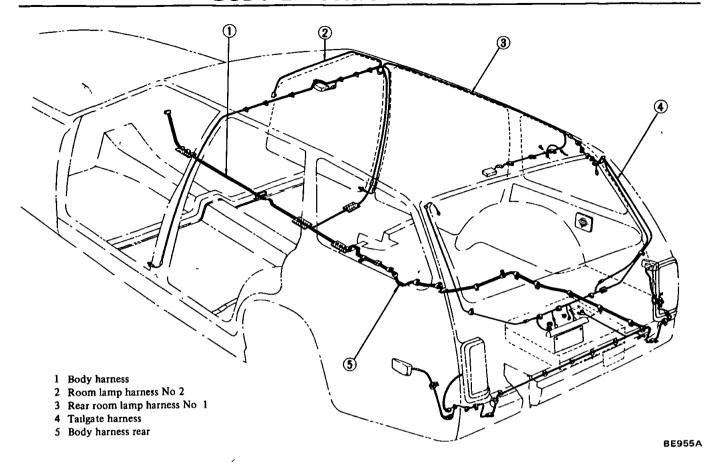
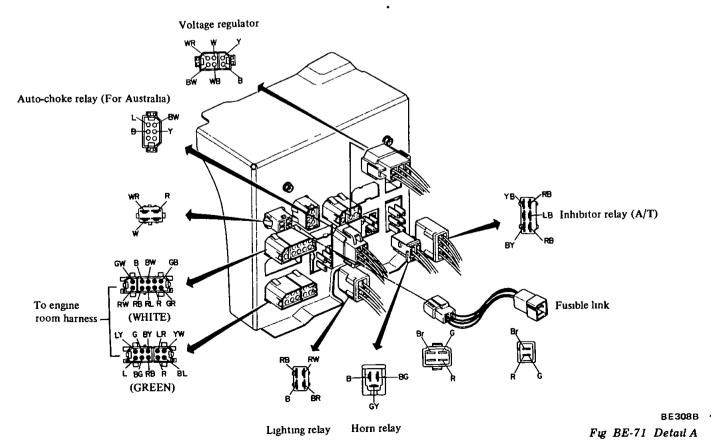
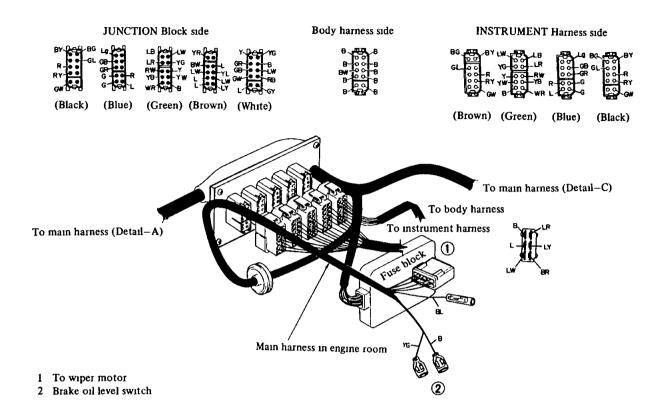
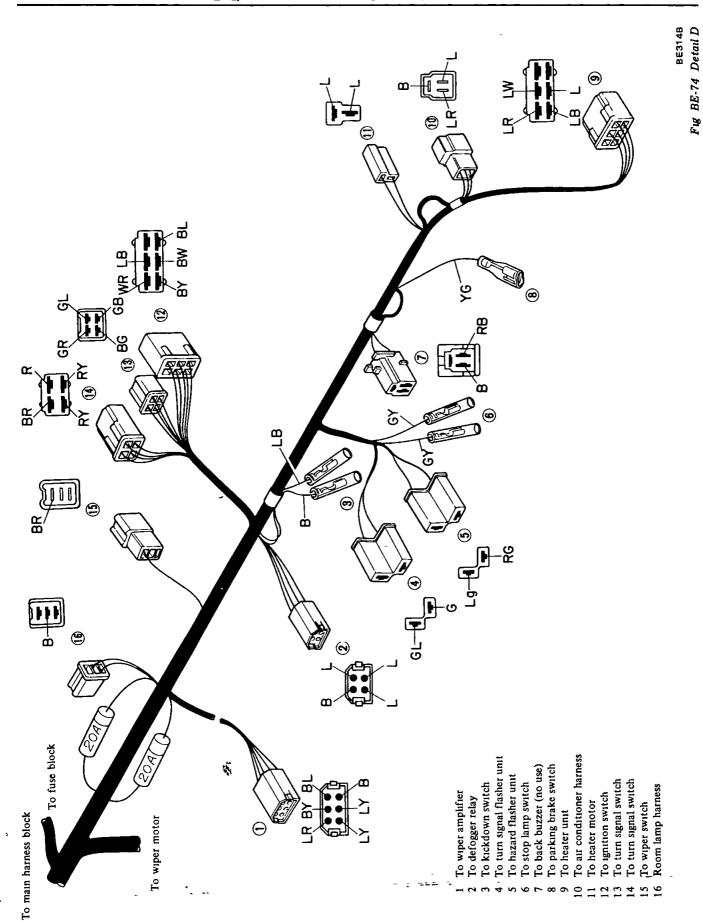




Fig BE-70 Wiring harness (Station Wagon)

BE312B
Fug BE-72 Detail B

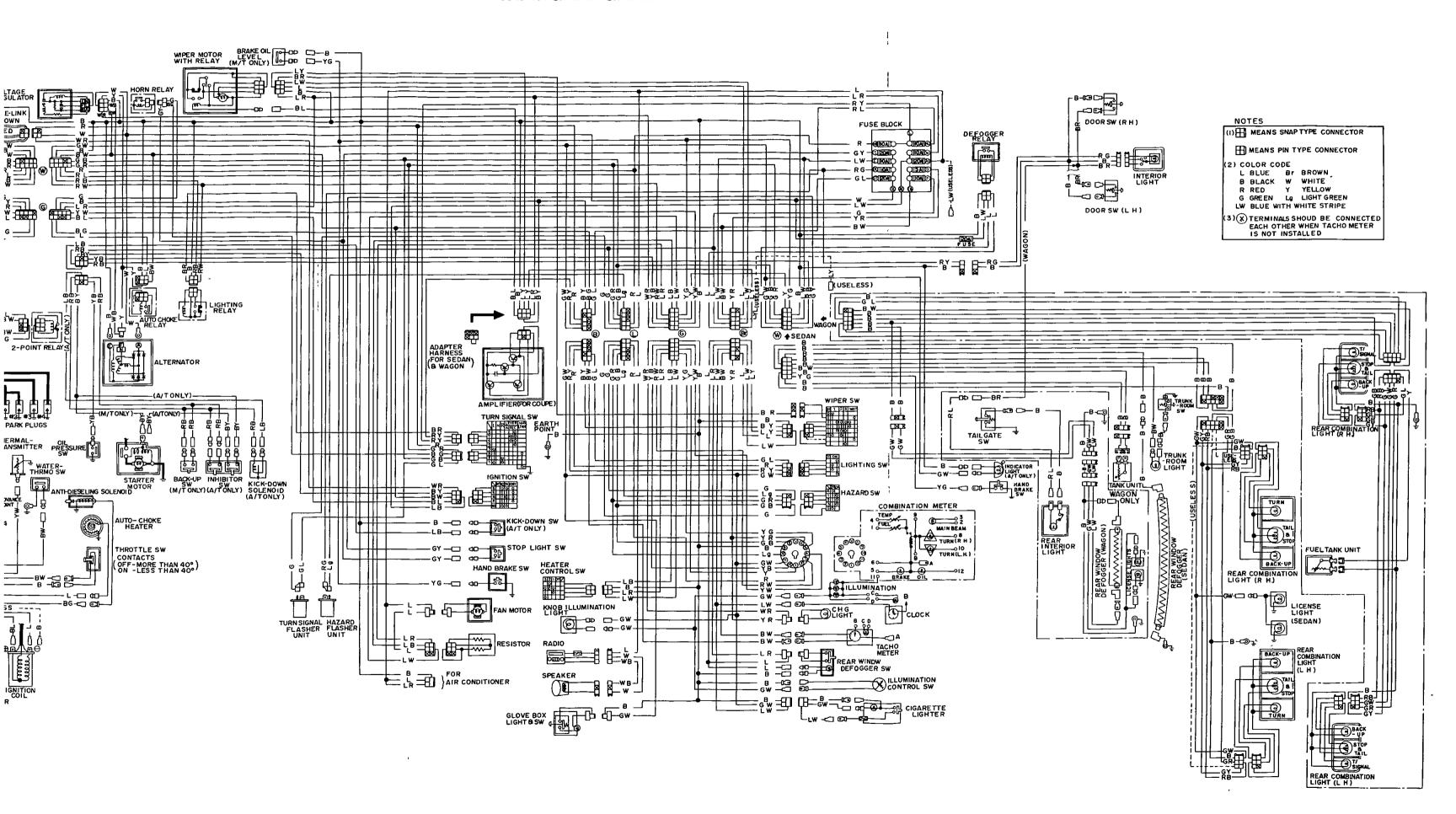
1 To glove box lamp and switch
2 To cigarette lighter
3 To radio speaker
4 To radio unit
5 To heater switch (Hardtop model only) To ady-control illumination To combination meter To knob illumination lamp 'W (Except Hardtop) (SSS model only) DETAIL-(8) (BLUE) **6** To main harness (GREEN) (BROWN) ◂

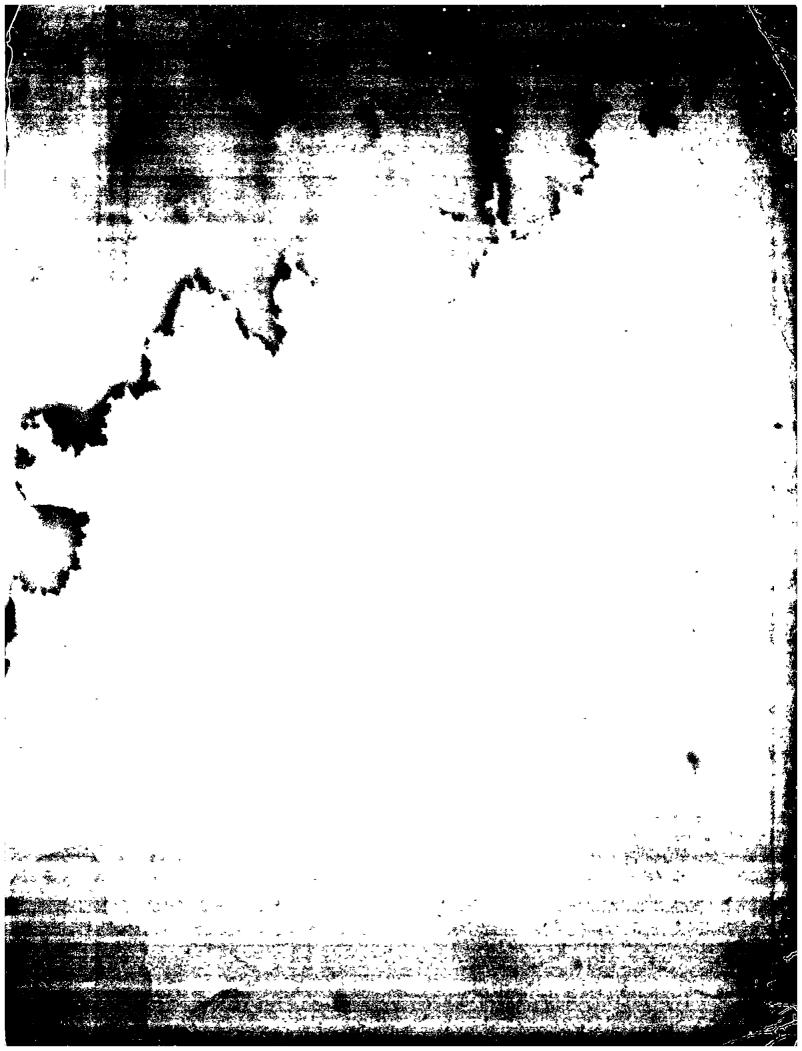
BE313B Fig BE-73 Detail C


To hazard warning switch

To lighting switch To wiper switch To body earth

Defogger pilot lamp


Charge warning lamp


To defogger switch



BE-50

WIRING DIAGRAM

