ENGINE
4G1 SERIES

CONTENTS

GENERAL INFORMATION .. 11A-0-3
1. SPECIFICATIONS .. 11A-1-1
 SERVICE SPECIFICATIONS ... 11A-1-1
 REWORK DIMENSIONS .. 11A-1-3
 TORQUE SPECIFICATIONS ... 11A-1-4
 NEW TIGHTENING METHOD—BY USE OF BOLTS TO BE
 TIGHTENED IN PLASTIC AREA 11A-1-6
 SEALANT ... 11A-1-6
 FORM-IN-PLACE GASKET ... 11A-1-7
2. SPECIAL TOOLS ... 11A-2-1
3. ALTERNATOR AND IGNITION SYSTEM 11A-3-1
4. TIMING BELT .. 11A-4-1
5. FUEL AND EMISSION CONTROL SYSTEMS 11A-5-1
 5a. INTAKE MANIFOLD AND THROTTLE BODY (GDI) 11A-5a-1
 5b. EXHAUST MANIFOLD (GDI) 11A-5b-1
6. WATER PUMP AND WATER HOSE 11A-6-1
7. INTAKE AND EXHAUST MANIFOLDS 11A-7-1
 7a. FUEL SYSTEM (GDI) ... 11A-7a-1
8. ROCKER ARMS AND CAMSHAFTS 11A-8-1
 8a. ROCKER ARMS AND CAMSHAFTS (GDI) 11A-8a-1
9. CYLINDER HEAD AND VALVES ... 11A-9-1
10. OIL PUMP AND OIL PAN ... 11A-10-1
11. PISTONS AND CONNECTING RODS 11A-11-1
12. CRANKSHAFT AND CYLINDER BLOCK 11A-12-1
<table>
<thead>
<tr>
<th>Descriptions</th>
<th>4G18 16-VALVE–CARBURETOR</th>
<th>4G18 16-VALVE–MPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>In-line OHV, SOHC</td>
<td>In-line OHV, SOHC</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>Pentroof type</td>
<td>Pentroof type</td>
</tr>
<tr>
<td>Total displacement dm³</td>
<td>1,584</td>
<td>1,584</td>
</tr>
<tr>
<td>Cylinder bore mm</td>
<td>76.0</td>
<td>76.0</td>
</tr>
<tr>
<td>Piston stroke mm</td>
<td>87.3</td>
<td>87.3</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>9.5</td>
<td>9.5, 10*¹⁺²</td>
</tr>
<tr>
<td>Number of valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Exhaust</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Valve timing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake opens</td>
<td>BTDC 12°</td>
<td>BTDC 17°, BTDC 9°⁺¹, BTDC 17°⁺²</td>
</tr>
<tr>
<td>Intake closes</td>
<td>ABDC 48°</td>
<td>ABDC 39°, ABDC 51°⁺¹, ABDC 43°⁺²</td>
</tr>
<tr>
<td>Exhaust opens</td>
<td>BBDC 48°</td>
<td>BBDC 49°, BBDC 49°⁺¹, BBDC 53°⁺²</td>
</tr>
<tr>
<td>Exhaust closes</td>
<td>ATDC 12°</td>
<td>ATDC 7°, ATDC 15°⁺¹, ATDC 7°⁺²</td>
</tr>
<tr>
<td>Lubrication system</td>
<td>Pressure feed, full-flow filtration</td>
<td>Pressure feed, full-flow filtration</td>
</tr>
<tr>
<td>Oil pump type</td>
<td>Trochoid type</td>
<td>Trochoid type</td>
</tr>
<tr>
<td>Cooling system</td>
<td>Water-cooled, forced circulation</td>
<td>Water-cooled, forced circulation</td>
</tr>
<tr>
<td>Water pump type</td>
<td>Centrifugal impeller type</td>
<td>Centrifugal impeller type</td>
</tr>
</tbody>
</table>

*¹: SPACE STAR for Europe
*²: LANCER for General Export
1. SPECIFICATIONS

SERVICE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camshaft cam height mm</td>
<td>SOHC 12-VALVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intake (primary)</td>
<td>38.78</td>
</tr>
<tr>
<td></td>
<td>Intake (secondary)</td>
<td>38.78</td>
</tr>
<tr>
<td></td>
<td>Exhaust*1</td>
<td>39.01</td>
</tr>
<tr>
<td></td>
<td>Exhaust*2</td>
<td>38.97</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE*3</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>36.85</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE*4</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>36.68</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE*5</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>37.16</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE*6</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>36.99</td>
</tr>
<tr>
<td></td>
<td>DOHC</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>34.26</td>
</tr>
<tr>
<td></td>
<td>DOHC GDI</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>34.59</td>
</tr>
<tr>
<td>Camshaft journal diameter mm</td>
<td>SOHC</td>
<td>45.93–45.94</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE*7</td>
<td>44.93–44.94</td>
</tr>
<tr>
<td></td>
<td>DOHC</td>
<td>25.95–25.97</td>
</tr>
<tr>
<td>Cylinder head and valves</td>
<td>Flatness of cylinder head gasket surface mm</td>
<td>0.05 or less</td>
</tr>
<tr>
<td>Cylinder head gasket surface grinding limit (including grinding of cylinder block gasket surface) mm</td>
<td>–</td>
<td>0.2</td>
</tr>
<tr>
<td>Cylinder head overall height mm</td>
<td>SOHC 12-VALVE</td>
<td>106.9–107.1</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE</td>
<td>119.9–120.1</td>
</tr>
<tr>
<td></td>
<td>DOHC</td>
<td>131.9–132.1</td>
</tr>
<tr>
<td>Cylinder head bolt nominal length mm</td>
<td>–</td>
<td>103.2</td>
</tr>
<tr>
<td>Valve margin mm</td>
<td>Intake</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>1.5</td>
</tr>
<tr>
<td>Valve stem diameter mm</td>
<td>SOHC 12-VALVE</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>DOHC</td>
<td>5.5</td>
</tr>
</tbody>
</table>

*1: With low pollution system
*2: Without low pollution system
*3: Except 2001 model front wheel drive vehicles
*4: 2001 model front wheel drive vehicles for Europe
*5: 2001 model front wheel drive vehicles for General Export
*6: 2002 model front wheel drive vehicles for Europe
*7: SOHC 16-VALVE MPI for Europe
<table>
<thead>
<tr>
<th>Item</th>
<th>SOHC 12-VALVE</th>
<th>SOHC 16-VALVE</th>
<th>DOHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve stem-to-guide clearance mm</td>
<td>Intake</td>
<td>Intake</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>Exhaust</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Valve face angle</td>
<td>45° - 45.5°</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valve stem projection mm</td>
<td>Intake</td>
<td>Intake</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>Exhaust</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Overall valve length mm</td>
<td>Intake</td>
<td>Intake</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>Exhaust</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Valve spring free height mm</td>
<td>Intake</td>
<td>Intake</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>Exhaust</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Valve spring load/installed height N/mm</td>
<td>Intake</td>
<td>Intake</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>Exhaust</td>
<td>Exhaust</td>
</tr>
<tr>
<td>Valve spring squareness</td>
<td>2°</td>
<td>4°</td>
<td>4°</td>
</tr>
<tr>
<td>Valve seat contact width mm</td>
<td>0.9 - 1.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Valve guide internal diameter mm</td>
<td>SOHC 12-VALVE</td>
<td>SOHC 16-VALVE</td>
<td>DOHC</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Valve guide projection mm</td>
<td>SOHC 12-VALVE</td>
<td>SOHC 16-VALVE</td>
<td>DOHC</td>
</tr>
<tr>
<td></td>
<td>17.0</td>
<td>23.0</td>
<td>23.0</td>
</tr>
<tr>
<td>Oil pump and oil pan</td>
<td>Oil pump tip clearance mm</td>
<td>Oil pump side clearance mm</td>
<td>Oil pump body clearance mm</td>
</tr>
<tr>
<td></td>
<td>0.06 - 0.18</td>
<td>0.04 - 0.10</td>
<td>0.10 - 0.18</td>
</tr>
<tr>
<td>Item</td>
<td>Standard</td>
<td>Limit</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Pistons and connecting rods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston outside diameter mm</td>
<td>4G13</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4G15</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4G18</td>
<td>76.0</td>
<td></td>
</tr>
<tr>
<td>Piston ring side clearance mm</td>
<td>No. 1 ring</td>
<td>0.03-0.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. 2 ring</td>
<td>0.02-0.06</td>
<td></td>
</tr>
<tr>
<td>Piston ring end gap clearance</td>
<td>No. 1 ring</td>
<td>0.20-0.35</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>No. 2 ring</td>
<td>0.35-0.50</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Oil ring</td>
<td>4G13, 4G15</td>
<td>0.20-0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4G18</td>
<td>0.10-0.40</td>
</tr>
<tr>
<td>Piston pin O. D. mm</td>
<td></td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Piston pin press-in load (at room temperature) N</td>
<td></td>
<td>4,900-14,700</td>
<td></td>
</tr>
<tr>
<td>Crankshaft pin oil clearance mm</td>
<td></td>
<td>0.02-0.04</td>
<td>0.1</td>
</tr>
<tr>
<td>Connecting rod big end side clearance mm</td>
<td></td>
<td>0.10-0.25</td>
<td>0.4</td>
</tr>
<tr>
<td>Crankshaft and cylinder block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankshaft end play mm</td>
<td></td>
<td>0.05-0.18</td>
<td>0.25</td>
</tr>
<tr>
<td>Crankshaft journal diameter mm</td>
<td></td>
<td>48.0</td>
<td></td>
</tr>
<tr>
<td>Crankshaft pin diameter mm</td>
<td></td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>Crankshaft journal oil clearance mm</td>
<td></td>
<td>0.02-0.04</td>
<td>0.1</td>
</tr>
<tr>
<td>Cylinder block gasket surface flatness mm</td>
<td></td>
<td>0.05 or less</td>
<td>-</td>
</tr>
<tr>
<td>Cylinder block gasket surface grinding limit (including grinding of cylinder head gasket surface) mm</td>
<td></td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Cylinder block overall height mm</td>
<td></td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Cylinder bore cylindricity mm</td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Cylinder bore I. D. mm</td>
<td>4G13</td>
<td>71.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4G15</td>
<td>75.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4G18</td>
<td>76.0</td>
<td></td>
</tr>
<tr>
<td>Piston-to-cylinder clearance mm</td>
<td></td>
<td>0.02-0.04</td>
<td>-</td>
</tr>
</tbody>
</table>
REWORK DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder head and valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head oversize valve guide</td>
<td>SOHC 12-VALVE</td>
<td></td>
</tr>
<tr>
<td>hole diameter mm</td>
<td>0.05 O. S.</td>
<td>12.040–12.058</td>
</tr>
<tr>
<td></td>
<td>0.25 O. S.</td>
<td>12.240–12.258</td>
</tr>
<tr>
<td></td>
<td>0.50 O. S.</td>
<td>12.490–12.508</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05 O. S.</td>
<td>10.550–10.568</td>
</tr>
<tr>
<td></td>
<td>0.25 O. S.</td>
<td>10.750–10.768</td>
</tr>
<tr>
<td></td>
<td>0.50 O. S.</td>
<td>11.000–11.018</td>
</tr>
<tr>
<td></td>
<td>DOHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05 O. S.</td>
<td>10.550–10.568</td>
</tr>
<tr>
<td></td>
<td>0.25 O. S.</td>
<td>10.750–10.768</td>
</tr>
<tr>
<td></td>
<td>0.50 O. S.</td>
<td>11.000–11.018</td>
</tr>
<tr>
<td></td>
<td>DOHC GDI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05 O. S.</td>
<td>10.610–10.620</td>
</tr>
<tr>
<td></td>
<td>0.25 O. S.</td>
<td>10.810–10.820</td>
</tr>
<tr>
<td></td>
<td>0.50 O. S.</td>
<td>11.060–11.070</td>
</tr>
<tr>
<td>Oversize valve seat ring hole diameter mm</td>
<td>SOHC 12-VALVE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intake (primary)</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>Intake (secondary)</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE</td>
<td><4G13></td>
</tr>
<tr>
<td></td>
<td>Intake</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>SOHC 16-VALVE</td>
<td><4G18></td>
</tr>
<tr>
<td></td>
<td>Intake</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>DOHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intake</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.3 O. S.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 O. S.</td>
</tr>
<tr>
<td>Item</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Alternator and ignition system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pump pulley bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Alternator brace bolt (alternator side)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Alternator brace bolt (tightened with water pump)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Alternator pivot bolt</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Oil level gauge guide bolt (Flange)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Oil level gauge guide bolt (Washer)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Crankshaft bolt (M12)</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Crankshaft bolt (M14)</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>Spark plug</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Distributor bolt</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ignition coil bolt</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ignition failure sensor bolt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Camshaft position sensor bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Camshaft position sensor support bolt</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Camshaft position sensing cylinder bolt</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Timing belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing belt cover bolt</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Timing belt tensioner bolt</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Crankshaft angle sensor bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Bracket bolt</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Engine support bracket bolt (M8)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Engine support bracket bolt, nut (M10)</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Idler pulley bolt</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Camshaft sprocket bolt</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Fuel and emission control system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum pipe & hose bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Delivery pipe bolt</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Fuel pressure regulator bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Throttle body bolt</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Hose clamp bolt</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Fuel pump bolt (SOHC 12-VALVE–CARBURETOR)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fuel pump bolt (SOHC 16-VALVE–CARBURETOR)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Breather tube clamp bolt</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Carburetor bolt</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Air temperature sensor</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Cover bolt (Except M8 × 16)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Cover bolt (M8 × 16)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>EGR valve bolt</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Intake manifold and throttle body (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerator cable bolt</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Throttle body bolt</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Air intake plenum resonator bolt</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Power plant stay right bolt</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay bolt</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>EGR valve bolt</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>EGR valve support bolt</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>EGR valve support nut</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Intake manifold bolt, nut</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen sensor</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold cover bolt</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold bracket bolt</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold nut (M8)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold nut (M10)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Power plant stay left bolt</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Water pump and water hose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water inlet fitting bolt</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Water inlet pipe bolt (M8)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Water inlet pipe bolt (M10)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Fitting bolt</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Water outlet fitting bolt (Front wheel drive)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Water outlet fitting bolt (Rear wheel drive)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Thermostat case bolt</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Thermo valve</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature gauge unit</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature sensor</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Water pump bolt</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold and intake manifold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost sensor bolt</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Solenoid valve assembly bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Intake manifold bolt, nut</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay bolt <MPI> (M8)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay bolt <MPI> (M10)</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay bolt <carburetor></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Engine hanger bolt</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold cover bolt</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold nut (M8)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold nut (M10)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold bracket A bolt</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold bracket B bolt</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Power plant stay right bolt</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Power plant stay left bolt</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Oxygen sensor</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Fuel system (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel pipe bolt</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fuel pump bolt</td>
<td>4.9 → 17 ± 2</td>
<td></td>
</tr>
<tr>
<td>Flange bolt</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Harness bracket bolt</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>Injector holder bolt</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Delivery pipe and injector bolt</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Rocker arms and camshaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel pump cover bolt</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Rocker cover bolt <SOHC></td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Rocker cover bolt <DOHC></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Rocker shaft assembly bolt</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Adjusting screw</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Bearing cap bolt (M6)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Bearing cap bolt (M8)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Rocker arms and camshaft (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine hanger bolt</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Rocker cover bolt</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Beam camshaft cap bolt (M6)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Beam camshaft cap bolt (M8)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Cylinder head and valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head bolt</td>
<td>20 + 90° + 90°</td>
<td></td>
</tr>
<tr>
<td>Tighten to 49 Nm, then completely loosen and retighten as described.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil pump and oil pan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission stay bolt</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Oil pan bolt (M6)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Oil pan bolt (M8)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Drain plug</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Oil screen bolt</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Front case bolt</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Relief plug</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Oil pump cover bolt</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Pistons and connecting rods

<table>
<thead>
<tr>
<th>Item</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting rod nut</td>
<td>17 + 90° to 100°</td>
</tr>
</tbody>
</table>

Crankshaft and cylinder block

<table>
<thead>
<tr>
<th>Item</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flywheel bolt</td>
<td>132</td>
</tr>
<tr>
<td>Drive plate bolt <Except GDI></td>
<td>132</td>
</tr>
<tr>
<td>Drive plate bolt <GDI></td>
<td>98</td>
</tr>
<tr>
<td>Rear plate bolt</td>
<td>10</td>
</tr>
<tr>
<td>Bell housing cover bolt</td>
<td>10</td>
</tr>
<tr>
<td>Rear oil seal case bolt</td>
<td>11</td>
</tr>
<tr>
<td>Bearing cap bolt</td>
<td>34 + 30° to 34°</td>
</tr>
<tr>
<td>Oil pressure switch</td>
<td>19</td>
</tr>
<tr>
<td>Knock sensor</td>
<td>23</td>
</tr>
</tbody>
</table>
NEW TIGHTENING METHOD USING PLASTIC REGION TIGHTENING BOLTS

Parts of the engine use plastic region tightening bolts. The tightening procedure for these is different from that of conventional bolts and is described in relevant parts of this manual. Note that plastic region tightening bolts have fixed service limits. These limits are indicated in relevant parts of this manual and must be strictly observed.

- Plastic region tightening bolts are used for the following applications:
 1. Cylinder head bolts
 2. Connecting rod cap bolts
 3. Bearing cap bolt
- The tightening procedure is basically as follows:
 After tightening a bolt to the specified torque, tighten it by a further 90° + 90°, 90°–100° or 30°–34°. The exact tightening procedure differs depending on the bolt and is described in relevant parts of this manual.

SEALANTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specified sealant</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cam position sensor support</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Water pump</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Thermo valve</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Thermostat housing</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Water outlet fitting</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Engine coolant temperature sensor</td>
<td>3M Nut Locking Part No. 4171 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Engine coolant temperature gauge unit</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Camshaft bearing cap</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Semi-circular packing</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Rocker cover</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Beam camshaft cap</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Oil pump case</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Oil pan</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Oil pressure switch</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Rear oil seal case</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Drive plate bolt</td>
<td>3M Nut Locking Part No. 4171 or equivalent</td>
<td>As required</td>
</tr>
</tbody>
</table>
FORM-IN-PLACE GASKET

The engine has several areas where the form-in-place gasket (FIPG) is in use. To ensure that the gasket fully serves its purpose, it is necessary to observe some precautions when applying the gasket. Bead size, continuity and location are of paramount importance. Too thin a bead could cause leaks. Too thick a bead, on the other hand, could be squeezed out of location, causing blocking or narrowing of the fluid feed line. To eliminate the possibility of leaks from a joint, therefore, it is absolutely necessary to apply the gasket evenly without a break, while observing the correct bead size.

The FIPG used in the engine is a room temperature vulcanization (RTV) type and is supplied in a 100-gram tube (Part No. MD970389 or MD997110). Since the RTV hardens as it reacts with the moisture in the atmospheric air, it is normally used in the metallic flange areas. The FIPG, Part No. MD970389, can be used for sealing both engine oil and coolant, while Part No. 997110 can only be used for engine oil sealing.

Disassembly

The parts assembled with the FIPG can be easily disassembled without use of a special method. In some cases, however, the sealant between the joined surfaces may have to be broken by lightly striking with a mallet or similar tool. A flat and thin gasket scraper may be lightly hammered in between the joined surfaces. In this case, however, care must be taken to prevent damage to the joined surfaces. For removal of the oil pan, the special tool “Oil Pan Remover” (MD998727) is available. Be sure to use the special tool to remove the oil pan. <Except aluminium die-cast oil pans>

Surface Preparation

Thoroughly remove all substances deposited on the gasket application surfaces, using a gasket scraper or wire brush. Check to ensure that the surfaces to which the FIPG is to be applied is flat. Make sure that there are no oils, greases and foreign substances deposited on the application surfaces. Do not forget to remove the old sealant remained in the bolt holes.

Form-In-Place Gasket Application

When assembling parts with the FIPG, you must observe some precautions, but the procedures is very simple as in the case of a conventional precut gasket. Applied FIPG bead should be of the specified size and without breaks. Also be sure to encircle the bolt hole circumference with a completely continuous bead. The FIPG can be wiped away unless it is hardened. While the FIPG is still moist (in less than 15 minutes), mount the parts in position. When the parts are mounted, make sure that the gasket is applied to the required area only. In addition, do not apply any oil or water to the sealing locations or start the engine until a sufficient amount of time (about one hour) has passed after installation is completed.

The FIPG application procedure may vary on different areas. Observe the procedure described in the text when applying the FIPG.
2. SPECIAL TOOLS

<table>
<thead>
<tr>
<th>Tool</th>
<th>Number</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB990767</td>
<td>End yoke holder</td>
<td>Holding camshaft sprocket when loosening or tightening bolt (used with MD998715)</td>
<td></td>
</tr>
<tr>
<td>MB991614</td>
<td>Angle gauge</td>
<td>Installation of crankshaft bearing caps</td>
<td></td>
</tr>
<tr>
<td>MB991653</td>
<td>Cylinder head bolt wrench (10)</td>
<td>Removal and installation of cylinder head bolts</td>
<td></td>
</tr>
<tr>
<td>MB991671</td>
<td>Valve stem installer</td>
<td>Press-fitting of valve stem seals (SOHC 16-VALVE, DOHC)</td>
<td></td>
</tr>
<tr>
<td>MD998011</td>
<td>Crankshaft rear oil seal installer</td>
<td>Installation of crankshaft rear oil seal</td>
<td></td>
</tr>
<tr>
<td>MD998054</td>
<td>Oil pressure switch wrench</td>
<td>Removal and installation of oil pressure switch</td>
<td></td>
</tr>
<tr>
<td>MD998304</td>
<td>Crankshaft front oil seal installer</td>
<td>Installation of crankshaft front oil seal</td>
<td></td>
</tr>
<tr>
<td>MD998305</td>
<td>Crankshaft front oil seal guide</td>
<td>Guide for installation of crankshaft front oil seal</td>
<td></td>
</tr>
<tr>
<td>Tool</td>
<td>Number</td>
<td>Name</td>
<td>Use</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MD998442</td>
<td>Air bleed wire</td>
<td>Testing of automatic lash adjusters (DOHC)</td>
<td></td>
</tr>
<tr>
<td>MD998713</td>
<td>Camshaft oil seal installer</td>
<td>Installation of camshaft oil seal</td>
<td></td>
</tr>
<tr>
<td>MD998715</td>
<td>Pin (2-off)</td>
<td>Holding camshaft sprocket when loosening or tightening bolt (used with MB990767)</td>
<td></td>
</tr>
<tr>
<td>MD998727</td>
<td>Oil pan remover</td>
<td>Removal of oil pan</td>
<td></td>
</tr>
<tr>
<td>MD998735</td>
<td>Valve spring compressor</td>
<td>Compression of valve springs</td>
<td></td>
</tr>
<tr>
<td>MD998760</td>
<td>Valve stem seal installer</td>
<td>Installation of valve stem seals (SOHC 12-VALVE)</td>
<td></td>
</tr>
<tr>
<td>MD998762</td>
<td>Circular packing installer</td>
<td>Installing of circular packing</td>
<td></td>
</tr>
<tr>
<td>MD998772</td>
<td>Valve spring compressor</td>
<td>Compression of valve springs</td>
<td></td>
</tr>
<tr>
<td>MD998780</td>
<td>Piston pin setting tool</td>
<td>Removal and press-fitting of piston pins</td>
<td></td>
</tr>
<tr>
<td>Tool Number</td>
<td>Name</td>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MD998781</td>
<td>Flywheel stopper</td>
<td>Locking flywheel in fixed position</td>
<td></td>
</tr>
<tr>
<td>MD998306</td>
<td>Crankshaft front oil seal installer</td>
<td>Installation of crankshaft front oil seal</td>
<td></td>
</tr>
<tr>
<td>MB991962</td>
<td>Crankshaft front oil seal guide</td>
<td>Guide for installation of crankshaft oil seal</td>
<td></td>
</tr>
</tbody>
</table>
3. ALTERNATOR AND IGNITION SYSTEM
REMOVAL AND INSTALLATION <SOHC 12-VALVE>

Removal steps
1. Oil level gauge
2. Oil level gauge guide
3. O-ring
4. Drive belt*
5. Water pump pulley
6. Alternator brace
7. Alternator
8. Crankshaft bolt
9. Crankshaft pulley
10. Spark plug cable
11. Spark plug
12. Distributor
13. O-ring

NOTE
*: For details of adjustment, refer to the relevant model's chassis workshop manual.
REMOVAL AND INSTALLATION <SOHC 16-VALVE – FRONT WHEEL DRIVE (WITH DISTRIBUTOR)>

Removal steps
1. Oil level gauge
2. Oil level gauge guide
3. O-ring
4. Drive belt*
5. Water pump pulley
6. Alternator brace
7. Alternator
8. Crankshaft bolt
9. Crankshaft pulley
10. Spark plug cable
11. Spark plug
12. Distributor
13. O-ring

NOTE
*: For details of adjustment, refer to the relevant model's chassis workshop manual.
REMOVAL AND INSTALLATION <SOHC 16-VALVE – FRONT WHEEL DRIVE (WITH CAM POSITION SENSOR)>

Removal steps
1. Oil level gauge
2. Oil level gauge guide
3. O-ring
4. Drive belt*
5. Water pump pulley
6. Alternator brace
7. Alternator
8. Crankshaft bolt
9. Crankshaft pulley
10. Spark plug cable
11. Ignition coil
12. Spark plug
13. Ignition failure sensor (only vehicles for Europe)
14. Cam position sensor
15. Cam position sensor support
16. Cam position sensing cylinder

NOTE
*: For details of adjustment, refer to the relevant model’s chassis workshop manual.
Removal steps
1. Oil level gauge
2. Oil level gauge guide
3. O-ring
4. Drive belt*
5. Water pump pulley
6. Alternator brace
7. Alternator
8. Crankshaft bolt
9. Crankshaft pulley
10. Spark plug cable
11. Ignition coil
12. Spark plug
13. Cam position sensor
14. Cam position sensor support
15. Cam position sensing cylinder

NOTE
*: For details of adjustment, refer to the relevant model's chassis workshop manual.
REMOVAL AND INSTALLATION <DOHC>

Removal steps

1. Oil level gauge
2. Oil level gauge guide
3. O-ring
4. Drive belt*
5. Water pump pulley
6. Alternator brace
7. Alternator
8. Crankshaft bolt
9. Crankshaft pulley
10. Spark plug cable
11. Spark plug
12. Distributor
13. O-ring

NOTE
*: For details of adjustment, refer to the relevant model’s chassis workshop manual.
Removal steps

1. Oil level gauge
2. Engine hanger
3. Oil level gauge guide
4. O-ring
5. Drive belt
6. Water pump pulley
7. Alternator brace
8. Alternator assembly
9. Crankshaft bolt
10. Crankshaft pulley
11. Ignition coil
12. Spark plug
13. Cam position sensor
14. Cam position sensor support
15. Cam position sensing cylinder
REMOVAL SERVICE POINT

A CRANKSHAFT BOLT REMOVAL
(1) Lock the flywheel or drive plate in position using the special tool shown in the illustration, then loosen the crankshaft bolts.

INSTALLATION SERVICE POINTS

A DISTRIBUTOR INSTALLATION
(1) Turn the crankshaft clockwise until cylinder No. 1 is at top dead center on its compression stroke.
(2) Align the alignment marks on the distributor housing and coupling.
(3) Fit the distributor onto the engine, aligning the stud bolts with the slots in the distributor mounting flange.

B CRANKSHAFT PULLEY / BOLT INSTALLATION
(1) Hold the flywheel or drive plate using the special tool.
(2) Clean the bolt hole in crankshaft, crankshaft bolt and crankshaft pulley’s seating surface.
(3) Degrease the cleaned seating surface of the crankshaft pulley.
(4) Install the crankshaft pulley.
(5) Apply oil to the threads of crankshaft bolt and the outer surface of washer.
(6) Tighten the crankshaft bolt to the specified torque of 125 Nm.

C CAM POSITION SENSOR SUPPORT INSTALLATION
(1) Apply a 3 mm bead of form-in-place gasket (FIPG) to the area shown.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent
4. TIMING BELT

REMOVAL AND INSTALLATION <SOHC – With timing belt rear cover>

Removal steps:
1. Timing belt upper cover
2. Timing belt lower cover
3. Timing belt
4. Tensioner spring
5. Timing belt tensioner
6. Crankshaft angle sensor <Without Distributor>
7. Crankshaft sprocket
8. Spacer <Without Distributor>
9. Sensing blade <Without Distributor>
10. Flange <With Distributor>
11. Camshaft sprocket bolt
12. Camshaft sprocket
13. Engine support bracket
14. Timing belt rear cover
REMOVAL AND INSTALLATION <SOHC – Without timing belt rear cover>

Removal steps
1. Timing belt upper cover
2. Timing belt lower cover
3. Timing belt
4. Tensioner spring
5. Timing belt tensioner
6. Crankshaft angle sensor
 <Without Distributor>
7. Crankshaft sprocket
8. Spacer <Without Distributor>
9. Sensing blade <Without Distributor>
10. Camshaft sprocket bolt
11. Camshaft sprocket
12. Bracket
13. Engine support bracket
REMOVAL AND INSTALLATION <DOHC>

Removal steps
1. Timing belt upper cover
2. Timing belt lower cover
3. Timing belt
4. Tensioner spring
5. Timing belt tensioner
6. Idler pulley
7. Crankshaft sprocket
8. Flange
9. Camshaft sprocket bolt
10. Camshaft sprocket
11. Engine support bracket
12. Timing belt rear cover (lower)
13. Timing belt rear cover (right)
14. Timing belt rear cover (left)
REMOVAL AND INSTALLATION <GDI>

Removal steps
1. Timing belt front upper cover
2. Timing belt front lower cover
3. Timing belt
4. Tensioner spring
5. Timing belt tensioner
6. Idler pulley
7. Crank angle sensor
8. Crankshaft sprocket
9. Spacer
10. Sensing blade
11. Bracket
12. Right engine support bracket
13. Camshaft sprocket bolt
14. Camshaft sprocket
15. Timing belt rear upper cover
REMOVAL SERVICE POINTS

A TIMING BELT / TENSIONER SPRING / TIMING BELT TENSIONER REMOVAL

1. Using pliers, grip the tensioner spring projection (marked “A” in the diagram) and remove it from the oil pump case stopper. Then, remove the tensioner spring.
2. Remove the timing belt tensioner.
3. If the timing belt is to be reused, chalk an arrow on the belt to indicate the direction of rotation before removing it. This will ensure the timing belt is fitted correctly when reused.

B CAMSHAFT SPROCKET BOLT REMOVAL

1. Using the special tools shown in the illustration, lock the camshaft sprocket in position.
2. Loosen the camshaft sprocket bolt.

C TIMING BELT REMOVAL

1. If the timing belt is to be refused, it is necessary to install it in the same direction as it was before. Mark an arrow that shows the direction of rotation on the back surface of the timing belt with chalk, etc.

2. Using pliers and the like, hold the tensioner spring at the illustrated position, and remove the spring.

 Caution
 Do not cause the end of the tensioner spring to give damage to the timing belt.

3. Loosen the timing belt tensioner securing bolt.
4. Move the timing belt tensioner in the direction shown to remove the timing belt.
INSPECTION

1. TIMING BELT

Check the timing belt closely. Replace the belt with a new one if any of the following defects is evident:

(1) Hardened backing rubber (the backing rubber is glossy, non-elastic, and so hard that scratching with fingernails leaves no mark)

(2) Surface cracks in the backing rubber
(3) Splits in the canvas and/or separation of the canvas and rubber
(4) Cracks at the bases of teeth
(5) Cracks in the side of the belt

(6) Abnormal wear on the belt's sides

 NOTE
 The sides of the belt are normal if they are sharp as if cut by a knife.

(7) Abnormal wear on teeth

 Initial stage:
 Canvas worn (fluffy canvas fibers, rubbery texture gone, white discoloration, canvas texture indistinct)
 Final stage:
 Canvas worn, exposing rubber (tooth width reduced)

(8) Missing teeth

2. TENSIONER PULLEY AND IDLER PULLEY

(1) Check that the pulleys turn smoothly without play and are not abnormally noisy. Replace either or both of the pulleys if necessary.
INSTALLATION SERVICE POINTS

A ◼ CAMSHAFT SPROCKET BOLT INSTALLATION

1. Using the special tools shown in the illustration, lock the camshaft sprocket in position.
2. Tighten the camshaft sprocket bolt to the specified torque.

B ◼ SENSING BLADE / SPACER / FLANGE / CRANKSHAFT SPROCKET

Type with crank angle sensor:
1. Clean the hole in the crankshaft sprocket.
2. Clean and degrease the mating surfaces of the crankshaft sprocket and crankshaft; sensing blade; and spacer.

NOTE
Degreasing is necessary to prevent decrease in friction between the mating surfaces due to presence of oil.

Type without crank angle sensor:
1. Clean the hole in the crankshaft sprocket.
2. Clean and degrease the crankshaft sprocket, flange, and sprocket fitting surface of the crankshaft.

NOTE
Degreasing is necessary to prevent decrease in friction between the mating surfaces due to presence of oil.

C ◼ TIMING BELT TENSIONER / TENSIONER SPRING INSTALLATION

1. Lock the timing belt tensioner in the illustrated position.

2. Fit one of the tensioner spring projections over the hooked portion of the timing belt tensioner and fit the tensioner onto the oil pump case.
(3) Grip the other tensioner spring projection and fit it onto the oil pump case lug as shown in the illustration.
(4) Move the timing belt tensioner in the direction shown and temporarily tighten the bolt.

D TIMING BELT INSTALLATION

(1) Align the camshaft timing mark with the timing mark on the cylinder head.

(2) Align the crankshaft timing mark with the timing mark on the front case.

(3) Keeping the tension side of the timing belt tight, fit the timing belt onto the crankshaft sprocket, camshaft sprocket, and tensioner pulley in that order.
(4) Loosen the tensioner pulley mounting bolts by 1/4 to 1/2 of a turn and allow the tensioner spring to apply tension to the timing belt.
(5) Turn the crankshaft twice in the normal rotating direction (clockwise) and check that the timing marks are correctly aligned.

Caution

This procedure utilizes the camshaft’s driving torque to apply tension evenly to the timing belt. Be sure to turn the crankshaft as described above. Do not turn the crankshaft in reverse.

(6) Tighten the tensioner pulley mounting bolts.
TIMING BELT INSTALLATION

(1) Place the camshaft sprocket timing marks at the positions shown.

NOTE
After aligning the sprocket timing marks, let go of the sprockets. The exhaust camshaft sprocket will rotate by one tooth in the direction shown and remain stable in this position.

(2) Align the crankshaft timing mark with the timing mark on the front case.

(3) Turn the exhaust camshaft sprocket in the direction shown and fit the timing belt with the timing marks aligned.

(4) Use a bulldog clip to prevent the timing belt teeth from jumping.

(5) Fit the timing belt onto the idler pulley, crankshaft sprocket, and tensioner pulley in that order.

NOTE
When fitting the belt, keep the camshaft sprocket timing marks correctly aligned and keep the tension side of the belt tight.

(6) Loosen the tensioner pulley mounting bolts by 1/4 to 1/2 of a turn and allow the tensioner spring to apply tension to the timing belt.

(7) Remove the bulldog clip.

(8) Turn the crankshaft twice in the normal rotating direction (clockwise) and check that the timing marks are correctly aligned.

Caution
This procedure utilizes the camshaft’s driving torque to apply tension evenly to the timing belt. Be sure to turn the crankshaft as described above. Do not turn the crankshaft in reverse.

(9) Tighten the tensioner pulley mounting bolts.
TIMING BELT TENSIONER AND TENSIONER SPRING INSTALLATION

1. Install the timing belt tensioner and the tensioner spring, and temporarily tighten the timing belt tensioner securing bolt.

2. Using pliers and the like, secure the spring at the illustrated position of the front case.

 Caution
 Do not cause the end of the tensioner spring to give damage to the crankshaft sprocket.

TIMING BELT INSTALLATION

1. Align the timing marks on each camshaft sprocket.

 NOTE
 After the timing marks on the sprockets are aligned, the sprockets can turn by about one tooth in the direction shown and remain stable in this position.

2. Align the crankshaft sprocket timing marks.

3. While paying attention to the direction of rotation marked on the timing belt (if the timing belt is reused), put the timing belt over the inlet camshaft sprocket. After that, secure the belt at the position shown with a paper clip, etc.
(4) Adjust the timing belt so that 23 cogs will fall within the range between the timing marks on the intake and exhaust camshaft sprockets. Secure the belt at this position with a paper clip, etc.

(5) While aligning the exhaust camshaft sprocket timing marks, install the timing belt on the idler pulley, crankshaft sprocket, and the timing belt tensioner in that order.

(6) Ensure that the timing marks on the exhaust camshaft sprocket and on the crankshaft sprocket are in alignment.

(7) Loosen the timing belt tensioner securing bolt, which has temporarily been tightened, a quarter to half turn. Utilizing tensioner spring tension, give tension to the timing belt.

(8) Remove the paper clips, etc.

(9) Make two turns of the crankshaft sprocket in clockwise direction to ensure that the timing marks on each camshaft sprocket are in alignment.

Caution
Operation under item 9 above is performed in order to give a constant tension to the timing belt by utilizing camshaft driving torque. Observe the number of turns of the sprocket mentioned above. Do not turn the crankshaft sprocket counterclockwise direction.
Removal steps

1. Breather tube
2. Fuel hose
3. Hose clamp
4. Fuel pump
5. Gasket
6. Insulator
7. Gasket
8. Carburetor
9. Upper gasket
10. Spacer
11. Lower gasket
12. EGR valve <engine with EGR>
13. Cover <engine without EGR>
14. Gasket
Removal steps
1. Breather tube
2. Fuel hose
3. Hose clamp
4. Fuel pump
5. Gasket
6. Insulator
7. Gasket
8. Carburetor
9. Upper gasket
10. Spacer
11. Lower gasket
12. Cover
13. Gasket
REMOVAL AND INSTALLATION <SOHC–MPI – FRONT WHEEL DRIVE (EXCEPT FROM 2001 model FOR EUROPE)>

Removal steps
1. Vacuum pipe and hose assembly
2. Vacuum hose assembly
3. Throttle body assembly
4. Gasket
5. Fuel return pipe
6. Fuel pressure regulator
7. O-ring
8. Insulator
9. Insulator
10. Injector
11. O-ring
12. Grommet
13. Delivery pipe
14. EGR valve (With EGR valve)
15. Cover (Without EGR valve)
16. Gasket
17. Air temperature sensor (Up to 2000 model)
18. Gasket (Up to 2000 model)
REMOVAL AND INSTALLATION <SOHC–MPI – FRONT WHEEL DRIVE (FROM 2001 model FOR EUROPE)>

Removal steps
1. Vacuum pipe and hose
2. Throttle body assembly
3. Gasket
4. Fuel pressure regulator
5. O-ring
6. Insulator
7. Insulator
8. Injector
9. O-ring
10. Grommet
11. Delivery pipe
12. EGR valve
13. Gasket
Removal steps
1. Throttle body assembly
2. Gasket
3. Fuel return pipe
4. Fuel pressure regulator
5. O-ring
6. Insulator
7. Insulator

8. Injector
9. O-ring
10. Grommet
11. Delivery pipe
12. EGR valve
13. Gasket
REMOVAL AND INSTALLATION <DOHC>

Removal steps
1. Throttle body assembly
2. Gasket
3. Fuel return pipe
4. Fuel pressure regulator
5. O-ring
6. Insulator
7. Insulator
8. Injector
9. O-ring
10. Grommet
11. Delivery pipe
INSTALLATION SERVICE POINTS

A. INJECTOR INSTALLATION
(1) Fit a new O-ring and grommet onto the injector.
(2) Apply spindle oil or gasoline to the injector O-ring.

(3) Fit the injector onto the delivery pipe, turning it to the left and right as it goes in.
(4) Check that the injector rotates smoothly.

Caution
If the injector does not rotate smoothly, its O-ring may be binding. If this occurs, remove the injector from the delivery pipe, check the O-ring, and re-insert the injector.

B. FUEL PRESSURE REGULATOR INSTALLATION
(1) Apply a little new engine oil to the O-ring, then insert the fuel pressure regulator into the delivery pipe, taking care not to damage the O-ring.

Caution
Ensure that no engine oil enters the delivery pipe.

(2) Check that the fuel pressure regulator rotates smoothly. If it does not rotate smoothly, the O-ring may be binding. If this occurs, remove the fuel pressure regulator, check the O-ring for damage, then re-insert the regulator into the delivery pipe.
Removal steps

1. Accelerator cable
2. Water hose
3. Throttle body
4. Gasket
5. Air intake plenum resonator
6. O-ring
7. Power plant stay, right
8. Intake manifold stay
9. Water hose

10. Water hose
11. EGR valve
12. Gasket
13. EGR valve support
14. Gasket
15. P.C.V. hose
16. Intake manifold
17. Gasket
18. Insulator
REMOVAL SERVICE POINT

A. INTAKE MANIFOLD REMOVAL
Disconnect the fuel pressure sensor connectors.

INSTALLATION SERVICE POINTS

A. INTAKE MANIFOLD INSTALLATION
After installing the intake manifold, connect the fuel pressure sensor connectors.

B. INTAKE MANIFOLD STAY INSTALLATION
Ensure that the intake manifold stay is in close contact with the intake manifold and the cylinder block boss. After that, tighten the bolts to the specified torque.
EXHAUST MANIFOLD (GDI)
REMOVAL AND INSTALLATION

Removal steps
1. Oxygen sensor
2. Exhaust manifold cover
3. Exhaust manifold bracket B
4. Exhaust manifold
5. Exhaust manifold gasket
6. Exhaust manifold bracket A
7. Power plant stay, left
6. WATER PUMP AND WATER HOSE
REMOVAL AND INSTALLATION <SOHC 12-VALVE-CARBURETOR>

Removal steps
1. Water hose
2. Water hose
3. Water hose
4. Thermo valve <engines with EGR>
5. Thermo valve
6. Engine coolant temperature gauge unit
7. Water inlet fitting
8. Thermostat
9. Thermostat case
10. Gasket
11. Water inlet pipe
12. O-ring
13. O-ring
14. Water pump
Removal steps

1. Water hose
2. Water hose
3. Water hose
4. Thermo valve
5. Engine coolant temperature gauge unit
6. Water inlet fitting
7. Thermostat
8. Thermostat case
9. Gasket
10. Water inlet pipe
11. O-ring
12. O-ring
13. Water pump
Intencionalmente en blanco
Removal steps

1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water inlet fitting
6. Thermostat
7. Thermostat case
8. Gasket
9. Water inlet pipe
10. O-ring
11. O-ring
12. Water pump
REMOVAL AND INSTALLATION <SOHC 16-VALVE-MPI - FRONT WHEEL DRIVE>

Removal steps:
1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water inlet fitting
6. Thermostat
7. Thermostat case
8. Gasket
9. Water inlet pipe
10. O-ring
11. O-ring
12. Water pump
Removal steps:
1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water outlet fitting
6. Gasket
7. Thermostat
8. Fitting
9. Gasket
10. Water inlet pipe
11. O-ring
12. Water pump
REMOVAL AND INSTALLATION <SOHC 16-VALVE–MPI – FRONT WHEEL DRIVE (FROM 2004 model FOR EUROPE)>

Removal steps
1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water inlet fitting
6. Thermostat
7. Thermostat case
8. Gasket
9. Water inlet pipe
10. O-ring
11. O-ring
12. Water pump
REMOVAL AND INSTALLATION <DOHC>

Removal steps
1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water inlet fitting
6. Thermostat
7. Thermostat case
8. Gasket
9. Water inlet pipe
10. O-ring
11. O-ring
12. Water pump
Removal steps

1. Water outlet fitting
2. Water inlet fitting
3. Thermostat
4. Engine coolant temperature gauge unit
5. Engine coolant temperature sensor
6. Thermostat housing
7. Water inlet pipe
8. O-ring
9. Water pump
INSTALLATION SERVICE POINTS

▶A◀ WATER PUMP INSTALLATION
(1) Apply a 3 mm bead of form-in-place gasket (FIPG) to the mounting surface.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent.

▶B◀ O-RING / WATER PIPE INSTALLATION
(1) Replace the water inlet pipe O-rings with new ones, then apply water to the O-rings so that they can be inserted easily into the water pump and thermostat case.

Caution
1. Do not apply engine oil or any other oily substance to the O-rings.
2. Secure the water pipe after the thermostat case has been installed.

▶C◀ THERMOSTAT INSTALLATION
(1) Fit the thermostat such that its jiggle valve is at the top.

▶D◀ ENGINE COOLANT TEMPERATURE GAUGE UNIT INSTALLATION
(1) If the engine coolant temperature gauge unit is to be reused, apply the specified sealant to its thread.

Specified sealant:
3M ATD Part No. 8660 or equivalent.

▶E◀ ENGINE COOLANT TEMPERATURE SENSOR INSTALLATION
(1) If the engine coolant temperature sensor is to be reused, apply the specified sealant to its thread.

Specified sealant:
3M Nut Locking Part No. 4171 or equivalent.
F THERMO VALVE INSTALLATION

(1) If the thermo valve is to be reused, apply the specified sealant to its thread.

Specified sealant:
 Mitsubishi Genuine Part No. MD970389 or equivalent.

G THERMOSTAT HOUSING INSTALLATION

(1) Remove the old liquid gasket from the cylinder head (thermostat housing mounting surface) and the thermostat housing.
(2) Apply liquid gasket to the thermostat housing mounting surface by squeezing it to a thickness of 3 mm.

Specified sealant:
 Mitsubishi Genuine Part No. MD970389 or equivalent.

Caution
Squeeze the liquid gasket uniformly so that there is no break in the gasket nor is there too much gasket.

H WATER OUTLET FITTING INSTALLATION

(1) Remove the old liquid gasket from the thermostat housing (water outlet fitting mounting surface) and the water outlet fitting.
(2) Apply liquid gasket to the water outlet fitting mounting surface by squeezing it to a thickness of 3 mm.

Specified sealant:
 Mitsubishi Genuine Part No. MD970389 or equivalent.

Caution
Squeeze the liquid gasket uniformly so that there is no break in the gasket nor is there too much gasket.
7. INTAKE AND EXHAUST MANIFOLDS
REMOVAL AND INSTALLATION <SOHC 12-VALVE-CARBURETOR>

Removal steps
1. Engine hanger 5. Exhaust manifold cover
2. Intake manifold stay 6. Engine hanger
3. Intake manifold 7. Exhaust manifold
4. Intake manifold gasket 8. Exhaust manifold gasket
Removal steps
1. Engine hanger
2. Intake manifold stay
3. Intake manifold
4. Intake manifold gasket
5. Exhaust manifold cover
6. Engine hanger
7. Exhaust manifold
8. Exhaust manifold gasket
Removal steps
1. Engine hanger
2. Intake manifold stay
3. Intake manifold
4. Intake manifold gasket
5. Air hose
6. Exhaust manifold cover

7. Air pipe
8. Reed valve and bracket
9. Reed valve
10. Reed valve bracket “A”
11. Reed valve bracket “B”
12. Exhaust manifold
Removal steps

1. Engine hanger
2. Intake manifold stay
3. Intake manifold
4. Intake manifold gasket
5. Oxygen sensor <vehicles for Hong Kong only>
6. Engine hanger
7. Exhaust manifold cover
8. Exhaust manifold
9. Exhaust manifold gasket
Removal and Installation
<SOHC 16-valve-MPI – Front Wheel Drive (From 2001 model for Europe)>

Removal steps:
1. Boost sensor
2. Engine hanger
3. Power plant stay, right (From 2004 model)
4. Intake manifold stay
5. Intake manifold
6. Intake manifold gasket
7. Solenoid valve assembly
8. Solenoid valve assembly
9. Oxygen sensor
10. Engine hanger
11. Exhaust manifold cover
12. Exhaust manifold bracket B
13. Exhaust manifold
14. Exhaust manifold gasket
15. Exhaust manifold bracket A (Up to 2003 model)
16. Power plant stay, left (From 2004 model)
Removal steps
1. Boost sensor 7. Solenoid valve assembly <Without catalytic converter>
2. Engine hanger 8. Engine hanger
3. Intake manifold stay 9. Exhaust manifold cover
4. Intake manifold 10. Exhaust manifold
5. Intake manifold gasket 11. Exhaust manifold gasket
6. Solenoid valve assembly <Without catalytic converter>
Removal steps
1. Boost sensor
2. Engine hanger
3. Power plant stay right <CVT>
4. Intake manifold stay
5. Solenoid valve assembly
6. Intake manifold
7. Intake manifold gasket
8. Engine hanger
9. Exhaust manifold cover
10. Exhaust manifold
11. Exhaust manifold gasket
12. Power plant stay left <CVT>
Removal steps

1. Engine hanger
2. Intake manifold stay
3. Intake manifold
4. Intake manifold gasket
5. Oxygen sensor
6. Exhaust manifold cover
7. Engine hanger
8. Exhaust manifold
9. Exhaust manifold gasket
INSTALLATION SERVICE POINTS

A. REED VALVE, BRACKET AND AIR PIPE INSTALLATION

1. Insert the lower end of the air pipe into the exhaust manifold, then tighten the pipe nut temporarily.
2. Fit the upper end of the air pipe to the reed valve and bracket assembly, then tighten the pipe nut temporarily.
3. Attach the reed valve and bracket assembly to the reed valve bracket “B” and tighten the mounting bolts temporarily.
4. Tighten the nuts on both ends of the air pipe to the specified torque.

Caution

The tightening torque of the reed valve side nut and that of the exhaust manifold side nut are different from each other. Be sure to tighten each nut correctly to the specified torque.

5. Tighten the reed valve and bracket mounting bolts to the specified torque.
6. Tighten the pipe clamp bolt.
FUEL SYSTEM (GDI)
REMOVAL AND INSTALLATION

Removal steps
1. Injector harness
2. Fuel pipe
3. Backup ring
4. O-ring
5. Backup ring
6. Fuel pump
7. O-ring
8. Flange
9. Fuel pressure sensor
10. O-ring
11. Backup ring
12. Harness bracket
13. Washer
14. Injector holder
15. Delivery pipe and injector
16. Insulator
17. Injector gasket
18. Corrugate washer
19. Backup ring
20. O-ring
21. Backup ring
22. Injector
23. Delivery pipe
INSTALLATION SERVICE POINTS

A - BACKUP RING / O-RING INSTALLATION
Install the backup rings and the O-rings on the injector. Install the backup ring (thicker one) on the injector with the inside cut surface facing the direction shown in the illustration.

B - CORRUGATE WASHER INSTALLATION
Apply white vaseline to the corrugate washer and install the washer on the injector in the direction shown.

Caution
If the washer that has once been tightened is refused, it will cause fuel leakage or gas leakage. Be sure to use a new washer.

C - DELIVERY PIPE AND INJECTOR INSTALLATION
(1) Apply spindle oil or gasoline to injector O-rings.
(2) Insert the injector straight in the injector mounting hole on the delivery pipe.
(3) Try to turn the injector. If the injector does not turn smoothly, remove the injector and check the O-rings for damage. If damage is evident, replace the O-rings and reinstall the injector.
(4) Align the matchmark on the injector with that on the delivery pipe.
(5) Install the delivery pipe and injector on the cylinder head and tighten the bolts to the specified torque in the order shown in the illustration.

D - BACKUP RING / O-RING / FUEL PRESSURE SENSOR INSTALLATION
(1) Install the backup ring on the fuel pressure sensor with the inside cut surface facing the direction shown in the illustration.
(2) Install the fuel pressure sensor in the direction shown, paying attention to the shape of connector.

FUEL PUMP / BACKUP RING / O-RING / FUEL PIPE INSTALLATION

(1) Apply engine oil to the roller and the O-ring of the fuel pump.

(2) Insert the fuel pump in the mounting hole on the cylinder head, and lightly tighten four bolts (a little more strongly than you tighten them with fingers).

(3) Install the backup rings and the O-rings on both ends of the fuel pipe. Install the backup ring (thicker one) with the inside cut surface facing the direction shown in the illustration.

(4) Apply spindle oil or gasoline to the O-rings on both ends of the pipe.

(5) Insert the fuel pipe straight in the mounting hole on the fuel pump. When the fuel pipe is inserted, use care not to twist it and insert as far as it goes.

(6) Tighten the bolts on both ends of the pipe to the specified torque.

(7) Using the torque wrench (minimum scale 0.5 Nm), tighten the fuel pump mounting bolts by the following procedure.
 1. Tighten the bolts to 4.9 Nm in the order as shown.
 2. Tighten the bolts to 17 Nm in the order as shown.
 The torque variation of the four bolts should be within 2 Nm.

Caution
Observe the tightening order. Failure to observe the specified torques and tightening order will cause leakage, etc.
8. ROCKER ARMS AND CAMSHAFTS
REMOVAL AND INSTALLATION <SOHC 12-VALVE>

Removal steps
1. Breather hose
2. P.C.V. hose
3. P.C.V. valve
4. P.C.V. valve gasket
5. Oil filler cap
6. Rocker cover
7. Rocker cover gasket
8. Camshaft oil seal
9. Rocker arm and shaft assembly
10. Rocker arm and shaft assembly
11. Rocker arm A
12. Rocker arm spring
13. Rocker arm B
14. Rocker arm shaft
15. Rocker arm C
16. Wave washer
17. Spacer
18. Rocker arm D
19. Rocker arm shaft
20. Adjusting screw
21. Nut
22. Camshaft

Apply engine oil to all moving parts before installation.
REMOVAL AND INSTALLATION <SOHC 16-VALVE (With Adjusting screw)>

Apply engine oil to all moving parts before installation.

Removal steps

1. Breather hose
2. P.C.V. hose
3. Oil filler cap
4. P.C.V. valve
5. P.C.V. valve gasket
6. Rocker cover
7. Rocker cover gasket
8. Oil seal
9. Oil seal
10. Rocker arms and rocker arm shaft, intake
11. Rocker arms and rocker arm shaft, exhaust
12. Rocker arm A
13. Rocker arm B
14. Rocker arm shaft
15. Adjusting screw
16. Nut
17. Rocker arm C
18. Rocker arm shaft
19. Adjusting screw
20. Nut
21. Camshaft
Apply engine oil to all moving parts before installation.

Removal steps

1. Breather hose
2. P.C.V. hose
3. Oil filler cap
4. P.C.V. valve
5. P.C.V. valve gasket
6. Rocker cover
7. Rocker cover gasket
8. Oil seal
9. Oil seal
10. Rocker arms and rocker arm shaft, intake
11. Rocker arms and rocker arm shaft, exhaust
12. Rocker arm A
13. Rocker arm B
14. Rocker arm shaft
15. Lash adjuster
16. Rocker arm C
17. Rocker arm shaft
18. Lash adjuster
19. Camshaft
Apply engine oil to all moving parts before installation.

Removal steps:
1. Breather hose
2. P.C.V. hose
3. P.C.V. valve
4. P.C.V. valve gasket
5. Oil filler cap
6. Rocker cover
7. Rocker cover gasket A
8. Rocker cover gasket B
9. Semi-circular packing
10. Camshaft oil seal
11. Bearing cap
12. Camshaft
13. Camshaft
14. Roller rocker arm
15. Lash adjuster
REMOVAL SERVICE POINTS

>A< ROCKER ARMS AND ROCKER ARM SHAFTS REMOVAL

Caution
If the lash adjuster is re-used, clean the lash adjuster.
(Refer to 11A-8-3.)

Set special tool MD998443 to prevent the lash adjuster from coming free and falling to the floor.

>B< LASH ADJUSTER REMOVAL

Caution
If the lash adjuster is re-used, clean the lash adjuster.
(Refer to 11A-8-6.)
Intentionally blank
INSPECTION

1. CAMSHAFT

(1) Measure the cam heights and replace the camshaft if any height exceeds the specified limit.

<table>
<thead>
<tr>
<th></th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC 12-VALVE(^{*1})</td>
<td>38.78</td>
<td>38.28</td>
</tr>
<tr>
<td>SOHC 12-VALVE(^{*2})</td>
<td>38.78</td>
<td>38.28</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*3})</td>
<td>36.99</td>
<td>36.49</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*4})</td>
<td>36.86</td>
<td>36.36</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*5})</td>
<td>37.30</td>
<td>36.80</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*6})</td>
<td>37.17</td>
<td>36.67</td>
</tr>
<tr>
<td>DOHC</td>
<td>34.67</td>
<td>34.17</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC 12-VALVE(^{*1})</td>
<td>39.01</td>
<td>38.51</td>
</tr>
<tr>
<td>SOHC 12-VALVE(^{*2})</td>
<td>38.97</td>
<td>38.47</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*3})</td>
<td>36.85</td>
<td>36.35</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*4})</td>
<td>36.68</td>
<td>36.18</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*5})</td>
<td>37.16</td>
<td>36.66</td>
</tr>
<tr>
<td>SOHC 16-VALVE(^{*6})</td>
<td>36.99</td>
<td>36.49</td>
</tr>
<tr>
<td>DOHC</td>
<td>34.26</td>
<td>33.76</td>
</tr>
</tbody>
</table>

\(^{*1}\): With low pollution system
\(^{*2}\): Without low pollution system
\(^{*3}\): Except 2001 model front wheel drive vehicles
\(^{*4}\): 2001 model front wheel drive vehicles for Europe
\(^{*5}\): 2001 model front wheel drive vehicles for General Export
\(^{*6}\): 2002 model front wheel drive vehicles for Europe

2. LASH ADJUSTERS

(SOHC)

Caution

1. The lash adjusters are precision-engineered mechanisms. Do not allow them to become contaminated by dirt or other foreign substances.
2. Do not attempt to disassemble the lash adjusters.
3. Use only fresh diesel fuel to clean the lash adjusters.

(1) Prepare three containers and approximately five liters of diesel fuel. Into each container, pour enough diesel fuel to completely cover a lash adjuster when it is standing upright. Then, perform the following steps with each lash adjuster.
(2) Place the lash adjuster in container A and clean its outside surface.

 NOTE
 Use a nylon brush if deposits are hard to remove.

(3) While gently pushing down the internal steel ball using special tool MD998442, move the plunger through 5 to 10 strokes until it slides smoothly. In addition to eliminating stiffness in the plunger, this operation will remove dirty oil.

 Caution
 The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.

 NOTE
 If the plunger remains stiff or the mechanism appears otherwise abnormal, replace the lash adjuster.

(4) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

(5) Place the lash adjuster in container B. Then, gently push down the internal steel ball using special tool MD998442 and move the plunger through 5 to 10 strokes until it slides smoothly. This operation will clean the lash adjuster’s pressure chamber.

 Caution
 The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.
(6) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

(7) Place the lash adjuster in container C. Then, gently push down the internal steel ball using special tool MD998442.

Caution

Do not use container C for cleaning. If cleaning is performed in container C, foreign matter could enter the pressure chamber when chamber is filled with diesel fuel.

(8) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill with diesel fuel.

(9) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check that the lash adjuster’s height matches that of a new lash adjuster.

NOTE

If lash adjuster contracts, perform the operations (7) through (9) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.

(10) Stand the lash adjuster upright to prevent diesel fuel from spilling out. Do not allow the lash adjuster to become contaminated by dirt or other foreign matter. Fit the lash adjuster onto the engine as soon as possible.
Caution
1. The lash adjusters are precision-engineered mechanisms. Do not allow them to become contaminated by dirt or other foreign substances.
2. Do not attempt to disassemble the lash adjusters.
3. Use only fresh diesel fuel to clean the lash adjusters.

(1) Prepare three containers and approximately five liters of diesel fuel. Into each container, pour enough diesel fuel to completely cover a lash adjuster when it is standing upright. Then, perform the following steps with each lash adjuster.

(2) Place the lash adjuster in container A and clean its outside surface.

NOTE
Use a nylon brush if deposits are hard to remove.
(3) While gently pushing down the internal steel ball using special tool MD998442, move the plunger through 5 to 10 strokes until it slides smoothly. In addition to eliminating stiffness in the plunger, this operation will remove dirty oil.

Caution
The steel ball spring is extremely weak, so the lash adjuster's functionality may be lost if the air bleed wire is pushed in hard.

NOTE
If the plunger remains stiff or the mechanism appears otherwise abnormal, replace the lash adjuster.

(4) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

Caution
Make sure the oil hole in the side of the body is pointing toward container A. Do not point the oil hole at yourself or other people.

(5) Place the lash adjuster in container B. Then, gently push down the internal steel ball using special tool MD998442 and move the plunger through 5 to 10 strokes until it slides smoothly. This operation will clean the lash adjuster's pressure chamber.

Caution
The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.

(6) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

Caution
Make sure the oil hole in the side of the body is pointing toward container B. Do not point the oil hole at yourself or other people.
(7) Place the lash adjuster in container C. Then, gently push down the internal steel ball using special tool MD998442.

Caution
Do not use container C for cleaning. If cleaning is performed in container C, foreign matter could enter the pressure chamber when chamber is filled with diesel fuel.

(8) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill with diesel fuel.

(9) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check that the lash adjuster's height matches that of a new lash adjuster.

NOTE
If lash adjuster contracts, perform the operations (7) through (9) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.

(10) Stand the lash adjuster upright to prevent diesel fuel from spilling out. Do not allow the lash adjuster to become contaminated by dirt or other foreign matter. Fit the lash adjuster onto the engine as soon as possible.

INSTALLATION SERVICE POINTS

►CAMSHAFT INSTALLATION

(1) Apply engine oil to the camshaft journals and cams before installation. Ensure that the intake-side and exhaust-side camshafts are not reversed.

NOTE
There is a 4 mm-wide slot in the rear end of the exhaust-side camshaft.
BEARING CAP INSTALLATION

(1) Position the camshaft dowel pins as shown.

NOTE
With the camshaft dowel pins in this position, the camshaft notches for tightening cylinder head bolt are correctly positioned.

(2) Bearing caps Nos. 2 to 5 are the same shape. Be sure to install them in order of their cap numbers and check the identification marks to ensure that the intake and exhaust sides are not reversed.

Identification marks:
- I: Intake
- E: Exhaust

(3) Apply the specified sealant to the surfaces that are to mate with the cylinder head. Then, tighten the bearing cap bolts - for the middle caps first, then for the outer caps, and soon. Tighten the bolts a little at a time such that each bolt is tightened to the specified torque in the final sequence.

Specified sealant:
- 3M ATD Part No. 8660 or equivalent

(4) Check that the rocker arms are installed correctly.

ADJUSTING SCREW INSTALLATION

(1) Install provisionally the screw to the rocker arm. Insert it so that the end of the screw is flush with the edge of the rocker arm or projects slightly (1 mm or less).

ROCKER ARM SHAFT INSTALLATION

(1) Place the end with the larger chamfered side toward the flywheel side. <SOHC 12-VALVE>
Place the end with the larger chamfered side toward the timing belt side. <SOHC 16-VALVE>

NOTE
The rocker arm shaft for intake valves have eight oil holes.

(2) Place the section of the shaft with the oil holes toward the cylinder head.
ROCKER ARM / ROCKERSHIFT ASSEMBLY INSTALLATION

(1) Assemble the rocker arms and rocker shaft, paying attention to the identification marks. Then mount the assembly on the cylinder head.

CAMSHAFT OIL SEAL INSTALLATION

(1) Apply the specified sealant to the area shown.

Specified sealant:
3M ATD Part No. 8660 or equivalent

SEMI-CIRCULAR PACKING INSTALLATION

(1) Apply the specified sealant to the area shown.
H ROCKER COVER INSTALLATION

(1) Apply the specified sealant to the area shown, then fit the rocker cover.

Specified sealant:
3M ATD part No. 8660 or equivalent

I LASH ADJUSTER INSTALLATION

(1) Insert the lash adjuster to rocker arm, being careful not to spill diesel fuel. Use the special tool to prevent adjuster from falling while installing it.

Caution
If the lash adjuster is re-used, clean the lash adjuster. (Refer to 11A-8-3.)

J LASH ADJUSTER INSTALLATION

Caution
If the lash adjuster is re-used, clean the lash adjuster. (Refer to 11A-8-6.)

Fit the lash adjuster onto the rocker arm without allowing diesel fuel to spill out.

VALVE CLEARANCE ADJUSTMENT

<SOHC 12-VALVE>

(1) Position the No. 1 cylinder at top dead center on the compression stroke.

(2) Adjust the valve clearance at the points shown in the illustration.

(3) Loosen the adjusting screw locknut.

(4) Using a feeler gauge, adjust the valve clearance by turning the adjusting screw.

Standard value: on cold engine
Intake 0.09 mm
Exhaust 0.17 mm

(5) While holding the adjusting screw with a screwdriver, tighten the lock nut.
(6) Rotate clockwise the crankshaft one complete turn (360° degree).
(7) Adjust the valve clearance at points as shown in the illustration.
(8) Repeat steps (3) to (5) to adjust the valve clearance of remaining valves.
(9) With the engine mounted on vehicle, warm up the engine. Then, check for valve clearance on hot engine and adjust if necessary.

Standard value: on hot engine
- Intake 0.20 mm
- Exhaust 0.25 mm

<SOHC 16-VALVE>
(1) Position the No. 1 cylinder at top dead center on the compression stroke.
(2) Adjust the valve clearance at the points shown in the illustration.
(3) Loosen the adjusting screw locknut.
(4) Using a feeler gauge, adjust the valve clearance by turning the adjusting screw.

Standard value: on cold engine
- Intake 0.09 mm
- Exhaust 0.17 mm
(5) While holding the adjusting screw with a screwdriver, tighten the lock nut.
(6) Rotate clockwise the crankshaft one complete turn (360° degree).
(7) Adjust the valve clearance at points as shown in the illustration.
(8) Repeat steps (3) to (5) to adjust the valve clearance of remaining valves.
(9) With the engine mounted on vehicle, warm up the engine. Then, check for valve clearance on hot engine and adjust if necessary.

Standard value: on hot engine
- Intake 0.20 mm
- Exhaust 0.25 mm
ROCKER ARMS AND CAMSHAFTS (GDI)

REMOVAL AND INSTALLATION

Apply engine oil to all moving parts before installation.

Removal steps
1. Engine hanger
2. Breather hose
3. P.C.V. valve
4. Gasket
5. Oil filler cap
6. Inlet rocker cover
7. Gasket
8. Exhaust rocker cover
9. Gasket
10. Oil seal
11. Semi-circular packing
12. Beam camshaft cap
13. Gasket
14. Intake camshaft
15. Exhaust camshaft
16. Roller rocker arm
17. Lash adjuster
REMOVAL SERVICE POINT

A LASH ADJUSTER REMOVAL

Caution
If the lash adjuster is to be reused, be sure to clean and inspect it before installation. (Refer to 11A-8a-4.)

INSTALLATION SERVICE POINTS

A LASH ADJUSTER INSTALLATION

Caution
If the lash adjuster is to be reused, be sure to clean and inspect it before installation. (Refer to 11A-8a-4.)

While using care not to spill diesel fuel in the lash adjuster, install the lash adjuster on the rocker arm.

B EXHAUST CAMSHAFT / INTAKE CAMSHAFT INSTALLATION

(1) Turn the crankshaft to place the No. 1 cylinder at top dead center.
(2) Place dowel pins of the camshafts in the positions shown in the illustration.

C BEAM CAMSHAFT CAP INSTALLATION

(1) Remove deposits from the liquid gasket coating surfaces of the beam camshaft cap and the cylinder head.
(2) Apply liquid gasket to the five grooves on the bottom surface of the beam camshaft cap by squeezing it to a thickness of 3 mm.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent.

NOTE
Install the beam camshaft cap within 15 minutes of application of liquid gasket.

(3) Apply a suitable amount of liquid gasket to the ten positions as shown on the top surface of the cylinder head.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent.

NOTE
Install the beam camshaft cap within 15 minutes after application of liquid gasket.
(4) Install the beam camshaft and tighten the bolts to the specified torque in the order shown in the illustration.

Tightening torque
- 11 Nm (M6)
- 25 Nm (M8)

(5) After tightening the bolts, completely wipe out the liquid gasket that has overflowed the intake part before the gasket is hardened (within 15 minutes after application of liquid gasket).

D - SEMI-CIRCULAR PACKING INSTALLATION
Using the special tool, install the semi-circular packing.

E - OIL SEAL INSTALLATION
Using the special tool, install the oil seal.

F - P.C.V. VALVE INSTALLATION
Install the P.C.V. valve with its nipple directed as shown.
INSPECTION

CAMSHAFT

(1) Measure the cam height.

Standard value:
- Intake: 34.85 mm
- Exhaust: 34.59 mm

Limit:
- Intake: 34.35 mm
- Exhaust: 34.09 mm

LASH ADJUSTER

Caution
1. The lash adjusters are precision-engineered mechanisms. Do not allow them to become contaminated by dirt or other foreign substances.
2. Do not attempt to disassemble the lash adjusters.
3. Use only fresh diesel fuel to clean the lash adjusters.

(1) Prepare three containers and approximately five liters of diesel fuel. Into each container, pour enough diesel fuel to completely cover a lash adjuster when it is standing upright. Then, perform the following steps with each lash adjuster.

(2) Place the lash adjuster in container A and clean its outside surface.

NOTE
Use a nylon brush if deposits are hard to remove.

(3) While gently pushing down the internal steel ball using special tool MD998442, move the plunger through 5 to 10 strokes until it slides smoothly. In addition to eliminating stiffness in the plunger, this operation will remove dirty oil.

Caution
The steel ball spring is extremely weak, so the lash adjuster's functionality may be lost if the air bleed wire is pushed in hard.

NOTE
If the plunger remains stiff or the mechanism appears otherwise abnormal, replace the lash adjuster.
(4) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

Caution
Make sure the oil hole in the side of the body is pointing toward container A. Do not point the oil hole at yourself or other people.

(5) Place the lash adjuster in container B. Then, gently push down the internal steel ball using special tool MD998442 and move the plunger through 5 to 10 strokes until it slide smoothly. This operation will clean the lash adjuster’s pressure chamber.

Caution
The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.

(6) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

Caution
Make sure the oil hole in the side of the body is pointing toward container A. Do not point the oil hole at yourself or other people.

(7) Place the lash adjuster in container C. Then, gently push down the internal steel ball using special tool MD998442.

Caution
Do not use container C for cleaning. If cleaning is performed in container C, foreign matter could enter the pressure chamber when chamber is filled with diesel fuel.

(8) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill with diesel fuel.
(9) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check that the lash adjuster's height matches that of a new lash adjuster.

NOTE
If lash adjuster contracts, perform the operations (7) through (9) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.

(10) Stand the lash adjuster upright to prevent diesel fuel from spilling out. Do not allow the lash adjuster to become contaminated by dirt or other foreign matter. Fit the lash adjuster onto the engine as soon as possible.
9. CYLINDER HEAD AND VALVES
REMOVAL AND INSTALLATION <SOHC 12-VALVE>

Apply engine oil to all moving parts before installation.

Removal steps

1. Cylinder head bolt
2. Cylinder head assembly
3. Cylinder head gasket
4. Retainer lock
5. Valve spring retainer
6. Valve spring
7. Intake valve (primary)
8. Intake valve (secondary)
9. Retainer lock
10. Valve spring retainer
11. Valve spring
12. Exhaust valve
13. Valve stem seal
14. Valve spring seat
15. Valve stem seal
16. Valve spring seat
17. Intake valve guide
18. Exhaust valve guide
19. Intake valve seat (primary)
20. Intake valve seat (secondary)
21. Exhaust valve seat
22. Cylinder head
Apply engine oil to all moving parts before installation.

Removal steps

1. Cylinder head bolt
2. Cylinder head assembly
3. Cylinder head gasket
4. Retainer lock
5. Valve spring retainer
6. Valve spring
7. Exhaust valve
8. Retainer lock
9. Valve spring retainer
10. Valve spring
11. Intake valve
12. Valve stem seal
13. Valve spring seat
14. Valve stem seal
15. Valve spring seat
16. Exhaust valve guide
17. Intake valve guide
18. Exhaust valve seat
19. Intake valve seat
20. Cylinder head
REMOVAL AND INSTALLATION <DOHC>

Apply engine oil to all moving parts before installation.

Removal steps:

1. Cylinder head bolt
2. Cylinder head assembly
3. Cylinder head gasket
4. Retainer lock
5. Valve spring retainer
6. Valve spring
7. Intake valve
8. Retainer lock
9. Valve spring retainer
10. Valve spring
11. Exhaust valve
12. Valve stem seal
13. Valve spring seat
14. Valve stem seal
15. Valve spring seat
16. Intake valve guide
17. Exhaust valve guide
18. Intake valve seat
19. Exhaust valve seat
20. Cylinder head

49 Nm
→ Fully loosen.
20 Nm
→ 90° + 90°
Removal steps

1. Cylinder head bolt
2. Cylinder head assembly
3. Gasket
4. Retainer lock
5. Valve spring retainer
6. Valve spring
7. Intake valve
8. Retainer lock
9. Valve spring retainer
10. Valve spring
11. Exhaust valve
12. Valve stem seal
13. Valve spring seat
14. Valve stem seal
15. Valve spring seat
16. Intake valve guide
17. Exhaust valve guide
18. Intake valve seat
19. Exhaust valve seat
20. Cylinder head

Apply engine oil to all moving parts before installation.

49 Nm → Fully loosen.
20 Nm → 90° + 90°
REMOVAL SERVICE POINTS

(A) CYLINDER HEAD BOLT REMOVAL

(B) RETAINER LOCK REMOVAL

(1) Tag removed valves, springs, and other components, noting their cylinder numbers and locations to facilitate reassembly. Store these components safely.
INSPECTION

1. CYLINDER HEAD

(1) Before cleaning the cylinder head, check it for water leaks, gas leaks, cracks, and other damage.

(2) Remove all oil, water scale, sealant, and carbon. After cleaning the oil passages, blow air through them to verify that they are not blocked.

(3) Check for distortion in the cylinder head gasket surface using a straight edge and thickness gauge. If distortion exceeds the specified limit, grind the gasket surface to specification.

- Gasket surface distortion
 - Standard value: 0.05 mm or less
 - Limit: 0.2 mm
 - Grinding limit: 0.2 mm

- Cylinder head height (specification when new):
 - SOHC 12-VALVE: 106.9 - 107.1 mm
 - SOHC 16-VALVE: 119.9 - 120.1 mm
 - DOHC: 131.9 - 132.1 mm

Caution
No more than 0.2 mm of stock may be removed from the cylinder head and cylinder block mating surfaces in total.

2. VALVES

(1) Check the valve face for correct contact. If contact is uneven or incomplete, reface the valve seat.

(2) If the margin is less than specified, replace the valve.

- Standard value:
 - Intake: 1.0 mm
 - Exhaust: 1.5 mm

- Limit:
 - Intake: 0.5 mm
 - Exhaust: 1.0 mm
(3) Measure the valve’s total length. If the measurement is less than specified, replace the valve.

<table>
<thead>
<tr>
<th></th>
<th>Standard mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC 12-VALVE</td>
<td>100.75</td>
<td>100.25</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>111.56</td>
<td>111.06</td>
</tr>
<tr>
<td>DOHC</td>
<td>106.35</td>
<td>105.85</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC 12-VALVE</td>
<td>101.05</td>
<td>100.55</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>114.71</td>
<td>114.21</td>
</tr>
<tr>
<td>DOHC</td>
<td>106.85</td>
<td>106.35</td>
</tr>
</tbody>
</table>

3. VALVE SPRINGS

(1) Measure the valve spring’s free height. If the measurement is less than specified, replace the spring.

<table>
<thead>
<tr>
<th></th>
<th>Standard mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC 12-VALVE</td>
<td>Intake 46.1</td>
<td>45.6</td>
</tr>
<tr>
<td>SOHC 12-VALVE</td>
<td>Exhaust 46.8</td>
<td>46.3</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>50.9</td>
<td>50.4</td>
</tr>
<tr>
<td>DOHC</td>
<td>49.1</td>
<td>48.6</td>
</tr>
</tbody>
</table>

(2) Measure the squareness of the spring. If the measurement exceeds the specified limit, replace the spring.

 Standard value: 2° or less
 Limit: 4°
4. VALVE GUIDES

(1) Measure the clearance between the valve guide and valve stem. If the clearance exceeds the specified limit, replace either or both components.

<table>
<thead>
<tr>
<th></th>
<th>Standard mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC 12-VALVE</td>
<td>0.020 - 0.050</td>
<td>0.10</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>0.020 - 0.047</td>
<td>0.10</td>
</tr>
<tr>
<td>DOHC</td>
<td>0.020 - 0.047</td>
<td>0.10</td>
</tr>
<tr>
<td>Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC 12-VALVE</td>
<td>0.035 - 0.050</td>
<td>0.15</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>0.030 - 0.057</td>
<td>0.15</td>
</tr>
<tr>
<td>DOHC</td>
<td>0.030 - 0.062</td>
<td>0.15</td>
</tr>
</tbody>
</table>

5. VALVE SEATS

(1) Assemble the valve, then measure the valve stem projection between the end of the valve stem and the spring seating surface. If the measurement exceeds the specified limit, replace the valve seat.

<table>
<thead>
<tr>
<th></th>
<th>Standard mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC 12-VALVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>43.70</td>
<td>44.20</td>
</tr>
<tr>
<td>Exhaust</td>
<td>43.30</td>
<td>43.80</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>53.21</td>
<td>53.71</td>
</tr>
<tr>
<td>Exhaust</td>
<td>54.10</td>
<td>54.60</td>
</tr>
<tr>
<td>DOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>48.80</td>
<td>49.30</td>
</tr>
<tr>
<td>Exhaust</td>
<td>48.70</td>
<td>49.20</td>
</tr>
</tbody>
</table>
VALVE SEAT CORRECTION SERVICE POINTS

(1) Before correcting the valve seat, check for clearance between the valve guide and valve and, if necessary, replace the valve guide.

(2) Correct to obtain the specified seat width and angle.

(3) After correction, the valve and valve seat should be lapped with a lapping compound.

<except GDI>

<table>
<thead>
<tr>
<th>Seat Width</th>
<th>Angle 1</th>
<th>Angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 - 1.3 mm</td>
<td>65°</td>
<td>46° - 46.5°, 15°</td>
</tr>
</tbody>
</table>

<GDI - Intake side>

<table>
<thead>
<tr>
<th>Seat Width</th>
<th>Angle 1</th>
<th>Angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 - 1.3 mm</td>
<td>65°</td>
<td>44°, 20°</td>
</tr>
</tbody>
</table>

<GDI - Exhaust side>

<table>
<thead>
<tr>
<th>Seat Width</th>
<th>Angle 1</th>
<th>Angle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9 - 1.3 mm</td>
<td>65°</td>
<td>44°, 15°</td>
</tr>
</tbody>
</table>
VALVE SEAT REPLACEMENT SERVICE POINTS

(1) Cut the valve seat to be replaced from the inside to reduce the wall thickness. Then, remove the valve seat.
(2) Rebore the valve seat hole in the cylinder head to match the selected oversize valve seat diameter.

Valve seat hole diameters

<table>
<thead>
<tr>
<th>Valve Configuration</th>
<th>Intake</th>
<th>Primary (mm)</th>
<th>Secondary (mm)</th>
<th>Exhaust (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC 12-VALVE</td>
<td>0.30 O.S.</td>
<td>27.300 - 27.325</td>
<td>0.30 O.S.</td>
<td>32.300 - 32.325</td>
</tr>
<tr>
<td></td>
<td>0.60 O.S.</td>
<td>27.600 - 27.625</td>
<td>0.60 O.S.</td>
<td>32.600 - 32.625</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>0.30 O.S.</td>
<td>28.300 - 28.321</td>
<td>0.30 O.S.</td>
<td>28.600 - 28.621</td>
</tr>
<tr>
<td><4G13></td>
<td>0.60 O.S.</td>
<td>28.600 - 28.621</td>
<td>0.60 O.S.</td>
<td>28.600 - 28.621</td>
</tr>
<tr>
<td>SOHC 16-VALVE</td>
<td>0.30 O.S.</td>
<td>30.300 - 30.321</td>
<td>0.30 O.S.</td>
<td>28.300 - 28.321</td>
</tr>
<tr>
<td><4G18></td>
<td>0.60 O.S.</td>
<td>30.600 - 30.621</td>
<td>0.60 O.S.</td>
<td>28.600 - 28.621</td>
</tr>
<tr>
<td>DOHC</td>
<td>0.30 O.S.</td>
<td>31.300 - 31.325</td>
<td>0.30 O.S.</td>
<td>27.800 - 27.825</td>
</tr>
<tr>
<td></td>
<td>0.60 O.S.</td>
<td>31.600 - 31.625</td>
<td>0.60 O.S.</td>
<td>28.100 - 28.125</td>
</tr>
</tbody>
</table>

(3) Prevent galling of the cylinder head bore by cooling the valve seat with liquid nitrogen before press-fitting it.
(4) Correct the valve seat to achieve the specified width and angle (refer to VALVE SEAT CORRECTION SERVICE POINTS).
VALVE GUIDE REPLACEMENT SERVICE POINTS

(1) Using a press, push the valve guide out toward the cylinder block side.
(2) Rebore the valve guide hole in the cylinder head to match the oversize valve guide that is to be fitted.

Caution
Do not install a valve guide of the same size again.

Valve guide hole diameters (SOHC 12-VALVE)
- 0.05 O.S.: 12.040 - 12.058 mm
- 0.25 O.S.: 12.240 - 12.258 mm
- 0.50 O.S.: 12.490 - 12.508 mm

Valve guide hole diameters (SOHC 16-VALVE, DOHC)
- 0.05 O.S.: 10.550 - 10.568 mm
- 0.25 O.S.: 10.750 - 10.768 mm
- 0.50 O.S.: 11.000 - 11.018 mm

Valve guide hole diameters (DOHC-GDI)
- 0.05 O.S.: 10.61 - 10.62 mm
- 0.25 O.S.: 10.81 - 10.82 mm
- 0.50 O.S.: 11.06 - 11.07 mm

(3) Press-fit the valve guide until it projects by the specified amount.

Standard value:
- SOHC 12-VALVE: 17 mm
- SOHC 16-VALVE, DOHC: 23 mm

Caution
1. The valve guide must be installed from the upper side of the cylinder head.
2. The valve guides differ in length on the intake and exhaust sides. (48 mm for intake valve; 55 mm for exhaust valve)
3. After press-fitting the valve guide, insert a new valve and check that it slides smoothly.

INSTALLATION SERVICE POINTS

- A-VALVE STEM SEAL INSTALLATION

(1) Install the valve spring seat.
(2) Install a new valve stem seal using the special tool shown in the illustration.

Caution
1. Valve stem seals cannot be reused.
2. The valve stem seal must be installed using the correct special tool. Incorrect installation could result in oil leaking past the valve guide.
B- VALVE SPRING INSTALLATION

(1) Install the valve spring such that its painted end is on the rocker arm side.

C- RETAINER LOCK INSTALLATION

(1) The valve spring, if excessively compressed, causes the bottom end of retainer to be in contact with the stem seal, and damage it.
CYLINDER HEAD BOLT INSTALLATION

1. Before reusing the cylinder head bolt, check that its nominal length does not exceed the specified limit. Replace the bolt if this measurement exceeds the limit.

 Limit: 103.2 mm

2. Apply engine oil to the bolt's thread and washer.

3. Tighten the bolts in the sequence shown until each is torqued to 49 Nm.

4. Completely loosen the bolts.

5. Retighten the bolts in the sequence shown until each is torqued to 20 Nm.

6. Apply paint marks to the cylinder head bolt heads and cylinder head as shown.

7. In accordance with the tightening sequence, tighten each bolt by 90°.

8. Tighten each bolt by a further 90° and check that the paint marks on the bolt head and cylinder head are aligned.

 Caution
 If the bolts are tightened by an angle of less than 90°, they may not hold the cylinder head with sufficient strength.
 If the bolts are tightened by an angle exceeding 90°, completely remove them and carry out the installation procedure again.

VALVE STEM SEAL INSTALLATION

1. Install the valve spring seat.

2. Install the valve.

3. Apply a small amount of engine oil to the valve stem seal.

4. Using the valve stem as a guide, install the valve stem seal to the valve guide with the special tool.

 Caution
 Improper installation of the valve stem seal will cause oil to work down. Use the special tool to install the valve stem seal.

NOTE
The valve stem seal differs between the intake and exhaust sides.
10. OIL PUMP AND OIL PAN
REMOVAL AND INSTALLATION <EXCEPT GDI (FRONT WHEEL DRIVE)>

Apply engine oil to all moving parts before installation.

Removal steps
1. Oil filter 10. Relief valve spring
2. Drain plug 11. Relief plunger
3. Gasket 12. Front oil seal
4. Transmission stay (cast metal) 13. Front case
5. Transmission stay (sheet metal) 14. O-ring
6. Oil pan
7. Oil screen
8. Gasket
9. Relief valve
10. Relief valve spring
11. Relief plunger
12. Front oil seal
13. Front case
14. O-ring
15. Oil pump cover
16. Oil pump outer rotor
17. Oil pump inner rotor
Apply engine oil to all moving parts before installation.

Removal steps

1. Oil filter
2. Drain plug
3. Gasket
4. Transmission stay
5. Oil pan
6. Oil screen
7. Gasket
8. Relief valve
9. Relief valve spring
10. Relief plunger
11. Front oil seal
12. Front case
13. O-ring
14. Oil pump cover
15. Oil pump outer rotor
16. Oil pump inner rotor
Apply engine oil to all moving parts before installation.

Removal steps

1. Oil filter
2. Drain plug
3. Gasket
4. Oil pan
5. Oil screen
6. Gasket
7. Relief valve
8. Relief valve spring
9. Relief plunger
10. Oil seal
11. Front case
12. O-ring
13. Oil pump cover
14. Outer rotor
15. Inner rotor

Apply engine oil to all moving parts before installation.
REMOVAL SERVICE POINT

OIL PAN REMOVAL

(1) Remove the oil pan mounting bolts.
(2) Knock the special tool between the oil pan and cylinder block as shown in the illustration.
(3) Tapping the side of the special tool, slide the tool along the oil pan/cylinder block seal and thus remove the oil pan.

INSPECTION

1. OIL PUMP

(1) Fit the rotor into the front case.
(2) Check the tip clearance using a thickness gauge.
 Standard value: 0.06 – 0.18 mm

(3) Check the side clearance using a straight edge and thickness gauge.
 Standard value: 0.04 – 0.10 mm

(4) Check the body clearance using a thickness gauge.
 Standard value: 0.10 – 0.18 mm
 Limit: 0.35 mm
INSTALLATION SERVICE POINTS

A. FRONT OIL SEAL CASE INSTALLATION
(1) Clean the sealant application surfaces on the cylinder block and front oil seal case.
(2) Apply a 3 mm bead of form-in-place gasket to the entire circumference of the oil pan flange.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent.

B. FRONT OIL SEAL INSTALLATION
(1) Place the special tool on the crankshaft's front end and apply engine oil to the its outer circumference.
(2) Apply engine oil to the oil seal lip, then push the oil seal along the guide by hand until it touches the front case. Tap the oil seal into place using the special tool.

C. OIL PAN INSTALLATION
(1) Clean the mating surfaces of the cylinder block and oil pan.
(2) Apply a 4 mm bead of form-in-place gasket to the outer circumference of the oil pan flange.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent.

D. DRAIN PLUG GASKET INSTALLATION
(1) Replace the drain plug gasket with a new one. Fit the new gasket as shown.
E OIL FILTER INSTALLATION

1. Clean the filter mounting surface on the front case.
2. Apply engine oil to the oil filter’s O-ring.
3. Screw on the oil filter until the O-ring is seated on the mounting surface. Then, give the oil filter one further turn such that it is torqued to approximately 14 Nm.

Caution
The oil filter must be tightened using a commercially available filter wrench. If the filter is tightened by hand only, it will be insufficiently torqued, resulting in oil leaks.

F OIL FILTER INSTALLATION

1. Clean the filter mounting surface on the front case.
2. Apply engine oil to the O-ring of the oil filter.
3. Screw the oil filter in and tighten the oil filter approximately 3/4 of a turn (approx. 16 ± 4 Nm) from where the O-ring has come into contact with the oil filter mounting surface.

Caution
The oil filter must be tightened using a commercially available filter wrench. If the filter is tightened by hand only, it will be insufficiently torqued, resulting in oil leaks.
11. PISTONS AND CONNECTING RODS

REMOVAL AND INSTALLATION

Apply engine oil to all moving parts before installation.

Removal steps
1. Connecting rod nut
2. Connecting rod cap
3. Connecting rod bearing
4. Piston and connecting rod assembly
5. Connecting rod bearing
6. Piston ring No. 1

7. Piston ring No. 2
8. Oil ring
9. Piston pin
10. Piston
11. Connecting rod
12. Bolt
REMOVAL SERVICE POINTS

A. CONNECTING ROD CAP REMOVAL

1. Mark the cylinder number on the side of the connecting rod big end to facilitate reassembly.

B. PISTON PIN REMOVAL

1. Insert the Push Rod (special tool) from the front arrow mark side, then fit guide D.
2. Mount the piston and connecting rod assembly on the Piston Pin Setting Base (special tool) with the piston's front mark pointing upward.
3. Remove the piston pin using a press.

NOTE
After removing the piston pin, keep the piston, piston pin, and connecting rod together. Do not allow pistons, piston pins, and connecting rods from different cylinders to become mixed up.

INSPECTION

1. **PISTON RINGS**

 1. Check the piston ring side clearance. If the clearance exceeds the specified limit, replace the ring or piston, or both.

 Standard values:
 - No. 1 ring: 0.03 - 0.07 mm
 - No. 2 ring: 0.02 - 0.06 mm

 Limits:
 - No. 1 ring: 0.1 mm
 - No. 2 ring: 0.1 mm

 2. Insert the piston ring into the cylinder bore and push it down with a piston. Ensure that the piston's crown is in contact with the ring such that the ring is at 90° to the cylinder wall. Then, measure the end gap with a thickness gauge. If the gap is too large, replace the piston ring.

 Standard values
	mm	Limits mm
No. 1 ring	0.20 - 0.35	0.8
No. 2 ring	0.35 - 0.50	0.8
Oil ring 4G13	0.20 - 0.50	1.0
Oil ring 4G15	0.20 - 0.50	1.0
Oil ring 4G18	0.10 - 0.40	1.0
2. CRANKSHAFT PIN OIL CLEARANCE (PLASTIC GAUGE METHOD)

(1) Wipe all oil off the crankshaft pin and connecting rod bearing.
(2) On the pin, place a plastic gauge that is cut to the same length as the bearing’s width. The plastic gauge must be centered on the pin in parallel with the pin’s axis.
(3) Gently place the connecting rod cap in position and tighten the bolts to the specified torque.
(4) Remove the bolts and gently remove the connecting rod cap.
(5) Measure the compressed part of the plastic gauge at its widest point using the scale printed on the plastic gauge bag.

Standard value: 0.02 – 0.04 mm

Limit: 0.1 mm

INSTALLATION SERVICE POINTS

A ◗ PISTON PIN INSTALLATION

(1) When replacing the piston, read off the cylinder bore size mark on the cylinder block as illustrated, and select a piston according to the following table.

<table>
<thead>
<tr>
<th>CYLINDER BORE SIZE MARK</th>
<th>PISTON SIZE MARK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

NOTE:
The piston size mark shows on the top of the piston.

(2) Measure the following lengths (as shown):
A: Piston boss-to-piston boss outside dimension
B: Piston boss-to-piston boss inside dimension
C: Piston pin length
D: Connecting rod small end eye thickness

(3) Enter the measured values into the following formula:

\[L = \frac{(A-C) - (B-D)}{2} \]

(4) Insert the Push Rod (special tool) into the piston pin, then fit Guide A (special tool).
(5) Fit the piston and connecting rod together such that their front marks are on the same side.
(6) Apply engine oil to the outside of the piston pin.
(7) Into the front-mark side of the piston, insert the Guide A, piston pin, and Push Rod, starting with guide A.
(8) Screw guide B into guide A. Leave a gap between the two guides of 3 mm plus the value (L) calculated in step (3).

(9) Mount the piston and connecting rod on the Piston Pin Setting Base (special tool) with the piston's front mark pointing upward.

(10) Install the piston pin using a press. If the press-fitting load is out of specification, replace the piston pin and piston assembly or the connecting rod, or both.

Standard value: 4,900 – 14,700 N

B OIL RING INSTALLATION

(1) Fit the oil ring spacer into the piston ring groove. Then, fit the upper and lower side rails.

NOTE

(1) The spacer and side rails may be fitted in either direction. No distinction is made between top and bottom.

(2) Spacer and side rail sizes are color-coded as follows:

<table>
<thead>
<tr>
<th>Size</th>
<th>Color</th>
<th>Std/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>None</td>
<td>4G18 ALL</td>
</tr>
<tr>
<td>0.25 mm O.S.</td>
<td>White</td>
<td>4G13 4G15</td>
</tr>
<tr>
<td>0.50 mm O.S.</td>
<td>Blue</td>
<td>4G13 ALL</td>
</tr>
<tr>
<td>1.00 mm O.S.</td>
<td>Yellow</td>
<td>ALL</td>
</tr>
</tbody>
</table>

(2) To install a side rail, fit one end of the rail into the groove then press the rest of the rail into position by hand as shown.

Caution

Do not fit side rails using a piston ring expander since they may break.

(3) After installing the side rails, check that they move smoothly in both directions.
C | PISTON RING No. 2 / PISTON RING No. 1 INSTALLATION

(1) Using piston ring expander, fit No. 2 and No. 1 piston rings into position.

NOTE
1. The ring end is provided with identification mark.

<table>
<thead>
<tr>
<th>Item</th>
<th>Identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1 ring</td>
<td></td>
</tr>
<tr>
<td>GDI</td>
<td>1R</td>
</tr>
<tr>
<td>Except</td>
<td>1T</td>
</tr>
<tr>
<td>GDI</td>
<td>1T</td>
</tr>
<tr>
<td>Without</td>
<td>T</td>
</tr>
<tr>
<td>converter</td>
<td></td>
</tr>
</tbody>
</table>

No. 2 ring	
GDI	2R
Except	2T
GDI	2T
Without	T2
converter	

2. Install piston rings with identification mark facing up, to the piston crown side.

3. Size marks on piston rings are as follows.

<table>
<thead>
<tr>
<th>Size</th>
<th>Size mark</th>
<th>4G18</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD</td>
<td>None</td>
<td>ALL</td>
</tr>
<tr>
<td>0.25 mm O. S.</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0.50 mm O. S.</td>
<td>50</td>
<td>4G13</td>
</tr>
<tr>
<td>1.00 mm O. S.</td>
<td>100</td>
<td>4G15</td>
</tr>
</tbody>
</table>

D | PISTON AND CONNECTING ROD ASSEMBLY INSTALLATION

(1) Apply oil to the piston, piston rings, and oil ring.

(2) Align the gaps of the piston rings and oil ring (side rails and spacer) as shown.

(3) With the piston crown’s front arrow mark pointing toward the timing belt side, press the piston and connecting rod assembly into the cylinder from the top of the cylinder.

(4) Compress the piston rings tightly with a suitable ring compression tool, then press the piston and connecting rod fully into the cylinder. Do not strike the piston hard since the piston rings may break and the crank pin may be nicked.
(1) Select bearings according to crankshaft and connecting rod identification marks or color codes, referring to the following table.

<table>
<thead>
<tr>
<th>Crankshaft identification mark</th>
<th>Connecting rod identification color</th>
<th>Bearing identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>I, Yellow</td>
<td>White</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>2</td>
</tr>
<tr>
<td>II, None</td>
<td>White</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>3</td>
</tr>
<tr>
<td>III, White</td>
<td>White</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>3</td>
</tr>
</tbody>
</table>
F CONNECTING ROD CAP INSTALLATION

(1) Aligning the marks made during disassembly, fit the bearing cap onto the connecting rod. If the connecting rod is new and has no index mark, ensure that the bearing locking notches are both on the same side.

(2) Check that the connecting rod big end side clearance confirms with specifications.

Standard value: 0.10 - 0.25 mm
Limit: 0.4 mm

G CONNECTING ROD CAP NUT INSTALLATION

Caution
To fit the connecting rod cap nuts with the cylinder head in place, the spark plugs must be removed beforehand.

(1) The connecting rod bolts and nuts utilize the plastic region tightening method. The bolts must therefore be checked for stretching before reuse. To check a bolt for stretching, screw the nut down the entire length of the thread by hand. Unless the nut turns smoothly all the way, the bolt’s threaded section is stretched and the bolt must be replaced.

(2) Before fitting the nuts, apply engine oil to their threads and seating surfaces.

(3) Fit the nuts onto the bolts and turn them until they are finger-tight. After this, the nuts must be tightened alternately to ensure correct fitting of the cap.

(4) Tighten the nuts to a torque of 17 Nm.

(5) Make a paint mark on the top of each nut as shown.

(6) Make paint marks on the bolts 90 to 100° clockwise from the paint marks on the nuts.

(7) Turn the nuts until their paint marks are aligned with the paint marks on the bolts.
Caution
1. If the nuts are turned by less than 90°, the cap may not be held on with sufficient strength.
2. If the nuts are turned by more than 100°, loosen them completely and carry out the tightening procedure again.
Apply engine oil to all moving parts before installation.

12. CRANKSHAFT AND CYLINDER BLOCK
REMOVAL AND INSTALLATION <EXCEPT GDI>

34 Nm + 30° to 34°
Removal steps

1. Flywheel bolt
2. Flywheel
3. Flywheel bolt
4. Adapter plate
5. Flywheel
6. Adapter plate
7. Crankshaft bushing
8. Drive plate bolt
9. Adapter plate
10. Drive plate
11. Crankshaft bushing
12. Rear plate
13. Bell housing cover
14. Rear oil seal
15. Rear oil seal case
16. Rear oil seal case gasket
17. Bearing cap bolt
18. Bearing cap
19. Crankshaft bearing (lower)
20. Crankshaft
21. Crankshaft bearing (upper)
22. Oil pressure switch
23. Knock sensor

Caution
On the flexible flywheel equipped engines, do not remove any of the bolts “A” of the flywheel shown in the illustration.

The balance of the flexible flywheel is adjusted in the assembled condition. Removing the bolt, therefore, can cause the flexible flywheel to be out of balance, giving damage to the flywheel.
REMOVAL AND INSTALLATION <GDI>

Apply engine oil to all moving parts before installation.

Removal steps

1. Drive plate bolt
2. Adapter plate
3. Drive plate
4. Crankshaft bushing
5. Rear plate
6. Bell housing cover
7. Rear oil seal case
8. Rear oil seal
9. Bearing cap bolt
10. Bearing cap
11. Bearing cap No. 4
12. Bearing cap center
13. Crankshaft bearing, lower
14. Crankshaft
15. Crankshaft bearing, upper
16. Crankshaft bearing, center
17. Oil pressure switch
18. Knock sensor
19. Cylinder block
REMOVAL SERVICE POINTS

OIL PRESSURE SWITCH REMOVAL

(1) Disconnect the oil pressure switch terminals.
(2) Using the special tool, remove the oil pressure switch.

Caution
The thread is coated with sealant. Take care not to bend it when removing the oil pressure switch.

INSPECTION

1. CRANKSHAFT OIL CLEARANCE

The crankshaft oil clearance can be measured easily using a plastic gauge.

To check the crankshaft oil clearance with a plastic gauge, carry out the following procedure:

(1) Wipe all oil off the crankshaft journal and the bearing’s inside surface.
(2) Install the crankshaft.
(3) Cut the plastic gauge such that its length matches the width of the bearing, then place it on the journal along the journal’s axis.
(4) Gently fit the crankshaft bearing cap and tighten the bolts to the specified torque.
(5) Remove the bolts and gently remove the crankshaft bearing cap.
(6) Using the scale printed on the plastic gauge bag, measure the plastic gauge’s crushed section at its widest point.

Standard value: 0.02 - 0.04 mm
Limit: 0.1 mm

NOTE
The crankshaft pins and journals are fillet-rolled and must not be machined to undersize dimensions.

2. CYLINDER BLOCK

(1) Visually check for cracks, rust, and corrosion, and inspect the cylinder block using a flaw detecting agent. Rectify defects where possible or replace the cylinder block.
(2) Ensure that the top surface is free of gasket chips and other foreign material. Check the cylinder block’s top surface for distortion using a straight edge and thickness gauge.

Standard value: 0.05 mm
Limit: 0.1 mm

(3) Check the cylinder walls for cracks and seizure marks. If defects are evident, bore all the cylinders to oversize or replace the cylinder block.
(4) Using a cylinder gauge, measure each cylinder’s bore and cylindricity. If any cylinder is severely worn, bore all the cylinders to oversize and replace the piston and piston rings accordingly. Take measurements at the points shown.

Standard value:
Cylinder bore:
- 4G13 engine: 71.0 mm
- 4G15 engine: 75.5 mm
- 4G18 engine: 76.0 mm
Cylindricity: 0.01 mm or less

3. BORING CYLINDERS

(1) Oversize pistons to be used should be determined on the basis of the cylinder with the largest bore.

(2) Oversize pistons are available with the following oversize dimensions: 0.25 mm, 0.50 mm, and 1.00 mm. Measure the diameter of the piston to be used. Boring must be carried out such that the piston-to-cylinder clearance complies with the standard value. The piston’s diameter should be measured at the points shown.

(3) Calculate the boring finish dimension based on the piston diameter dimension.

\[
[D] = \text{piston O.D.} + \text{piston-to-cylinder clearance (0.02 – 0.04 mm)} - \text{honing margin (0.02 mm)}
\]

(4) Bore each cylinder to the calculated boring finish dimension.

Caution
To prevent distortion caused by heat increases during boring bore the cylinders in the following order: No. 2, No. 4, No. 1, No. 3.

(5) Hone the cylinders to the final finish dimension (piston O. D. + piston-to-cylinder clearance).

(6) Check the clearance between the pistons and cylinders.

Standard value: 0.02 - 0.04 mm

INSTALLATION SERVICE POINTS

A OIL PRESSURE SWITCH INSTALLATION

(1) Apply the specified sealant to the thread, then fit the oil pressure switch using the special tool shown in the illustration.

Specified sealant:
- 3M ATD Part No. 8660 or equivalent

Caution
1. Apply sealant such that none is squeezed out past end of the thread.
2. Do not over-tighten the oil pressure switch.
4G1 ENGINE (E-W) - Crankshaft and Cylinder Block

CRANKSHAFT BEARING INSTALLATION

4G13, 4G15

Color code positions (type 1)

No. 4 No. 3
No. 5 No. 2
No. 1

Color code positions (type 2)

No. 3
No. 2
No. 5 No. 4
No. 1

Identification mark positions

No. 1 No. 2
No. 3 No. 4 No. 5

4G18

No. 4 No. 3
No. 5 No. 2
No. 1

No. 3 No. 2
No. 5 No. 4
No. 1

1. Select bearings according to the crankshaft identification marks or color codes, referring to the following table. If they are not identifiable, measure the crankshaft journals and choose bearings to match the measurements.
Identification of Cylinder Block Bearing Bore Diameter

The cylinder block bearing bore diameter is identified using color codes and identification marks. Bearings must be selected and installed according to these identification marks.

Identification Marks

- **Yellow** identifies a range of 47.994 – 48.000 mm for bearing classification 1.
- **None** identifies a range of 47.988 – 47.994 mm for bearing classification 2.
- **White** identifies a range of 47.982 – 47.988 mm for bearing classification 3.

Installation Guide

1. **Identification Marks**: Identification marks showing the cylinder block bearing bore diameter are stamped in the position shown, with No. 1 at the front of the engine. Bearings must be selected and installed in accordance with these identification marks.

2. **Identification Verifications**: Based on the identification markings verified in steps (1) and (2), select bearings from the table above. See the following example:
 - If the measured crankshaft journal diameter is 48.000 mm, this corresponds to classification 1 in the above table.
 - If the identification mark on the cylinder block bearing hole is “1”, select a bearing with an identification mark of “2”.

3. **Bearings Classification**: Except for the center bearing, all the upper bearings are grooved. The center bearings are grooveless and have flanges. The center bearings are the same at the top and bottom.

4. **Lower Bearings**: The lower bearings are all grooveless.

<table>
<thead>
<tr>
<th>Range</th>
<th>Color Code</th>
<th>Identification Mark</th>
<th>Journal Diameter (mm)</th>
<th>Bearing Classification</th>
<th>Identification Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow</td>
<td>1</td>
<td>47.994 – 48.000</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>2</td>
<td>47.988 – 47.994</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>3</td>
<td>47.982 – 47.988</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
BEARING CAP INSTALLATION

1. On the bottom surface of each bearing cap is the cap's number and an arrow. Starting at the timing belt side, fit the bearing caps in numerical order. Ensure that the arrows point toward the timing belt side.

2. Apply engine oil to the threaded portion and bearing surface of the bolt. Tighten the bolts to 34 Nm.

3. Using the special tool, tighten the bolts to a further 30 to 34 degrees.

4. After fitting the bearing caps, measure the end play in the crankshaft. If the measurement exceeds the specified limit, replace the crankshaft bearings.

 Standard value: 0.05 - 0.18 mm

 Limit: 0.25 mm

REAR OIL SEAL INSTALLATION

Press-fit the rear oil seal using the special tool shown in the illustration.
E REAR OIL SEAL CASE INSTALLATION

(1) Apply liquid gasket to the rear oil seal case at the illustrated position if it has no pre-formed gasket attached.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent

Caution
Squeeze the liquid gasket uniformly so that there is no break in the gasket nor is there too much gasket.

(2) Apply a suitable amount of engine to the entire periphery of the oil seal lip and install the oil seal on the cylinder block.

F FLYWHEEL BOLT / DRIVE PLATE BOLT INSTALLATION

(1) Clean off sealant, oil and deposits from the threaded portion of the drive plate/adapter plate tightening bolts and from the threaded holes on the crankshaft.

(2) Apply engine oil to the bolt flange and to the threaded holes on the crankshaft.

(3) Apply sealant to the threaded portion of the bolt (if the bolt is reused).

Specified sealant:
3M Nut Locking Part No. 4171 or equivalent

(4) Using the special tool, secure the drive plate and tighten the bolts to the specified torque.
Service Bulletins

Click on the applicable bookmark to select the Service Bulletin.
1. Description:

In the 4G1 engine Workshop Manuals shown below, omission of descriptions from the identification marks for the connecting rod bearing and the crankshaft bearing, has been rectified.

2. Applicable Manuals:

<table>
<thead>
<tr>
<th>Manual</th>
<th>Pub. No.</th>
<th>Language</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE 4G1 (E-W) Workshop Manual</td>
<td>PWEE9520</td>
<td>(English)</td>
<td>11A-11-6,</td>
</tr>
<tr>
<td></td>
<td>PWES9521</td>
<td>(Spanish)</td>
<td>11A-12-6</td>
</tr>
<tr>
<td></td>
<td>PWEF9522</td>
<td>(French)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWEG9523</td>
<td>(German)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWED9524</td>
<td>(Dutch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWEW9525</td>
<td>(Swedish)</td>
<td></td>
</tr>
</tbody>
</table>
(1) Select bearings according to crankshaft and connecting rod identification marks or color codes, referring to the following table.

<table>
<thead>
<tr>
<th>Crankshaft identification mark</th>
<th>Connecting rod identification color</th>
<th>Bearing identification mark or color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>White</td>
<td>1 or Yellow</td>
</tr>
<tr>
<td>OR <Incorrect></td>
<td>None</td>
<td>1 or Yellow</td>
</tr>
<tr>
<td>OR <Correct></td>
<td>Yellow</td>
<td>2 or None</td>
</tr>
<tr>
<td>OR <Incorrect></td>
<td>White</td>
<td>1 or Yellow</td>
</tr>
<tr>
<td>OR <Correct></td>
<td>None</td>
<td>2 or None</td>
</tr>
<tr>
<td>OR <Incorrect></td>
<td>Yellow</td>
<td>3 or Blue</td>
</tr>
<tr>
<td>OR <Correct></td>
<td>White</td>
<td>2 or None</td>
</tr>
<tr>
<td>OR <Incorrect></td>
<td>None</td>
<td>3 or Blue</td>
</tr>
<tr>
<td>OR <Correct></td>
<td>Yellow</td>
<td>3 or Blue</td>
</tr>
</tbody>
</table>

To be replaced by the one on following page.
Identification mark	Identification color
1EN0920

To replace the one on previous page.
Crankshaft journal

<table>
<thead>
<tr>
<th>Range</th>
<th>Color code</th>
<th>Identification mark</th>
<th>Journal diameter mm</th>
<th>Cylinder block bearing bore diameter</th>
<th>Identification mark</th>
<th>Identification mark or color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow</td>
<td>1</td>
<td>47.995 – 48.000</td>
<td>0</td>
<td>1</td>
<td>1 or Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2 or None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td>3 or Blue</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
<td>2</td>
<td>47.985 – 49.995</td>
<td>0</td>
<td>2</td>
<td>2 or None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>3 or Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
<td>4 or Yellow</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>3</td>
<td>47.980 – 48.985</td>
<td>0</td>
<td>3</td>
<td>3 or Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>4 or Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>5 or Green</td>
</tr>
</tbody>
</table>

(2) Identification marks showing the cylinder block bearing bore diameter are stamped in the position shown, with No. 1 at the front of the engine. Bearings must be selected and installed in accordance with these identification marks.

(3) Based on the identification markings verified in steps (1) and (2), select bearings from table above. See the following example:

1. If the measured crankshaft journal diameter 48.000 mm, this corresponds to classification 1 in the above table.
2. If the identification mark on the cylinder block bearing hole is “1”, select a bearing with an identification mark of “2”.

(4) Except for the center bearing, all the upper bearings are grooved. The center bearings are grooveless and have flanges. The center bearings are the same at the top and bottom.

(5) The lower bearings are all grooveless.
1. Description:
This Service Bulletin informs you of the change that has been made to the tightening torque for the 4G1 engine's M12 crankshaft bolt. The tightening procedure for the upsized M14 crankshaft bolt is also contained here in addition to the new tightening torque and procedure for the existing M12 crankshaft bolt.

2. Applicable Manuals:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE 4G1 (E–W)</td>
<td>PWEE9520-F (English)</td>
<td>11A-1-4</td>
</tr>
<tr>
<td>Workshop Manual</td>
<td>PWES9521-F (Spanish)</td>
<td>11A-3-1, 1a, 1b, 3, 4</td>
</tr>
<tr>
<td></td>
<td>PWEF9522-F (French)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWEG9523-F (German)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWED9524-F (Dutch)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWEW9525-F (Swedish)</td>
<td></td>
</tr>
<tr>
<td>ENGINE Workshop Manual</td>
<td>PWEH9903R-E (English, Spanish, Swedish)</td>
<td>11A-1-4</td>
</tr>
<tr>
<td></td>
<td>PWEK9904R-E (French, German, Dutch)</td>
<td>11A-3-1, 1a, 1b, 3, 4</td>
</tr>
</tbody>
</table>
3. **Details:**

M12 CRANKSHAFT BOLT

In order to prevent the crankshaft bolt from loosening and thereby improve reliability, an increased tightening torque has been established as follows:

<Tightening torque>

<table>
<thead>
<tr>
<th>Current torque</th>
<th>New torque</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 N·m</td>
<td>132 N·m + (35 to 55°)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Caution: Stop tightening and never tighten the bolt any more if a torque of 206 N·m is reached during additional tightening to an angle within the specified range.</td>
<td>4</td>
</tr>
</tbody>
</table>

Applicable vehicle models

<table>
<thead>
<tr>
<th>Vehicle model (code)</th>
<th>Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANCER (CJ1A, CJ2A)</td>
<td>3</td>
<td>Crankshaft with casting pulley</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Crankshaft with steel plate pulley</td>
</tr>
<tr>
<td>LANCER (CS1A, CS2A, CS3A)</td>
<td>4</td>
<td>Crankshaft with steel plate pulley</td>
</tr>
<tr>
<td>SPACE STAR (DG1A, DG3A)</td>
<td>3</td>
<td>Crankshaft with casting pulley</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Crankshaft with steel plate pulley</td>
</tr>
</tbody>
</table>
1. Prevent the flywheel or drive plate from rotating using the special tool.

2. Clean the crankshaft bolt hole.
3. Clean and degrease the crankshaft pulley.

 NOTE
 Degreasing is necessary to prevent lack of frictional coefficient on the mating surfaces due to presence of oil or grease.

4. Install the crankshaft pulley.
5. Apply necessary minimum amount of engine oil to the threads and bearing surface of the crankshaft bolt flange.
6. Clean the washer.
7. Install the washer with the shear droop side toward the bolt head.
8. Tighten the crankshaft bolt in the following procedure.

 <Crankshaft with steel plate pulley>
 1. Tighten the crankshaft bolt to 132 N·m.

 Caution
 Never exceed a torque of 206 N·m during additional tightening to an angle within the specified range.

 2. Using the special tool, Angle gauge (MB991614), turn the bolt in the tightening direction to an angle within the 35 – 55° range.

 <Crankshaft with casting pulley>
 Tighten the crankshaft bolt to 132 N·m.
<Tightening torque>
The specified tightening torque for the crankshaft bolt is 181 N·m.

<Tightening procedure>

1. Prevent the flywheel or drive plate from rotating using the special tool.

2. Clean the crankshaft bolt hole.
3. Clean and degrease the crankshaft pulley.
 NOTE
 Degreasing is necessary to prevent lack of frictional coefficient on the mating surfaces due to presence of oil or grease.
4. Install the crankshaft pulley.
5. Apply necessary minimum amount of engine oil to the threads and bearing surface of the crankshaft bolt flange.
6. Clean the washer.
7. Install the washer with the grooved side toward the bolt head.
8. Tighten the crankshaft bolt to 181 N·m.